E 4 Förbifart Stockholm



Relevanta dokument
VÄGPLAN SAMRÅDSHANDLING. PM Bergteknik 2B (10) Anders Lindqvist Projektnamn Objektnummer / KM Uppdragsnummer. E18 TPL Bergshamra

PM Berg Kv. Bysten, Skulptörvägen Stockholm

Riktlinjer för val av system för karaktärisering och klassificering av berg Underlag för projektering av bygghandling

Rapport från refraktions- och reflektionsseismiska mätningar i. området Färgaren 3, Kristianstad

Vårdöbron, Åland Kompletterande bergundersökningar för brofästen

BERGTEKNISKT PM. Tunnelpåslaget, Norrköping. Norrköpings kommun SWECO CIVIL AB. CAROLINE STRAND Handläggare. TOMAS LUTHMAN Granskare

Grundvattenbortledning M Bilaga 7. Komplettering till tekniskt underlag avseende ändrat utförande

Korsningspunkter med Trafikverkets anläggningar

Väg 222, tpl Kvarnholmen

FRAMTAGANDE AV TYPFÖRSTÄRKNINGAR FÖR CITYBANAN. Design of standard reinforcement classes for a new commuter train tunnel in Stockholm

Bergtekniskt utlåtande, Ärlegatan

Södra Infarten Halmstad Vägutredning

Kårevik, Tjörn Småhusområde Geoteknisk Utredning PM Planeringsunderlag

Teknisk PM RevA Resistivitetsundersökning - Bara Söder, Malmö

Sjömätning och provtagning

Bilaga 2. PM Komplettering till tekniskt underlag avseende ändrad gräns för villkors- och påverkansområde TRV 2011/6210, 6211,6212,

PM BERGTEKNI K, AL TERN A TI V 1 B

ÖDEGÅRDEN 1:9 M.FL SOTENÄS KOMMUN. Tekniskt PM, Bergteknisk besiktning. Skanska Sverige AB Skanska Teknik Geoteknik och Infra

Ugglum 8:22. Bergtekniskt utlåtande för bygglov. Bergab Berggeologiska Undersökningar AB. Beställare: Jagaren Fastigheter AB UG

BERGMEKANIKDAGEN 20 MARS

Solna United Kv Tygeln. Solna United Kv Tygeln. PM Bergteknik Upprättad av: Emil Rudegran Granskad av: Erik Westerberg

kv Trollhättan, Stockholm PM angående bergspänningar vid ombyggnad

Detaljplan Nordviksgärde, Tjörns kommun

RAPPORT SJÖDALSBACKEN BERGRUM - FÖRSTUDIE [Sweco civil AB] [Carl Johan Gårdinger] Sweco

VOLVO CAMPUS LUNDBY - TUNNELSERVITUT

DOKTORAND: WILLIAM BJURELAND HANDLEDARE: FREDRIK JOHANSSON, STEFAN LARSSON, JOHAN SPROSS KTH ROYAL INSTITUTE OF TECHNOLOGY

Detaljplan Kopper 2:1, Bergsvägen

Berginventering Lökeberget i Munkedals Kommun

Berginventering Lökeberget i Munkedals Kommun

Detaljplan norr om Brottkärrsvägen, Askim

OSTLÄNKEN avsnittet Norrköping - Linköping Bandel JU2

SUNNE KOMMUN GC-BRO ÖVER SUNDET DETALJPLAN GEOTEKNISK UTREDNING PM GEOTEKNIK. Örebro WSP Samhällsbyggnad Box Örebro

Översiktligt PM Geoteknik

Geologisk utredning för kv. Minnet

Lerums Kommun / Structor Mark Göteborg Ö versiktlig bergteknisk undersö kning Störa Bra ta, Lerum

Detaljplan för bostäder, Gullvivevägen, del av Hällebäck 1:6 m fl

SJÖSTADSHÖJDEN. Konstruktion

Refraktionsseismisk undersökning, Oskarshamns hamn

Bedömning Kastlängder och evakueringsområde, Cementas kalkbrott Skövde.

MUR Markteknisk undersökningsrapport Berg

Kåreviken, Tjörn Småhusområde Geoteknisk Utredning PM Planeringsunderlag

AVLASTNINGSHÅL SOM KOMPLEMENT TILL DRÄNER OCH EFTERINJEKTERING I BERGTUNNLAR

Förslag till principer för utformning av förstärkningssystem.... Lars Rosengren

Effektiv användning av bergförstärkning vid tunnelbyggande genom förbättrade analysmetoder för samverkan mellan berg och sprutbetong

Detaljplan för samlingslokal vid Tuvevägen

Seläter camping, Strömstads kommun

Bergytans nivå varierar mellan ca -11 till - 18, över tunnlarna. Tunnlarnas hjässor ligger på nivån ca -28 och tunnelbotten på nivån ca -34.

Gör din vardag enklare

Riktlinjer för kärnkartering och upprättande av ingenjörsgeologisk samt bergteknisk prognos Underlag för projektering av bygghandling

Structor/Tanums kommun Bergteknisk utredning fö r DP Kajen, Nörra hamngatan, del av Fja llbacka 163:1 m fl

Bergteknisk PM - Utredning av grundläggning för flerbostadshus Kallfors höjder Järna, Södertälje kommun

BERGTEKNISK UTREDNING LANDVETTER 4:70

DEN NYA BUSSTERMINALEN I SLUSSEN: UTMANINGAR OCH LÖSNINGAR

E 4 Förbifart Stockholm

ÖVERSIKTLIG GEOTEKNISK BEDÖMNING PRÄSTVIKEN-ERIKSBERG BOTKYRKA

E 4 Förbifart Stockholm

Slussporten bergsskärning

HAMMARÖ KOMMUN ROSENLUND PLANOMRÅDE SAMT CIRKULATIONSPLATS ÖVERSIKTLIG GEOTEKNISK UNDERSÖKNING PM GEOTEKNIK. Örebro

PM BERGTEKNIK. Björnflokan, Borås. Detaljplan PM BERGTEKNIK

ÖVERSIKTLIG GEOTEKNISK UNDERSÖKNING SAMT RADONMÄTNING AVSEENDE NY DETALJPLAN

PM RISKUTREDNING RISSNE ÅVC

Bergtekniskt utlåtande för Nordstaden 28:7 (Kronhusgatan 2D)

GEOTEKNISK OCH BERGTEKNISK UTLÅTANDE FÖR DETALJPLANSÄNDRING GÅNGGRIFTSGATAN

PM TUNNELFÖRLÄGGNING E18, TÄBY

1 Beräkning av inläckage till bergtunnel

B - PM Bergteknik. Analys av teknisk och administrativ schaktgräns ovanför tunnlar tillhörandes Södra Länken. Uppdrag nr. 18U1660

Projekterings-PM Geoteknik

PM Geoteknik Österhagen

Väg 161 Ulseröd E6/Torpmotet, delen Bäcken Rotviksbro

PM GEOTEKNIK. Norrtälje hamn, Norrtälje. Småbåtshamn, Tälje s:30. Översiktlig geoteknisk utredning. ÅF-Infrastructure AB. Axel Lehmann Handläggare

E4 Förbifart Stockholm

GRUNDLÄGGNING AV DAMM 18 I HYLTE. Peter Wilén, Norconsult Martin Hansson, Statkraft

Skomakarudden Bovallstrand. PM Bergteknisk besiktning Uppdragsnummer: Upprättad av: Björn Sandström Granskad av: Magnus Lundgren

Detaljplan Finntorp. Bergteknisk utredning. Bergab Berggeologiska Undersökningar AB. Beställare: Rådhuset Arkitekter AB UG

PM GEOTEKNIK. Granitvägen Bollmora TYRESÖ KOMMUN JOAKIM PEHRSON SWECO CIVIL AB STOCKHOLM GEOTEKNIK UPPDRAGSNUMMER DETALJPLANUNDERLAG

GULDMINERALISERINGAR I OIJÄRVI GRÖNSTENSBÄLTE

Ramböll Sverige AB. PM Geoteknik--- Borås kommun. Nordskogen. Göteborg

Vägplan för anslutning av Hjalmar Lundbohmsvägen till ny E10, Kiruna

Stora Sköndal Konsekvensbeskrivning Geoteknik

GEOSIGMA. Stabilitetsanalys av bergslänter, Bastekärr, Skee. Strömstad kommun. Grap Rikard Marek Geosigma AB

Detaljplan Skeppsviken, Uddevalla

Väg 73 Trafikplats Handen

Älvsborg 68:5 - Geo-, bergoch markmiljöutredning för detaljplan

Markundersökningar. ÅF Infrastruktur AB

Vägplan för anslutning till ny E10 i området vid Kurravaaravägen, Kiruna

Geoteknisk utredning Råda 1:9

Structor/Tjörns kommun Bergteknisk undersö kning fö r DP Stöckevik

UPPDRAGSLEDARE. Joakim Pehrson UPPRÄTTAD AV. Oskar Sigurdsson. S we c o Ci vi l A B Org.nr Styrelsens säte: Stockholm

Johanneberg 17:6, Bergteknisk utredning

Gryaabs Transporttunnlar. Information om ny placering. Göteborgs Stad, Västra Götalands län. Ansökan om vattenverksamhet enligt 11 kap Miljöbalken

PM-GEOTEKNIK. Hammarö, Toverud Ny detaljplan UPPDRAGSNUMMER KLARA ARKITEKTBYRÅ AB SWECO INFRASTRUCTURE AB KARLSTAD GEO-MILJÖ.

Pumpan 3 och delar av Pumpan 2, Berggeologisk/Bergteknisk utredning m.a.p. rasrisk

PM FÖRPROJEKTERING GÅNG- OCH CYKELVÄG

Miljöprövning för tunnelbana från Akalla till Barkarby station. Bilaga 2 Förundersökningsrapport Berg

Vägplan för gång- och cykelväg Samt passager vid Ny E10, Kiruna

Detaljplan Fjällbacka 176:124

3 Utredningsalternativ

Väg 940, delen Rösan-Forsbäck

Projekterings-PM / Geoteknik

Översiktlig geoteknisk undersökning PM Geoteknik Hasselbacken, Tyresö

Transkript:

Komplettering Tillåtlighet Fråga 3 Bilaga Bergtekniska förutsättningar i Lambarfjärden 2009-01-16

3 (13) Innehåll 1 Inledning... 4 2 Utförda undersökningar... 4 3 Bergtekniska förutsättningar... 6 4 Kalkylunderlag... 11 5 Slutsats... 12 6 Referenser... 13

4 (13) 1 Inledning I vägutredningen går Förbifart Stockholm på bro över Lambarfjärden som ligger mellan Lovön och Grimsta. Bron, med segelfri höjd på ca 26 meter, tillsammans med anslutande betongtråg och betongtunnel kommer att påverka områdena på norra Lovön och i Grimsta. Vägverket har gett i uppdrag att undersöka möjligheterna att istället för en bro gå i bergtunnel under Lambarfjärden. Syftet med denna PM är att beskriva de bergtekniska förutsättningarna för en bergtunnel under Lambarfjärden samt att ge det bergtekniska underlaget till en jämförande kalkyl. 2 Utförda undersökningar För att bestämma vattendjup, sedimenttjocklek, bergytans läge och ev. svaghetszoner i Lambarfjärden har maringeofysiska undersökningar genomförts i form av sub-bottom mätningar, refraktions- och reflektionsseismik. Sub-bottom mätningar är en snabb och relativt billig metod för att lokalisera bergytan. Resultaten kan försämras då bergytan överlagras av sediment med stor mäktighet, sediment innehållande gas eller storblockig morän då den lågfrekventa signalen ej når ned till bergytan. De seismiska mätningarna ger en lägre upplösning av bergytan jämfört med sub-bottom men penetrerar istället djupare ned i sedimenten och underliggande berg. Refraktionsseismik ger information om ev svaghetszoner i berg genom att återge p-vågshastigheten. Reflektionsseismik kan ge information om stupning på ev. svaghetszoner, under förutsättning att de inte är vertikala. De redovisade resultaten är en samtolkning av subbottom och refraktionsseismiken. De maringeofysiska undersökningarna visar på ett tolkat vattendjup på maximalt ca 20 m. Sedimenten under vattnet har en tolkad mäktighet på maximalt 35 m. Det maximala djupet till berg inom korridorens bredd tolkas till att variera upp till 55 m, se Figur 1. För en detaljerad redovisning av utförda undersökningar hänvisas till Rapport Sjömätningar i tre passager under Mälaren, Förbifart Stockholm 2008 (Geonova, 2008). Under oktober har jord-bergsonderingar utförts i lågpunkten i Lambardfjärden, se inringat område i Figur 1. De preliminära resultaten av bergytans läge i respektive sonderingspunkt stämmer överrens med bergnivåerna från refraktionsseismiken. Den djupaste sonderade bergnivån är -48. Resultat av jord-bergsonderingarna i Lambarfjärden redovisas senare i RGeo samt i vr-modellen.

5 (13) Vägkorridor Föreslagen väglinje Figur 1. Djup till berg under Lambarfjärden. Koordinatsystem RT90. Utifrån de maringeofysiska undersökningarna har två stycken kärnborrhål borrats igenom den förmodade svaghetszonen, se Figur 2. Båda kärnborrhålen är vinklade från horisontalplan ca 50 grader. Avståndet mellan påhugget för de två kärnborrhålen på bergytan är ca 64 meter.

6 (13) Figur 2. Läge för planerade och utförda kärnborrhål i Lambarfjärden (bild tagen från vr.modellen). 3 Bergtekniska förutsättningar Passagen under Lambarfjärden förutsätts ske med två stycken bergtunnlar med en 15 m bred mellanliggande bergpelare. Eftersom typsektionen för bergtunnlarna inte finns framtagen i uppdraget i dagsläget så antas att tunnlarnas invändiga teoretisk höjd är 8,5 meter från körbanan och bredden är 16 meter. Resulterande bergyta från utförda maringeofysiska undersökningar har legat till grund vid placering av bergtunnlarna både i plan och i profil. Enligt utförda undersökningar stiger bergytan i nordvästra delen av korridoren. Bergtäckningen i väglinjen under Lambarfjärden i föreslagen placering är som minst ca 13 m, se Figur 3. Observera att bergytan i Figur 3 är tagen i väglinjen och inte i tunnelmitt. Väglinjen ligger mitt emellan de båda tunnelrören, dvs i bergpelaren. De sonderade nivåerna tyder dock på att djupare bergnivåer finns i läge för bergtunnlarna. Bergtäckningen kan på begränsade sträckor gå ned till 6-8 m.

7 (13) Bergytan tagen i väglinjen 5 meters bergtäckning Schematiskt tunneltak Körbanan Figur 3. Profil för Bergtunnel under Lambarfjärden. Utifrån utförd refraktionsseismik görs en prognos på bergkvalitet. P-vågshastigheten, som är uppmätt i kontakten mellan sediment och berg, varierar mellan 3500 m/s och över 5000 m/s. Tolkat låghastighetsområde i bergkontakten i bergmassan visas i Figur 4a respektive 4b. I Figur 4a, som visar låghastighetsområden i bergkontakten, kan man tolka ut en förmodad svaghetszon som är parallell med sundet. Mäktigheten på zonen antas till 10-20 meter. I samma figur kan man även tolka en mindre utbredd zon som är vinkelrät den första zonen. Generellt gäller att om p-vågshastigheten är hög, över 5 000 m/s, så indikerar det god bergkvalitet. Barton (2002) har tagit fram en korrelation mellan ytlig refraktionsseiemik och Q-värdet i hårt kristallint berg, se Figur 5. Enligt denna korrelation skulle p-vågshastigheten på 3500 m/s motsvara Q=1.

8 (13) Grimsta Grimsta Vägkorridor Vägkorridor Föreslagen väglinje Lovön Föreslagen väglinje Lovön Figur 4. P-vågshastigheten i bergkontakten inkl linje för tolkade svaghetszoner (a) och i bergmassan (b). Koordinatsystem RT90. Figur 5. Samband mellan p-vågshastigheten och Q-värde (Barton, 2002).

9 (13) De preliminära resultaten från kärnkarteringen av 08F351K och 08F352K visar att bergarten består i huvudsak av en medelkornig i hög grad rödfärgad granit med varierad struktur. Ställvis förekommer en fint medelkornig granit med massiv struktur som är förhållandevis lite påverkad av läkta nätverk. Gångar av pegmatit eller medel- till grovkornig granit återfinns genom hela kärnan. Hela kärnan är mer eller mindre påverkad av ett tunt läkt spricknätverk som generellt sett består av klorit, hematit, kvarts, fältspat och kalcit. I huvudsak ligger sprickfrekvensen på 5 sprickor per meter och ett RQD på över 80 vilket är relativt bra ur en bergteknisk synvinkel. Hållfastheten i det omvandlade berget är dock sämre. Berget ter sig sprött (likt pegmatit) och spricker lätt upp. De ihopläkta sprickorna i mylonit/breccian innehåller ofta sekundära mineraler med liten hållfasthet, se Figur 6. I 08F351K förekommer en ca 1 cm öppen spricka, ca 21 m ner i berget, innehållande lera, se Figur 7. BIPS-bilderna, som är något otydliga pga suspensioner i vatten, visar ingen tydlig lerfylld spricka. Ihopläkta sprickor Figur 6 Läkta sprickor (08F351K).

10 (13) Lerfylld spricka Figur 7. Lerfylld spricka (08F351K). Ingen storskalig krosszon förekommer i kärnborrhålen men den rödfärgade omvandlingen och inslag av mylonit/breccia som observerades tyder på att en rörelsezon finns i närheten. Fullständig information om kärnkarteringen kommer att redovisas i kommande RGeo. En enklare sammanfattning kan läsas i Rapport Lambarfjärden kärnborrhål 08F351K och 08F352K. Vattenförlustmätningarna som utförts i 08F351K och 08F352K visar på en vattenförlust för hela hålen på ca 4 l/min respektive ca 20 l/min. I 08F352K inträffade i stort sett hela vattenförlusten i den första mätsektionen, dvs i ytberget. Palmström har 1995 sammanställt uppskattade samband mellan p-vågshastighet, bergmassans förhållande och förväntad bergförstärkning, se Tabell 1. Tabell 1. Uppskattade samband mellan p-vågshastighet, bergmassans förhållande och förväntad bergförstärkning (Palmström, 1995). In situ velocity Probable ground conditions Possible rock support m/s < 3000 Cavities in the bedrock filled with soil, or Extensive rock support completely crushed and fragmented rock material in weakness zones < 4000 Ground related to faults, contact zones etc. with highly fractured rock High amount of rock support 4000 4400 Strongly moderately jointed rock masses Moderate to high amount of rock support 4500 5000 Slightly moderately jointed rock masses Small to moderate amount of rock support > 5000 Massive rock masses Generally little need for rock support

11 (13) Förväntade bergtekniska problem kan vara vattenförande zoner med omfattande injekteringsinsats och/eller zoner med sämre bergkvalitet och/eller liten bergtäckning som kan komma att kräva ökad omfattning av bergförstärkning och anpassad drivning, tex med pilot och stross. Genom att använda Q-systemet (Barton, 2002) kan man empiriskt uppskatta förstärkningsinsatsen beroende på bergkvalitet och spännvidd. Se Figur 8. Detta ger följande förstärkningsförslag vid en spännvidd på bergtunnlarna om 16 meter. Q=4: Fiberarmerad sprutbetong t c = 70 mm, systematisk bultning c/c 2 meter Q=1: Fiberarmerad sprutbetong t c = 110 mm, systematisk bultning c/c 1,7 meter. Denna empiriska metod ger endast en indikation på omfattningen av bergförstärkning och skall inte ses som ett slutgiltigt förstärkningsförslag eller ligga till grund för dimensionering. Figur 8. Förlag på bergförstärkning vid olika bergkvalietet och spännvidder (Barton, 2002). 4 Kalkylunderlag Förutsättningarna för kalkylen är att tunnlarna drivs konventionellt genom borrningsprängning. Kontinuerlig förinjektering används för att minska inläckande vatten. Bergförstärkning utgörs av fiberarmerad sprutbetong med systematisk eller selektiv bultning. I Tabell 2 redovisas de mängder som är framräknade för en bergtunnel under Lambarfjärden. Start och slutpunkt är vald så att både bro- och tunnelalternativet går i bergtunnel vid dessa längdmätningar. Arean för huvudtunnlarna och ramptunnlarna är uppskattad till 120 m 2 respektive 72 m 2. För att få en effektiv produktionstidplan föutsätts en arbetstunnel på norra Lovön. Tvärsnittet för arbetstunneln är uppskattad till 35 m 2. Oavsett om Förbifarten går på bro eller i bergtunnel förbi Lambarfjärden behövs två stycken tilluftsschakt inkl fläktstationer,

12 (13) som placeras på Lovön respektive Grimsta. Vid bergtunnelalternativet blir dock dessa tilluftsschakt djupare. Tvärsnittsarean för dessa tilluftschakt sätts till 100 m 2 efter uppgift från funktionsområde Tunnelventilation. Slutligen ger bergtunnel under Lambarfjärden konsekvenser på ramptunnlarna vid trafikplats Vinsta. Huvudtunnlarna når inte upp i samma profilläge som vid broalternativet vilket innebär att de två södra ramptunnlarna blir vardera ca 100 meter längre enligt uppgift från funktionsområde Vägutformning. I detta skede baseras kalkylen endast på mängden kubikmeter berg, dvs den använder sig inte av bultmängder, sprutbetong eller injekteringsmängder mm. För kalkylen har en 350 m lång sträcka under förmodade längsgående svaghetszonen i Lambarfjärden antagits i ett försök att få med ökade kostnader för drivning, injektering och förstärkning, se Tabell 2. I Tabell 3 visas det antagna relationen mellan kostnaden för normal bergtunnel och kostnaden för extra förstärkt bergtunnel under Lambarfjärden. Tabell 2. Mängder för bergtunnel under Lambarfjärden. Start Slut Typ Längd (m) Area (m 2 ) Volym (m 3 ) 18530 20260 Normal bergtunnel 1730 240 415200 20260 20610 Extra förstärkning 350 260 91000 20610 21540 Normal bergtunnel 930 240 223200 19100 18500 Arbetstunnel 500 35 17500 Tilluftschakt (2 st) 60 200 12000 tpl Vinsta Förlängda ramptunnlar (2 st) 100 136 13600 Tabell 3. Förhållande mellan kostnad vid olika bergtunneltyper. Tunneltyp Kostnad Normal bergtunnel (13 m/vecka) 100 % Extra förstärkning under Lambarfjärden (10 m/vecka) 150 % Totalt 772500 5 Slutsats Att gå med bergtunnel under Lambarfjärden bedöms, baserat på nuvarande information, vara bergteknisk möjligt. De utförda undersökningarna visar att bergtäckning kan uppnås för bergtunnlarna. Dock bör man sträva efter att försöka sänka vägprofilen ytterligare. Beträffande den förmodade svaghetszonen som tvärar tunnlarna kan resultaten från refraktionsseismiken tolkas till att bergkvalitet i zonen motsvarar Q=1. För att verifiera detta har zonerna undersökas vidare genom kärnborrning, BIPS-loggning och kärnkartering. Det finns inget i kärnborrhålen som visar på förekomsten av en storskalig krosszon. Däremot finns många ihopläkta sprickor som vid tunneldrift kan spricka upp och ge en mer blockig bergmassa än vad RQD-värdet för kärnan indikerar. Den fullständiga kärnkarteringen och

13 (13) boremapkarteringen pågår och den slutliga redovisningen (inkl Q- och RMR bedömningen) är inte klar för närvarande. I ett byggskede skall sonderingsborrning ske framför fronten för att verifiera bergtäckningen. Man bör vara medveten om att även om det rent bergtekniskt är genomförbart så kan svårigheter uppstå under byggskedet som påverkar indriften och ger ökad omfattningen av injektering och bergförstärkning än vad som prognostiserats. 6 Referenser Barton N., 2002, Some new Q-value correlations to assist in site characterisation and tunnel design. Int. J. of Rock Mechanics and Mining Sciences 39 (2002) 185-216. Pergamon Press. Geonova, 2008, Sjömätningar i tre passager under Mälaren, Förbifart Stockholm. Palmström. A, 1995, RMi a rock mass characterization system for rock engineering purposes. PhD Thesis. Rapport Lambarfjärden kärnborrhål 08F351K och 08F352K. Geosigma oktober 2008