3.9. Övergångar... (forts: Halvledare i kontakt) [Understanding Physics: 20.9-20.12] Utjämningen av Ferminivåerna för två ledare i kontakt med varandra gäller också för två halvledare i kontakt med varandra. Det är ett exempel på den allmänna termodynamiska principen att temperaturer (och energier) jämnas ut hos system i jämnvikt. Principen kan tillämpas på två intrinsiska halvledare i kontakt med varandra eller en enda halvledare, där två skilda regioner har dopats var för sig. Då en halvledare av n typ är i kontakt med en halvledare av p typ, uppstår en pn övergång. Vi skall studera en pn övergång där halvledarna av n och p typ har tillverkats genom att dopa olika delar av samma intrinsiska halvledare på olika sätt. Fermienergierna E F n och E F p för halvledarna av p och n typ är sinsemellan olika (fig. 20.38). Energigapen är däremot lika, emedan halvledarna har tillverkats genom dopning av samma intrinsiska halvledare. Då övergången uppstår, kommer både lednings och valensbandet att röra på sig, så att den interna potentiella energin ev C åstadkommer att Fermienergierna i de två områdena blir lika stora. Detta sker så, att hål i p sidan diffunderar till n sidan, och att elektroner på n sidan diffunderar till p sidan tills det elektriska fältet, som alstras på grund av laddningsseparationen, stoppar diffusionen. Den moderna fysikens grunder, Tom Sundius 2010 1
Om sålunda E F n och E F p är Fermienergierna i de två områden, där halvledarna inte är i kontakt, så kan ev c (energin som behövs för att flytta E F p till E F n) beräknas ur skillnaden E F n E F p = ev C. Antag nu, att efter det övergången uppstått, E cp och E cn är de lägsta energierna i ledningsbanden i områdena av p, respektive n typ. Vi får då E cp E cn = ev C (se fig. 20.39, bilden nedan). Nettoresultatet är en ökning av den negativa laddningen på p sidan, och av den positiva laddningen på n sidan, vilket leder till en nettoström till höger, som kallas rekombinationsströmmen I r (se bilden). I jämvikt balanseras rekombinationsströmmen av en termisk ström I t till vänster. Den moderna fysikens grunder, Tom Sundius 2010 2
Den invändigt genererade potentialen V C kan anses verka över ett område av ändlig storlek, som kallas för utarmningsområdet. Som framgår av fig. 20.40 (bilden nedan), så är detta det område där hålen och elektronerna samlas för att återförenas. Denna process åstadkommer den inre potentialskillnaden och jämnar ut Fermienergierna. Fastän V C är liten, av storleksordningen 1 V, så kan det elektriska fältet E = V c /d i utarmningsområdet vara mycket stort (eftersom utarmningsområdet är så smalt, ca 1 µm). Observera att i verkliga material är kanterna av utarmningsområdet oskarpa. Förutom n och p bärarna, som alstras genom dopning, kommer ett litet antal elektron hålpar att spontant bildas både i regionerna av p typ och n typ på grund av termisk excitation i halvledaren. Hål, som alstras på n sidan återförenas med elektroner, och på samma sätt kommer elektroner, som alstras på p sidan att återförenas med hål. Den moderna fysikens grunder, Tom Sundius 2010 3
Den termiska strömmen uppstår av hål, som alstras nära utarmningsområdet på n sidan, och sedan faller nedför potentialfallet V C till p-sidan, samt av elektroner, som alstras på p sidan och sedan rör sig uppför V C till n sidan. Den termiska strömmen ökar med temperaturen, men är oberoende av V C. Observera, att kontaktpotentialen V C inte är en yttre effekt, utan en egenskap för pn övergången. Vi skall härnäst se vad som händer, då en yttre spänning V ext påläggs en pn övergång. Övergången sägs då vara förspänd. Vi skall till en början studera ett fall som avbildas i fig. 20.41. Där påläggs en yttre spänning V ext så, att potentialskillnaden mellan n och p sidan minskas från V C till V C V ext (framspänning). I figuren visas också bandenergierna. Av utseendet på potentialenergin framgår att framspänningen minskar på det potentialsteg, som hålen utsätts för då de rör sig från vänster till höger. Elektronerna diffunderar också mycket lättare från n sidan till p sidan. Det kommer alltså att finnas en positiv nettoström från p sidan till n sidan, som snabbt växer då V ext växer, och därmed V C V ext avtar. Dessutom finns det en mycket svag motverkande ström som beror på termiskt alstrade hål i n sidan och elektroner i p-sidan, som faller nedför potentialbarriären, men denna ström är helt försumbar jämfört med strömmen som alstras av framspänningen, vilket leder till en ökad rekombinationsström. Den moderna fysikens grunder, Tom Sundius 2010 4
Den termiska strömmen förändras däremot inte, varför det finns en nettoström från p till n sidan. Samtidigt minskar också bredden av utarmningsskiktet. Då den yttre spänningen påläggs så, att potentialskillnaden mellan n och p sidorna ökas från V C till V C + V ext, så sägs övergången vara backspänd. Såsom fig. 20.42 visar, kommer i detta fall både hålen som rör sig från vänster mot höger och elektronerna som rör sig från höger mot vänster att ha ett större potentialsteg att övervinna, och strömmen blir därför mycket liten. Observera dock, att det finns en mycket svag termisk ström (oberoende av den pålagda spänningen) som beror på hål som alstras på n sidan och elektroner, som uppstår på p sidan och faller ned för potentialsteget. Observera därtill, att bredden av utarmningsskiktet ökar, då en backspänning påläggs, dvs då övergångens potentialskillnad växer. Strömmen (I) som produceras av framspänningen och backspänningen i en pn övergång har ritats som funktion av potentialskillnaden (V ) i fig. 20.43 (se nedan). Den moderna fysikens grunder, Tom Sundius 2010 5
Detta diagram kallas för pn övergångens I V karaktäristik. Övergångens motstånd V/I som beräknas i en godtycklig punkt på karaktäristiken, är i allmänhet litet för en framspänd övergång, men stort för en backspänd. En pn övergång följer inte Ohms lag, dvs resistansen förändras, då V ändras. Approximativt kan kurvan beskrivas med ekvationen 1 I = I t (e ev/kt 1), som visar att strömmen också beror av absoluta temperaturen T. I V karaktäristiken i fig. 20.43 visar att ström endast kan passera i en enda riktning genom en pn övergång. En apparat, som endast leder ström i en bestämd riktning kallas diod (likriktare). Denna riktning kallas ledriktning, den motsatta riktningen kallas spärriktning. En ideal diod släpper endast igenom ström i ledriktningen, men en reell diod approximerar oftast ganska väl en ideal diod. Om en foton med frekvensen f > E g /h kommer i närheten av utarmningsskiktet av en pn övergång, kan en elektron exciteras upp till ledningsbandet, vilket ger upphov till ett hål elektronpar. Hål som alstras i n regionen nära en övergång och elektroner som produceras i p regionen faller ned för potentialbarriären och alstrar en ström, som läggs till den termiska strömmen I t. Processen åstadkommer en positiv nettoladdning på p sidan och en negativ nettoladdning på n sidan. 1 Shockleys ekvation, uppkallad efter en av transistorns uppfinnare, William Shockley Den moderna fysikens grunder, Tom Sundius 2010 6
Potentialbarriären minskar därför till V C V där V är en potentialskillnad som bildas över dioden och kan mätas med en voltmätare. Emedan potentialbarriären är lägre vid övergången, kommer rekombinationsströmmen att växa, och jämvikt nås då I r = I t + I f, där I f betecknar strömmen som beror på de inkommande fotonerna. Då den yttre kretsen kortsluts, går V mot noll, och potentialbarriären ökar till V C. Således blir I r = I t och en nettoström I f uppstår, som levererar kraft till den yttre kretsen. Effekten kan utnyttjas i en solcell för att alstra elkraft från solljus. Halvledare med mycket små bandgap används i solceller så att också solljus med den längsta våglängden absorberas. Produktion av elektron hålpar genom ljus som faller nära utarmningsskiktet kan också utnyttjas i en fotodiod för att detektera ljus. Övergången är då backspänd, så att den termiska strömmen I t växer, då ljusintensiteten ökar. Fotodioden kan användas för att mäta ljusets intensitet. Elektron hålpar alstras också av laddade partiklar då de passerar genom ett utarmningsskikt. Denna effekt används i partikeldetektorer för att detektera laddade partiklar, t.ex. sådana som alstras vid radioaktivt sönderfall. En lysdiod (ljusemitterande diod) (LED) är egentligen en solcell. Då en framspänning påläggs en pn övergång, så kommer elektroner att röra sig från n sidan till p sidan och hål från p sidan till n sidan. Då elektronerna kommer fram till p sidan kommer de att återförenas med tillgängliga hål strax utanför utarmningsskiktet, och avge sin energi i form av fotoner (dvs ljus). Den moderna fysikens grunder, Tom Sundius 2010 7
På samma sätt kommer hål som kommer fram till n sidan att förenas med elektroner och åstadkomma ljus. En sådan diod kan alltså användas som belysning i en elektronisk display. De är kompakta, använder lite energi och kan snabbt kopplas på och av. Ett bra exempel på tunnelfenomenet är en annan typ av halvledardioder, nämligen tunneldioden, där både n och p regionerna är kraftigt dopade. Bandstrukturen för en sådan diod visas i fig. 20.47 (se ovan). Utarmningsskiktet är så tunt (ca 1 nm) att nedre delen av n sidans ledningsband delvis täcker övre delen av p sidans valensband. Eftersom det finns en hög koncentration av föroreningar, kommer donatornivåerna att blandas med nivåerna i nedre delen av ledningsbandet i n regionen, och Fermienergin flyttar till ledningsbandet. Motsvarigt blandas acceptornivåerna med nivåerna i övre delen av valensbandet på p sidan och Fermienergin för n sidan flyttar ned under bandets topp. Den moderna fysikens grunder, Tom Sundius 2010 8
Emedan utarmningsskiktet har samma tjocklek som elektronens de Broglie våglängd i halvledaren, så kan elektronerna passera genom det förbjudna energibandet på grund av tunneleffekten (se fig. 20.47). Elektronerna kan röra sig i båda riktningarna utan pålagd spänning till följd av tunneleffekten. I jämvikt är Fermienergin densamma överallt i dioden. Då man pålägger en liten framspänning, så kommer bandstrukturen att förändras så, att den fyllda delen av ledningsbandet i n regionen är på samma nivå som den ofyllda delen av valensbandet i p regionen (se fig. 20.48). Då kan endast elektronerna i n regionen röra sig med hjälp av tunneleffekten till p regionen (den motsvarande strömmen rör sig mot höger). Då framspänningen ökas, kommer banden inte längre att täcka varandra, utan tunneleffekten upphör helt (se fig. 20.49). Dioden uppför sig då som en normal pn övergång. I V karaktäristiken för en tunneldiod visas i fig. 20.50. Då framspänningen är liten, uppstår en förstärkt ström pga tunnelfenomenet. Den praktiska betydelsen av tunneleffekten ligger i den hastighet varmed elektronerna kan röra sig, som är betydligt större än diffusionshastigheten genom utarmningsskiktet. Tunneldioder används därför som snabba omkopplare i datakretsar. Den moderna fysikens grunder, Tom Sundius 2010 9
3.10. Transistorn Transistorer är halvledare med tre anslutningar. En ström som flyter mellan ett par anslutningar kan regleras av en potential mellan ett annat par. Vi skall studera två huvudtyper, nämligen den bipolära transistorn och fälteffekttransistorn. Det finns två olika typer av bipolära transistorer, nämligen n p n, där ett tunt skikt av en halvledare av p typ är inskjutet mellan två halvledare av n typ, samt p n p, där där ett tunt skikt av en halvledare av n typ är inskjutet mellan två halvledare av p typ (se fig. 20.51). Transistorn kallas bipolär, eftersom både elektroner och hål fungerar som bärare av laddning. En bipolär transistor består därför av två pn övergångar. De tre anslutningarna som kopplas, kallas emitter, bas och kollektor. Bandstrukturen för en n p n bipolär transistor utan yttre förspänning visas i fig. 20.52. Banden ordnar sig så, att Ferminivån hålls konstant på det sätt som vi tidigare har beskrivit. Om en framspänning V eb kopplas in mellan emitter och bas och en backspänning V bc sätts in mellan bas och kollektor, får vi en koppling som kallas gemensam bas koppling (fig. 20.54). Bandenergierna justerar sig såsom beskrivits för framspända och backspända övergångar. Emitterregionen är starkare dopad än basen, så att strömmen till största delen består av elektroner, som rör sig från vänster till höger (dvs från emitter till bas). Den moderna fysikens grunder, Tom Sundius 2010 10
I fig. 20.53 visas de elektriska potentialer, som elektronerna och de positiva laddningarna påverkas av då de rör sig genom övergången. Eftersom basen är så tunn och har en låg koncentration av hål, så kan inte den bipolära n p n transistorn beskrivas som två oberoende ihopkopplade p n dioder. Emitter bas övergången är framspänd, så att en stor positiv ström I e flyter från bas till emitter, dvs en ström av elektroner kommer in i basområdet. På grund av att basområdet är så tunt, och hålkoncentrationen är där så låg, så kommer de flesta elektronerna inte att återförenas i basregionen, utan de diffunderar genom den till bas kollektor övergången där de faller ned för potentialsteget till kollektorn. Det obetydliga antalet elektroner som rekombineras i basen kan beskrivas av en svag basström I b, såsom visas i fig. 20.54 (se nedan). Strömmen genom emittern är därför huvudsakligen en kollektorström, och vi kan skriva I e = I b + I c. Den moderna fysikens grunder, Tom Sundius 2010 11
Strömmarna i en gemensam bas koppling för en n p n bipolär transistor visas i fig. 20.54. Strömförstärkningen i denna koppling definieras som α = I c /I e. Eftersom I c alltid är något mindre än I e, så kommer strömförstärkningen att var något mindre än 1. En annan viktig koppling är gemensam emitter kopplingen, där spänningarna läggs över bas emitter och emitter kollektor övergångarna. Den visas i bilden nedan (20.55). Också i detta fall gäller I e = I b + I c. Strömförstärkningen i denna koppling definieras som β = I c /I b. Eftersom I e I c = I c + I b I c = 1 + I b I c så är varav följer β = α 1 α. 1 α = 1 + 1 β, Den moderna fysikens grunder, Tom Sundius 2010 12
Eftersom α är mycket nära 1 (0.97 eller 0.98), så blir strömförstärkningen i den gemensamma emitter kopplingen stor, vanligen 30 100. Eftersom en liten ström (I b ) kommer att styra en stor ström (I e ) så kan transistorn i detta fall användas som en strömförstärkare. Transistorn har en vidsträckt användning som kretselement: strömbrytare, förstärkare, etc. Genom att insätta motstånd i kretsen, kan den användas som spänningsförstärkare. Den kan också användas för att koppla på en ström i ett yttre motstånd, som är kopplat till kollektorn. Vi skall nu se på fälteffekttransistorn. Vi har tidigare noterat, att resistansen i en framspänd pn övergång är låg. Därför är också resistansen för en polär transistor i gemensam bas koppling låg. Den är högre i gemensam emitter koppling, men inte tillräckligt hög för många användningar. Därför används istället en annan transistortyp, fälteffekttransistorn (FET): En n kanals FET (även kallad JFET, se fig. 20.56) kan konstrueras av ett halvledarblock av n typ med två anslutningar, source ( källa ) och drain ( utflöde ) i varsin ända (kallas även för emitter och kollektor) samt en halvledare av p typ, kallad styre eller grind, som är fäst längs den ena sidan. Den moderna fysikens grunder, Tom Sundius 2010 13
Då en spänning påläggs som i figuren, kommer elektronerna att röra sig från källan till utflödet genom n-kanalen. pn övergången är backspänd, så att halvledarna nära övergångsskiktet kommer att tömmas på laddningsbärare. Ju högre backspänningen är, desto mera kommer utarmningsområdet att utbreda sig mot n kanalen och desto mer minskar strömmen. Grindspänningen kommer således att kontrollera strömmen som går mellan kollektorerna. Mycket litet ström går genom grinden på grund av backspänningen, så att denna transistortyp kommer att ha en mycket hög ingångsimpedans. Fälteffekttransistorn kommer därför att kontrolleras av spänningen, i motsats till den bipolära transistorn, som kontrolleras av strömmen. Strömmen transporteras endast av en typ av laddningsbärare, i detta fall elektroner, och fälteffekttransistorn kallas därför en unipolär transistor. I praktiken tillverkas transistorer inte genom att förena skilda stycken av dopade halvledare, utan genom att diffundera acceptor eller donatoratomer i gasform på en ytterst tunn halvledarkristall. Områdena, som skall dopas, avgränsas genom maskering. På detta sätt kan man konstruera integrerade kretsar (fig. 20.57), som innehåller miljontals transistorer och andra komponenter utgående från en enda halvledarkristall, som är på sin höjd några mm i genomskärning. Den moderna fysikens grunder, Tom Sundius 2010 14
3.11. Hall effekten Då laddningsbärare i en ledare eller en halvledare placeras i ett magnetiskt fält, kommer de att utsättas för kraften F = qv B (se s. 497). Då de rör sig vinkelrätt mot ett likformigt magnetfält, uppträder därvid ett fenomen, som kallas Hall effekten efter Edwin Hall, som gjorde upptäckten 1879 under sina doktorandstudier. Denna effekt kan användas för att bestämma laddningsbärarnas drifthastighet, densitet och polaritet. Låt oss betrakta ett metallstycke med bredden b och tjockleken t som kopplas till en strömkälla (fig. 20.58, och figuren nedan). Ett elektriskt fält i metallstycket alstrar då en ström I, som rör sig mot höger. Den moderna fysikens grunder, Tom Sundius 2010 15
Då ett likformigt magnetiskt fält B verkar vinkelrätt mot metallstyckets yta, så påverkas en positiv laddning q av kraften F B = qv d B; F B = qv d B i riktningen Q P. Här betecknar v d drifthastigheten, och P och Q är två punkter på var sin sida om metallstycket så att sträckan PQ är vinkelrät mot v d. På grund av denna kraft kommer de positiva laddningarna att röra sig mot P. Laddningarna, som samlat sig där alstrar ett elfält E y som till slut förhindrar att ytterligare laddningar rör sig i denna riktning. Potentialskillnaden som till följd härav uppstår mellan P och Q, kallas Hall spänningen: V H = V P V Q = E y b. Vid jämvikt kommer kraften som beror på det magnetiska fältet (F B ) att balansera F E, kraften som beror på det elektriska fältet E y. Således är qe y = qv d B, varav följer E y = v d B. Genom att substituera E y i uttrycket för Hall spänningen får vi V H = v d Bb. Som vi ser, kan drifthastigheten bestämmas genom att mäta V H, B och b. Uttrycket för strömtätheten, som vi använde för att beräkna den klassiska ledningsförmågan, kan skrivas J = I A = nqv d, där n är densiteten för laddningsbärarna. Den moderna fysikens grunder, Tom Sundius 2010 16
Om vi substituerar uttrycket för v d ur den ekvation som nyss härleddes fås I = nqav H Bb Således kan n bestämmas genom att mäta I, A, V H, B och b. Vi har här antagit att laddningsbärarna är positiva, och att v d därför är riktad mot höger i fig. 20.58. Om laddningsbärarna är negativa, så är v d riktad mot vänster, och både q och v d byter förtecken i uttrycket för kraften F B. Således kommer F B också att verka i riktningen Q P om laddningsbärarna är negativa. I detta fall kommer alltså negativa laddningar att samlas i P. I punkten P är alltså den elektriska potentialen lägre än i Q, och Hall spänningens förtecken kommer alltså att ange polariteten för laddningsbärarna. Den moderna fysikens grunder, Tom Sundius 2010 17
3.12. Kvantstatistik: bosoner På s. 297 visades, att för ett system av identiska partiklar vid temperaturen T gäller, att antalet partiklar i ett tillstånd med energin E följer Maxwell Boltzmanns fördelningsfunktion F M B (E) = Ae E/kT, där A är en konstant. I den klassiska behandlingen är det underförstått, att partiklarna kan skiljas åt, och att de rör sig oberoende av varandra. Detta förutsätter, att partiklarnas vågfunktioner inte täcker varandra nämnvärt, vilket kan tänkas gälla för gasmolekyler i en sluten behållare, men inte för elektroner i en atom eller metall. I Maxwells och Boltzmanns teori behandlas sannolikhetsfördelningen för varje partikel skilt från alla de övriga partiklarna, och således är fördelningsfunktionen i stort sett den samma för en partikel som för ett stort antal partiklar. Då vi diskuterade system av identiska partiklar i kvantmekaniken märkte vi att det kvantmekaniska kravet på oskiljaktighet för identiska partiklar leder till kravet att inga förändringar skall kunna iakttas i systemet, då partiklarna byter plats. En följd av detta är att varje partikel i ett kvantmekaniskt system påverkas av alla de övriga. Partiklarna kan inte anses vara oberoende. Systemet måste behandlas som en helhet, vilket leder till fördelningsfunktioner som beror på det totala antalet partiklar i systemet. Detta observerade vi också när vi tillämpade Pauliprincipen på energinivåerna för en elektrongas. Den moderna fysikens grunder, Tom Sundius 2010 18
Ett energitillstånd är endast tillgängligt för en elektron, då det inte är upptaget av en annan elektron. Fördelningsfunktionens form beror därför på antalet partiklar i systemet. Vi konstaterade också, att kravet på att inga observerbara storheter förändras, då identiska partiklar byts ut, leder till vissa symmetrikrav på systemet. Som vi såg, finns det två olika slags partiklar: bosoner, som har symmetriska egenfunktioner, och gärna uppehåller sig i samma tillstånd, samt fermioner, som har antisymmetriska egenfunktioner, och inte kan uppehålla sig i samma tillstånd (Pauliprincipen). Det behövs därför också skilda fördelningsfunktioner för dessa partiklar. Fördelningsfunktionen för fermioner är Fermi Diracs funktion F F D (E) = 1 αe E/kT + 1 Värdet av α i denna ekvation beror på antalet partiklar i systemet. Vi har naturligtvis redan tidigare använt denna funktion när vi studerade elektronernas beteende i metaller då T > 0 K: F (E) = 1 e (E E F )/kt + 1 I denna form av ekvationen är α = e E F /kt, så att F (E) = 1 2 då E = E F. Den moderna fysikens grunder, Tom Sundius 2010 19
Fördelningsfunktionen för bosoner kallas Bose-Einsteins fördelningsfunktion F B E (E) = 1 αe E/kT 1 Också här beror α på antalet partiklar i systemet. Elektromagnetiska vågor i en kavitet kan behandlas som ett system av bosoner (en fotongas, alltså) och således kan man använda Bose Einsteins fördelningsfunktion för att härleda Plancks lag för svartkroppsstrålningen. I fig. 20.59 (se nedan) har Maxwell Boltzmanns, Fermi Diracs och Bose Einsteins fördelningsfunktioner för α = 1 e uppritats och jämförts med varandra. uppkallad efter Satyendra Bose och Albert Einstein, som på 1920 talet studerade teorin för svartkroppsstrålningen Den moderna fysikens grunder, Tom Sundius 2010 20
Observera, att då E kt övergår både Fermi Diracs och Bose Einsteins fördelningsfunktion till en Maxwell Boltzmanns fördelning: α 1 e E/kT. Således kommer alla tre funktioner att sammanfalla vid höga energier, fastän de skiljer sig markant vid låga energier. Observera också, att värdet av Fermi Diracs funktion aldrig överskrider 1, och därtill är mycket lägre än värdet av Maxwell Boltzmanns funktion. Å andra sidan är värdet av Bose Einsteins funktion mycket större än värdet av Maxwell Boltzmanns funktion vid låga energier. Bose Einsteins statistik gynnar hög besättning av de lägsta energitillstånden. Därför kommer bosonerna att samlas i det lägsta energitillståndet. Vi kan åskådliggöra de karaktäristiska egenskaperna för ett system av bosoner genom att studera egenskaperna hos fotoner som produceras av en laser. Liksom bosoner, strävar fotoner att samlas i tillstånd med samma rörelsemängd, energi och fas. Eftersom de strävar efter samma rörelsemängd, kommer de alla att röra sig i samma riktning och avvika mycket litet från denna riktning (en kollimerad stråle). På grund av att fotonerna befinner sig i samma energitillstånd, och således (E = hf) i samma frekvenstillstånd, så kommer laserljuset att vara starkt monokromatiskt. Dessutom har alla fotonerna samma fas, dvs de är mycket koherenta. Laserfotonernas egenskaper är därför typiska för bosoner. Den moderna fysikens grunder, Tom Sundius 2010 21