Isometries of the plane

Relevanta dokument
Pre-Test 1: M0030M - Linear Algebra.

1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)

Tentamen i Matematik 2: M0030M.

12.6 Heat equation, Wave equation

Solutions to exam in SF1811 Optimization, June 3, 2014

Tentamen i Matematik 3: M0031M.

Tentamen i Matematik 2: M0030M.

8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers.

and Mathematical Statistics Gerold Jäger 9:00-15:00 T Compute the following matrix

MMA129 Linear Algebra academic year 2015/16

denna del en poäng. 1. (Dugga 1.1) och v = (a) Beräkna u (2u 2u v) om u = . (1p) och som är parallell

Module 1: Functions, Limits, Continuity

Algoritmer och Komplexitet ht 08. Övning 6. NP-problem

Tentamen MMG610 Diskret Matematik, GU

and u = och x + y z 2w = 3 (a) Finn alla lösningar till ekvationssystemet

Webbregistrering pa kurs och termin

the standard scalar product, i.e. L E 4. Find the orthogonal projection of the vector w = (2, 1, 2, 1) on the orthogonal complement L of L (where

This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum

is a basis for M. Also, find the coordinates of the matrix M = with respect to the basis M 1, M 2, M 3.

Webbreg öppen: 26/ /

och v = 1 och vektorn Svar 11x 7y + z 2 = 0 Enligt uppgiftens information kan vi ta vektorerna 3x + 2y + 2z = 1 y z = 1 6x + 6y + 2z = 4

FÖRBERED UNDERLAG FÖR BEDÖMNING SÅ HÄR

NP-fullständighetsbevis

1 Find the area of the triangle with vertices A = (0,0,1), B = (1,1,0) and C = (2,2,2). (6p)

(D1.1) 1. (3p) Bestäm ekvationer i ett xyz-koordinatsystem för planet som innehåller punkterna

Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00. English Version

is introduced. Determine the coefficients a ij in the expression for, knowing that the vectors (1, 0, 1), (1, 1, 1), (0, 1, 1) constitute an ON-basis.

For which values of α is the dimension of the subspace U V not equal to zero? Find, for these values of α, a basis for U V.

, m 3 = 3. Determine for each real α and for each real β 0 the geometric meaning of the equation x 2 + 2y 2 + αz 2 + 2xz 4yz = β.

Semigroups of Sets Without the Baire Property In Finite Dimensional Euclidean Spaces Vénuste NYAGAHAKWA

MVE500, TKSAM Avgör om följande serier är divergenta eller konvergenta. Om konvergent, beräkna summan. (6p) ( 1) n x 2n+1 (a)

1. Varje bevissteg ska motiveras formellt (informella bevis ger 0 poang)

Module 6: Integrals and applications

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version

6. a) Visa att följande vektorer är egenvektorer till matrisen A = , och ange motsvarande

F ξ (x) = f(y, x)dydx = 1. We say that a random variable ξ has a distribution F (x), if. F (x) =

Graphs (chapter 14) 1

SF2715 Applied Combinatorics Notes and Exercises, Part IV

2. Let the linear space which is spanned by the functions p 1, p 2, p 3, where p k (x) = x k, be equipped with the inner product p q = 1

Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm

Lösenordsportalen Hosted by UNIT4 For instructions in English, see further down in this document

1. Find for each real value of a, the dimension of and a basis for the subspace

Rastercell. Digital Rastrering. AM & FM Raster. Rastercell. AM & FM Raster. Sasan Gooran (VT 2007) Rastrering. Rastercell. Konventionellt, AM

Flervariabel Analys för Civilingenjörsutbildning i datateknik

PORTSECURITY IN SÖLVESBORG

Discovering!!!!! Swedish ÅÄÖ. EPISODE 6 Norrlänningar and numbers Misi.se

for M, the matrix of the linear transformation F : R 3 M defined as x1 + x F ((x 1, x 2, x 3 )) = 2 + x 3 2x 1 + x 2 + 3x 3

Isolda Purchase - EDI

Preschool Kindergarten

Chapter 2: Random Variables

Småprat Small talk (stressed vowels are underlined)

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00. English Version

BOENDEFORMENS BETYDELSE FÖR ASYLSÖKANDES INTEGRATION Lina Sandström

Writing with context. Att skriva med sammanhang

SVENSK STANDARD SS-EN ISO 19108:2005/AC:2015

Vässa kraven och förbättra samarbetet med hjälp av Behaviour Driven Development Anna Fallqvist Eriksson

. Bestäm Rez och Imz. i. 1. a) Låt z = 1+i ( b) Bestäm inversen av matrisen A = (3p) x + 3y + 4z = 5, 3x + 2y + 7z = 3, 2x y + z = 4.

Chapter 1 : Who do you think you are?

IKSU-kort Ordinarie avtal

Styrteknik: Binära tal, talsystem och koder D3:1

Grafer, traversering. Koffman & Wolfgang kapitel 10, avsnitt 4


Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00. English Version

Kurskod: TAMS11 Provkod: TENB 07 April 2015, 14:00-18:00. English Version

English. Things to remember

De senaste åren har det hänt en hel del på ATO Fritid

MÅLSTYRNING OCH LÄRANDE: En problematisering av målstyrda graderade betyg

Grafisk teknik IMCDP IMCDP IMCDP. IMCDP(filter) Sasan Gooran (HT 2006) Assumptions:

Calculate check digits according to the modulus-11 method

Nr 17 Överenskommelse med Thailand om radioamatörverksamhet

Workplan Food. Spring term 2016 Year 7. Name:

Självkörande bilar. Alvin Karlsson TE14A 9/3-2015

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik

1. (3p) Bestäm den minsta positiva resten vid division av talet med talet 31.

Förskola i Bromma- Examensarbete. Henrik Westling. Supervisor. Examiner

IE1206 Embedded Electronics

Provlektion Just Stuff B Textbook Just Stuff B Workbook

Wittgenstein for dummies Eller hur vi gör det obegripliga begripligt. Västerås 15 februari 2017

Solowheel. Namn: Jesper Edqvist. Klass: TE14A. Datum:

Questionnaire for visa applicants Appendix A

Lösningsförslag obs. preliminärt, reservation för fel

Kursplan. EN1088 Engelsk språkdidaktik. 7,5 högskolepoäng, Grundnivå 1. English Language Learning and Teaching

Ett hållbart boende A sustainable living. Mikael Hassel. Handledare/ Supervisor. Examiner. Katarina Lundeberg/Fredric Benesch

2. Find, for each real value of β, the dimension of and a basis for the subspace

Hjälpmedel: Inga, inte ens miniräknare Göteborgs Universitet Datum: 2018 kl Telefonvakt: Jonatan Kallus Telefon: ankn 5325

Resultat av den utökade första planeringsövningen inför RRC september 2005

Förändrade förväntningar

1. Find the 4-tuples (a, b, c, d) that solves the system of linear equations

Support Manual HoistLocatel Electronic Locks

Technical drawings Seals for dynamic application Part 1: General simplified representation

Datasäkerhet och integritet

Grafisk teknik IMCDP. Sasan Gooran (HT 2006) Assumptions:

FORTA M315. Installation. 218 mm.

Revisited. Robert Koch. Norbert Blum. Informatik IV, Universitat Bonn. Romerstr. 164, D Bonn, Germany. Abstract

William J. Clinton Foundation Insamlingsstiftelse REDOGÖRELSE FÖR EFTERLEVNAD STATEMENT OF COMPLIANCE

Scalable Dynamic Analysis of Binary Code

Beijer Electronics AB 2000, MA00336A,

Hur fattar samhället beslut när forskarna är oeniga?

Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås

Skyddande av frågebanken

Transkript:

Isometries of the plane Mikael Forsberg August 23, 2011 Abstract Här följer del av ett dokument om Tesselering som jag skrivit för en annan kurs. Denna del handlar om isometrier och innehåller bevis för att en isometri måste vara en sammansättning av en ortogonal avbildning (ortogonal matris) och en translation. (parallellförflytting). I denna kurs så behöver man inte gå så här djupt utan detta dokument kan lugnt hoppas över. Den som strävar efter djupare förståelse kan dock ha viss glädje av dokumentets innehåll... 1

1 Introduction to isometry We begin by defining the concept of Isometry: Definition 1.1. By an Isometry of a subset of the euclidean space R n we mean a map I : R n R n which preserves length, that is x y = I(x) I(, for every pair of vectors x and y in R n. In spite of its general appearance an isometry is a rather restricted object. In fact in what follows we prove that an isometry is allways affine with a particular structure. Definition 1.2. A map G : R n R n is affine if there is a linear map L and x 0 R n such that G( = L( + x 0, for every y in R n. Consider now an isometry F which has the origin as a fix point, that is, F (0) = 0. Then we have Lemma 1.3. Suppose F is an isometry with F (0) = 0, then F is linear. Proof. Taking y = 0 in the definition of an isometry we get that F (x) = x for every x R n. Now, we have that from which we get that x y 2 = (x (x = x 2 2x y + y 2, F (x) 2 2F (x) F ( + F ( 2 = x 2 2x y + y 2, for every x and y in R n, and so we have F (x) F ( = x y. (1) This means, of course, that an isometry preserves the scalar product as well as the length. Now let e j, j = 1,..., n be the standard orthonormal basis in R n. Then by applying (1) we have that F (e j ) F (e k ) = e j e k = δ jk, which means that v j = F (e j ), j = 1,..., n is an orthonormal basis in R n. For each x, y we have again by (1) That F (x) v j = x e j = x j, F ( v j = y j, F (x + v j = x j + y j, and hence F (x + and F (x) + F ( have the same coordinates and so we conclude that F (x + = F (x) + F (. By a similiar argument we easily get that F (cx) = cf (x) and so we have proven that any isometry which leaves the origin fixed is linear. 2

Let us note that by elementary linear algebra we can prove that the condition (1) is equivalent to F being an orthogonal transformation; if F is expressed as a matrix A F it will be an orthogonal matrix, and as such it possesses a lot of nice properties, as is well known from linear algebra. For instance we have that from which it follows that A 1 F = AT F (det A F ) 2 = det(a F ) det(a T F ) = det(a F A T F ) = det(i) = 1 and so, any orthogonal matrix has determinant either 1 or 1. Another important consequence of A F being orthogonal is that its column vectors (which are precisly the vectors v j ) are an orthonormal basis for R n. And the converse is also true: a matrix which have orthonormal set of columnvectors is indeed an orthogonal matrix. We are now in position to prove our main theorem. Theorem 1.4. A transformation G is an isometry of R n if and only if G is an affine transformation of the form G(x) = L(x) + x 0 for every x R n where L is orthogonal. Proof. Let G be an isometry of R n. Let F (x) = G(x) G(0) for every x R n. Then it is easy to see that F is an isometry and evidently we also have F (0) = 0. By 1.3we therefore have that F is linear and by the discussion above we have also that F has to be orthogonal. Conversely, let G(x) = L(x) x 0, where L be orthogonal. Then L(x) L( = x y for every x, y R n. If we take x = y we get L(x) 2 = L(x) L(x) = x x = x 2, hence, L(x) = x. Replacing x by x y we have that L(x) L( = L(x = x y, for every x, y R n and so we have that L is an isometry. Since G(x) G( = L(x) L( we conclude that G is an isometry, which finishes the proof. 2 Examples Let us now consider the special case where n = 2. Exempel 2.1. If L is equal to the identity matrix I and x 0 = 0 then we have the identity isometry. A matrix representation is ( ) ( ) ( ) x 1 0 x I = y 0 1 y If x 0 0 then G is a pure translation and in matrix notation we get ( ( ( ) ( ) x 1 0 x x0 +. 0 1) y y 0 3

Exempel 2.2. If L is an orthogonal matrix with positive determinant (= +1) then G is a pure rotation if x 0 = 0. In matrix notation we have for a rotation by an angle t: ( ( ( ) x cos t sin t x. sin t cos t) y Isometries of the above types are called direct or even isometries. Övning 2.1. Show that a nonpure rotation, i.e. a rotation followed by a translation, is a pure rotation. The following two isometries are called indirect or odd isometries. Exempel 2.3. If R where R is an orthogonal matrix with determinant equal to 1 then G is called a pure reflection. In matrix notation a reflection becomes ( ( ( ) x cos 2t sin 2t x, sin 2t cos 2t) y where t is the angle between the x-axis and the line of reflection. Övning 2.2. Prove the matrix representation of a reflection. Exempel 2.4. If G is a translation followed by a reflection in the line of translation then the result is called a glide reflection. If we express this in matrix form we get: ( ( ) ( ) ( ) x cos 2t0 sin 2t 0 x x0 +, sin 2t 0 cos 2t 0 y y 0 where t 0 = arctan y 0 /x 0. Övning 2.3. Show that a translation followed by a reflection in a line not necessarily parallell to the line of tranlation is in fact a glide reflection. Proposition 2.5. An isometry I has a fix point iff I is a rotation or a reflection. Proof. If I is a reflection or a rotation we know that it has no translation and therefore is an orthogonal matrix. Any matrix is linear and so has 0 as fix point. Assume now that I has a fixpoint; I(x) := L(x) + x 0 = x, for some orthogonal mapping L. If x 0 = 0 we have immediately that I is either a rotation or a reflection. Assume now that x 0 0. For L this means that L(x) = x x 0, from which it follows that L is not linear: L(a + b) = (a + b) x 0 L(a) + L(b) = a x 0 + b x 0 = a + b 2x 0. This is a contradiction to the fact that L was orthogonal! The only possibility to have an isometry with a fixpoint is therefore that it has no translational component and so is a pure orthogonal mapping 4

Consider again Theorem 1.4. With the notation of the examples it is not difficult to see that the theorem states that any isometry is one of the the above four types. Composition of two or more isometries will of course result in an isometry. In fact isometries of the plane together with composition will constitute a group, an object which we will study in the next chapter. 5