1 Uppgiftsbeskrivning Syftet med denna laboration var att utifrån uppmätt data avgöra: (i) Om något samband finnes mellan kroppstemperatur och hjärtfrekvens. (ii) Om någon signifikant skillnad i sockerhalt finns mellan frukostflingor på tre olika hyllsektioner. 2 Metod och teori 2.1 Kroppstemperatur och hjärtfrekvens Vi har observerat 130 datapar. Låt x i beteckna kroppstemperatur i Fahrenheit för observation i. Korresponderande hjärtfrekvens y i antas vara en observation av Y i, där där Y i = µ i + ε i, i = 1,..., 130, µ i = α + βx i, i = 1,..., 130, och ε i, i = 1,..., 130 är oberoende slumpvariabler som är N (0, σ 2 ). En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser: 2.2 Frukostflingor H 0α : α = 0 H 0β : β = 0 H 1α : α 0 H 1β : β 0 Hyllsektionerna som undersöktes var vid golvet (1), i mitten (2; ögonhöjd för skolbarn) och lite högre upp (3). Vi antar att observationer från hyllsektion i är stickprov från slumpvariablerna X i, i = 1, 2, 3, som beskriver sockerhalten i flingor på hyllsektion i. Vi antar att Detta kan uttryckas som X i N (µ i, σ 2 ), i = 1, 2, 3 X i = µ i + ε i där µ i är medelvärdet för hyllsektion i och ε i är oberoende och N (0, σ 2 ). Värdeplottar och lådagram gjordes, och envägs-anova utfördes med 5% signifikansnivå, med Tukeys konfidensintervall, och med följande hypoteser: H 0 : µ 1 = µ 2 = µ 3 H 1 : Minst två µ i är olika 2
3 Resultat 3.1 Kroppstemperatur och hjärtfrekvens En scatterplot erhölls, se Figur 1. Testet av α gav ett P-värde på 0, 042 och testet av β gav ett P-värde på 0, 004. Variansanalys gav ett P-värde på 0, 004. Förklaringsgraden R Sq är 6, 4%. Se bilaga 5.1 för utförligare data. Figur 1: Scatterplot över hjärtfrekvens mot kroppstemperatur Residualerna ε i antogs vara normalfördelade. Fyra residualplottar gjordes för att verifiera detta, se Figur 2. Utifrån dessa kan slutsatsen dras att de är normalfördelade och rätt så slumpmässigt utspridda. Figur 2: Fyra plottar över residualerna 3
En sannolikhetsplot över residualerna gjordes också, se Figur 3. Följande hypoteser användes för att verifiera normalfördelning: H 0 : Datan kommer från en normalfördelning. H 1 : Datan kommer inte från en normalfördelning. Då P-värdet är 0,697 kan H 0 inte förkastas, och datan kan antas komma från en normalfördelning. Figur 3: Sannolikhetsplot över residualerna 4
3.2 Frukostflingor Värdeplottar och lådagram erhölls, se Figur 4 respektive 5. ANOVA gav ett P-värde på 0,002, vilket är lägre än signifikansnivån 5%. Från Tukeys konfi- Figur 4: Värdeplot Figur 5: Lådagram densintervall fås att sektion 1 subtraherad från sektion 2 inte inkluderar 0, sektion 1 subtraherad från sektion 3 inkluderar 0, och sektion 2 subtraherad från 3 inte inkluderar 0. Sektion 1 och 3 hamnade i samma grupp, och sektion 2 hamnade i en annan grupp. Se bilaga 5.2 för utförligare information. 5
Residualerna ε i antogs vara normalfördelade. Fyra residualplottar gjordes för att verifiera detta, se Figur 6. Utifrån dessa kan slutsatsen dras att de är normalfördelade och rätt så slumpmässigt utspridda. Figur 6: Fyra plottar över residualerna En sannolikhetsplot över residualerna gjordes också, se Figur 7. Följande hypoteser användes för att verifiera normalfördelning: H 0 : Datan kommer från en normalfördelning. H 1 : Datan kommer inte från en normalfördelning. Då P-värdet är 0,446 kan H 0 inte förkastas, och datan kan antas komma från en normalfördelning. Figur 7: Sannolikhetsplot över residualerna 6
För att testa om residualernas varians är lika i de tre grupperna utfördes Bartletts test, med följande hypoteser: H 0 : Varianserna korresponderande till varje grupp är lika. H 1 : Varianserna korresponderande till varje grupp är ej lika. Från Figur 8 nedan fås att P-värdet är 0,744, vilket är högre än signifikansnivån 5%. Alltså kan H 0 inte förkastas. Figur 8: Bartletts test 7
4 Slutsatser och diskussion 4.1 Kroppstemperatur och hjärtfrekvens De tre P-värderna gör att följande slutsatser kan dras, med 5% signifikansnivå: (i) Båda nollhypoteserna kan förkastas, och både α och β är därför signifikant skilda från 0. (ii) Ett statistiskt signifikant samband mellan kroppstemperatur och hjärtfrekvens finns. 4.2 Frukostflingor Ett mätvärde var negativt, och då sockerhalt enbart kan vara positiv togs denna observation bort ur analysen. Utifrån P-värdet kan H 0 förkastas och slutsatsen dras att det finns signifikant skillnad mellan hyllsektionerna. Utifrån Tukeys konfidensintervall kan slutsatsen dras att det finns en signifikant skillnad mellan sektion 1 och 2, samt mellan sektion 2 och 3, men inte mellan sektion 1 och 3. 8
5 Bilagor - output från Minitab 5.1 Regression Analysis: Hjartfrekvens versus Kroppstemperatur The regression equation is Hjartfrekvens = - 166 + 2,44 Kroppstemperatur Predictor Coef SE Coef T P Constant -166,28 80,91-2,06 0,042 Kroppstemperatur 2,4432 0,8235 2,97 0,004 S = 6,85774 R-Sq = 6,4% R-Sq(adj) = 5,7% Analysis of Variance Source DF SS MS F P Regression 1 413,95 413,95 8,80 0,004 Residual Error 128 6019,66 47,03 Total 129 6433,61 5.2 One-way ANOVA: Socker versus Hyllsektion Source DF SS MS F P Hyllsektion 2 220,2 110,1 6,60 0,002 Error 73 1217,7 16,7 Total 75 1437,9 S = 4,084 R-Sq = 15,32% R-Sq(adj) = 13,00% Individual 95% CIs For Mean Based on Pooled StDev Level N Mean StDev -------+---------+---------+---------+-- 1 19 5,105 4,483 (------*-------) 2 21 9,619 4,129 (------*-------) 3 36 6,528 3,836 (----*-----) -------+---------+---------+---------+-- 5,0 7,5 10,0 12,5 Pooled StDev = 4,084 Grouping Information Using Tukey Method Hyllsektion N Mean Grouping 2 21 9,619 A 3 36 6,528 B 9
1 19 5,105 B Means that do not share a letter are significantly different. Tukey 95% Simultaneous Confidence Intervals All Pairwise Comparisons among Levels of Hyllsektion Individual confidence level = 98,06% Hyllsektion = 1 subtracted from: Hyllsektion Lower Center Upper ------+---------+---------+---------+--- 2 1,423 4,514 7,604 (--------*--------) 3-1,345 1,423 4,191 (-------*-------) ------+---------+---------+---------+--- -3,5 0,0 3,5 7,0 Hyllsektion = 2 subtracted from: Hyllsektion Lower Center Upper ------+---------+---------+---------+--- 3-5,772-3,091-0,411 (------*-------) ------+---------+---------+---------+--- -3,5 0,0 3,5 7,0 10