cosmology near the general relativity limit

Relevanta dokument
12.6 Heat equation, Wave equation

Solutions to exam in SF1811 Optimization, June 3, 2014

1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)

Isometries of the plane

Module 1: Functions, Limits, Continuity

Tentamen i Matematik 2: M0030M.

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version

This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum

Tentamen i Matematik 3: M0031M.

Pre-Test 1: M0030M - Linear Algebra.

Tentamen i Matematik 2: M0030M.

Module 6: Integrals and applications

The Arctic boundary layer

Preschool Kindergarten

x 2 2(x + 2), f(x) = by utilizing the guidance given by asymptotes and stationary points. γ : 8xy x 2 y 3 = 12 x + 3

8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers.

and u = och x + y z 2w = 3 (a) Finn alla lösningar till ekvationssystemet

(D1.1) 1. (3p) Bestäm ekvationer i ett xyz-koordinatsystem för planet som innehåller punkterna

F ξ (x) = f(y, x)dydx = 1. We say that a random variable ξ has a distribution F (x), if. F (x) =

Algoritmer och Komplexitet ht 08. Övning 6. NP-problem

2(x + 1) x f(x) = 3. Find the area of the surface generated by rotating the curve. y = x 3, 0 x 1,

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik

Gradientbaserad Optimering,

NP-fullständighetsbevis

Vågkraft. Verification of Numerical Field Model for Permanent Magnet Two Pole Motor. Centrum för förnybar elenergiomvandling

Webbregistrering pa kurs och termin

Grafisk teknik IMCDP IMCDP IMCDP. IMCDP(filter) Sasan Gooran (HT 2006) Assumptions:

Webbreg öppen: 26/ /

1. Find the volume of the solid generated by rotating the circular disc. x 2 + (y 1) 2 1

Module 4 Applications of differentiation

Chapter 2: Random Variables

IE1206 Embedded Electronics

denna del en poäng. 1. (Dugga 1.1) och v = (a) Beräkna u (2u 2u v) om u = . (1p) och som är parallell

Tentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering

NO NEWS ON MATRIX MULTIPLICATION. Manuel Kauers Institute for Algebra JKU

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00. English Version

Grafisk teknik IMCDP. Sasan Gooran (HT 2006) Assumptions:

MOLECULAR SHAPES MOLECULAR SHAPES

1. Varje bevissteg ska motiveras formellt (informella bevis ger 0 poang)

Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00. English Version

Grafisk teknik. Sasan Gooran (HT 2006)

f(x) = x2 + 4x + 6 x 2 4 by utilizing the guidance given by asymptotes and stationary points.

Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm

English Version. + 1 n 2. n 1

Styrteknik: Binära tal, talsystem och koder D3:1

2. Förklara vad en egenfrekvens är. English: Explain what en eigenfrequency is.

Sammanfattning hydraulik

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00. English Version

LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik

English Version. 1 x 4x 3 dx = 0.8. = P (N(0, 1) < 3.47) = =

1. Find an equation for the line λ which is orthogonal to the plane

S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A

and Mathematical Statistics Gerold Jäger 9:00-15:00 T Compute the following matrix

Lösningar till tentan i SF1861/51 Optimeringslära, 3 juni, 2015

Kurskod: TAMS11 Provkod: TENB 12 January 2015, 08:00-12:00. English Version

S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A

FORSKNINGSKOMMUNIKATION OCH PUBLICERINGS- MÖNSTER INOM UTBILDNINGSVETENSKAP

Kurskod: TAMS24 / Provkod: TEN (8:00-12:00) English Version

Calculate check digits according to the modulus-11 method

Rastercell. Digital Rastrering. AM & FM Raster. Rastercell. AM & FM Raster. Sasan Gooran (VT 2007) Rastrering. Rastercell. Konventionellt, AM

f(x) =, x 1 by utilizing the guidance given by asymptotes and stationary points. cos(x) sin 3 (x) e sin2 (x) dx,

Senaste trenderna från testforskningen: Passar de industrin? Robert Feldt,

Isolda Purchase - EDI

English Version. Number of sold cakes Number of days

Hjälpmedel: Inga, inte ens miniräknare Göteborgs Universitet Datum: 2018 kl Telefonvakt: Jonatan Kallus Telefon: ankn 5325

1. Find the 4-tuples (a, b, c, d) that solves the system of linear equations

Övning 3 ETS052 Datorkommuniktion IP, TCP och

. Bestäm Rez och Imz. i. 1. a) Låt z = 1+i ( b) Bestäm inversen av matrisen A = (3p) x + 3y + 4z = 5, 3x + 2y + 7z = 3, 2x y + z = 4.

IE1206 Embedded Electronics

Scalable Dynamic Analysis of Binary Code

2 4xy. and classify each of them with respect to the corresponding linearized system. x 2 dy + 2xy = y2

EBBA2 European Breeding Bird Atlas

PFC and EMI filtering

Exam MVE265 Mathematical Statistics,

The reception Unit Adjunkten - for newly arrived pupils

Theory 1. Summer Term 2010

och v = 1 och vektorn Svar 11x 7y + z 2 = 0 Enligt uppgiftens information kan vi ta vektorerna 3x + 2y + 2z = 1 y z = 1 6x + 6y + 2z = 4

SVENSK STANDARD SS

Room E3607 Protein bioinformatics Protein Bioinformatics. Computer lab Tuesday, May 17, 2005 Sean Prigge Jonathan Pevsner Ingo Ruczinski

MVE500, TKSAM Avgör om följande serier är divergenta eller konvergenta. Om konvergent, beräkna summan. (6p) ( 1) n x 2n+1 (a)

6. a) Visa att följande vektorer är egenvektorer till matrisen A = , och ange motsvarande

Kurskod: TAMS11 Provkod: TENB 07 April 2015, 14:00-18:00. English Version

Lösningar till Tentamen i Reglerteknik AK EL1000/EL1100/EL

Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås

Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås

EXAM IN MODELING AND SIMULATION (TSRT62)

Undergraduate research:

EXTERNAL ASSESSMENT SAMPLE TASKS SWEDISH BREAKTHROUGH LSPSWEB/0Y09

S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A

sin(x 2 ) 4. Find the area of the bounded region precisely enclosed by the curves y = e x and y = e.

Tentamen MMG610 Diskret Matematik, GU

Kursplan MD2022. Matematik III 30 högskolepoäng, Grundnivå 2

SVENSK STANDARD SS-EN ISO 19108:2005/AC:2015

is introduced. Determine the coefficients a ij in the expression for, knowing that the vectors (1, 0, 1), (1, 1, 1), (0, 1, 1) constitute an ON-basis.

NMR Nuclear Magnetic Resonance = Kärnmagnetisk resonans


, m 3 = 3. Determine for each real α and for each real β 0 the geometric meaning of the equation x 2 + 2y 2 + αz 2 + 2xz 4yz = β.

STORSEMINARIET 3. Amplitud. frekvens. frekvens uppgift 9.4 (cylindriskt rör)

SkillGuide. Bruksanvisning. Svenska

Eternal Employment Financial Feasibility Study

Transkript:

Thirteenth Marcel Grossmann Meeting - MG3 Stockholm, 6 July 202 (I) Scalar-tensor and (II) Multiscalar-tensor cosmology near the general relativity limit Laur Järv University of Tartu, Estonia (I) LJ, Piret Kuusk, Margus Saal Phys Rev D8: 04007 (200), Phys Lett B694: -5 (200), Phys Rev D85 06403 (202) (II) LJ, Piret Kuusk, Erik Randla forthcoming

(I) Scalar-tensor gravity (STG) One scalar field Ψ non-minimally coupled to gravity, Brans-Dicke like parametrization, Jordan frame S = 2κ 2 d 4 x [ g ΨR(g µν ) ω(ψ) ] Ψ ρ Ψ ρ Ψ 2κ 2 V (Ψ) +S m (g µν, χ mat ) Family of theories, each pair ω(ψ) and V (Ψ) specifies a theory Variable gravitational constant set by the dynamical scalar field, 8πG = κ2 Ψ, assume 0 < Ψ < Assume positive energy density: 2ω(Ψ) + 3 0, V (Ψ) 0 Paradigmatic example of a modified gravity theory Eg comes from higher dimensions, braneworlds, effective field theory approach to dark energy; several proposed modifications to Einstein s general relativity can be cast in the form of STG, or contain STG as a subsector Laur Järv Scalar-tensor and Multiscalar-tensor cosmology near the general relativity limit 2/6

The limit of general relativity Observations point towards a specific corner of the solutions space: CMB: Grec Gnow G now 005, hence Ψ CMB: 2ω(Ψ rec)+3 7 0 2 Solar System PPN: 7 0 4 Solar System PPN: 2ω(Ψ now)+3 The limit of general relativity : Assume ( ) d 0, dψ 2ω(Ψ) + 3 Ψ dω dψ (2ω(Ψ now)+3) 2 (2ω(Ψ now)+4) 0 4 2ω(Ψ ) + 3 = 0, Ψ = 0 2ω(Ψ) + 3 is differentiable at Ψ Laur Järv Scalar-tensor and Multiscalar-tensor cosmology near the general relativity limit 3/6

Outline We study flat (k = 0) FLRW STG cosmology with arbitrary ω(ψ) and V (Ψ) in the potential dominated and dust matter dominated regimes Derive the approximate equations that govern the dynamics near the limit of general relativity (Nonlinear, nonautonomous system!) Find the general analytic form of solutions for these equations, ie Ġ Ψ(t), H(t), can also compute w eff (t), G, etc (Complete classification!) Argue that the full and approximate phase spaces are in qualitative agreement (Can trust the results!) Determine the conditions on a STG for its solutions to dynamically converge to the GR limit (Select viable theories!) Laur Järv Scalar-tensor and Multiscalar-tensor cosmology near the general relativity limit 4/6

Scalar-tensor cosmology Flat FLRW, barotropic matter fluid p = wρ H 2 = H Ψ Ψ + Ψ 2 6 κ2 ω(ψ) + Ψ2 3 ρ Ψ + κ2 V (Ψ) 3 Ψ, 2Ḣ + 3H2 = 2H Ψ Ψ Ψ 2 Ψ ω(ψ) 2 Ψ2 Ψ κ2 κ2 wρ + Ψ Ψ V (Ψ), Ψ = 3H Ψ 2ω(Ψ) + 3 2κ 2 + 2ω(Ψ) + 3 dω(ψ) dψ Ψ 2 + [ 2V (Ψ) Ψ κ 2 2ω(Ψ) + 3 ], dv (Ψ) dψ ( 3w) ρ ρ = 3H (w + ) ρ Laur Järv Scalar-tensor and Multiscalar-tensor cosmology near the general relativity limit 5/6

Remark: STG ja GR cosmology In the general realtivity limit get the usual GR Friedmann equations with a cosmological constant (V (Ψ) = Λ) H 2 = H Ψ Ψ + Ψ 2 6 κ2 ω(ψ) + Ψ2 3 ρ Ψ + κ2 V (Ψ) 3 Ψ, 2Ḣ + 3H2 = 2H Ψ Ψ Ψ 2 Ψ ω(ψ) 2 Ψ2 Ψ κ2 κ2 wρ + Ψ Ψ V (Ψ), Ψ = 3H Ψ 2ω(Ψ) + 3 2κ 2 + 2ω(Ψ) + 3 dω(ψ) dψ Ψ 2 + [ 2V (Ψ) Ψ κ 2 2ω(Ψ) + 3 ], dv (Ψ) dψ ( 3w) ρ ρ = 3H (w + ) ρ Laur Järv Scalar-tensor and Multiscalar-tensor cosmology near the general relativity limit 6/6

Approximation near the GR limit (ρ = 0 case) Consider small deviations (x ẋ) Ψ(t) = Ψ + x(t), Ψ(t) = ẋ(t) Expand in series, keeping the leading terms, obtain an approximate equation ẍ = C ẋ + C 2 x + ẋ 2 2x, () where C ± 2ω(Ψ ) + 3 0, A d ( dψ 2ω(Ψ) + 3 ( 3κ 2 V (Ψ ), C 2 2κ 2 A 2V (Ψ) Ψ encode the behavior of the functions ω and V near this point ) Ψ, ) dv (Ψ) dψ Ψ Ψ Laur Järv Scalar-tensor and Multiscalar-tensor cosmology near the general relativity limit 7/6

Solutions to the approximate equation (ρ = 0 case) The solutions of () in cosmological time fall into three classes, depending on C C 2 + 2C 2: exponential, linear-exponential, or oscillating, ] 2 e [M Ct e 2 t C M 2 e 2 t C, if C > 0, Ψ(t) = Ψ ± e Ct [M t M 2 ] 2, if C = 0, 2 e [N Ct sin( 2 t C ) N 2 cos( 2 C )] t, if C < 0 Here M, M 2, N, N 2 are constants of integration (determined by initial conditions) Also H(t) = C 3 ± Eg oscillating solutions oscillate across the phantom divide line (w eff = ) Laur Järv Scalar-tensor and Multiscalar-tensor cosmology near the general relativity limit 8/6

Classification of phase portraits (Ψ, Ψ) C > 0 C > 0 C = 0 C < 0

Classification of phase portraits (Ψ, Ψ )

Approximation near the GR limit (V = 0 case) Again consider small deviations x(t), h(t), Ψ(t) = Ψ + x(t), H(t) = H (t) + h(t) where H (t) = 2 3(t t s ) is the Hubble parameter corresponding to Ψ Expand in series, keeping the leading terms, obtain approximate equations ẍ = ẋ 2 2x 3H ẋ + 3A Ψ H x 2, (2) ḣ + 3H h = ( + ) ẋ 2 4Ψ 2A Ψ x + H ẋ 3 2Ψ 2 A H x 2 (3) Laur Järv Scalar-tensor and Multiscalar-tensor cosmology near the general relativity limit /6

Solutions to the approximate equation (V = 0 case) The solutions fall again into three classes, depending on D + 8 3 A Ψ : polynomial, logarithmic, or oscillating, ( D ) t M t 2 M 2 t D 2 2, if D > 0, Ψ(t) = Ψ ± t (M ln t M 2 ) 2, if D = 0, [ ( ) ( 2 D D t N sin 2 ln t N 2 cos 2 ln t)], if D < 0, where M, M 2, N, N 2 are constants of integration (determined by initial conditions) Also H(t) = 2 [ ± t ] 3t ( ) Laur Järv Scalar-tensor and Multiscalar-tensor cosmology near the general relativity limit 2/6

Conditions for GR to be an attractor Observational constraints are naturally satisfied, if the GR limit is an attractor, ie solutions dynamically converge towards it GR limit exists, if Ψ, such that 2ω(Ψ ) + 3 = 0 Attractor in the dust matter dominated era ( d dψ 2ω(Ψ) + 3 ) Ψ Ψ < 0 Attractor in the potential dominated era [ ] Ψ dv (Ψ) V (Ψ ) > 0, < 2V (Ψ) dψ Ψ Laur Järv Scalar-tensor and Multiscalar-tensor cosmology near the general relativity limit 3/6

(II) Multiscalar-tensor gravity (MSTG) N non-minimally coupled scalar fields Φ a, Jordan frame S = 2κ 2 d 4 x g ( FR Z ab g µν µ Φ a ν Φ b 2κ 2 U ) +S(g µν, χ matter ), where F = F(Φ, Φ 2,, Φ N ), Z ab = Z ab (Φ, Φ 2,, Φ N ), U = U(Φ, Φ 2,, Φ N ) are arbitrary functions Can use N redefinitions of the scalar fields to cast the theory in the form where only one of the scalar fields, Ψ, is non-minimally coupled, while the others, φ i, are minimally coupled to gravity, S = 2κ 2 d 4 x g ( ΨR Z ij ρ φ i ρ φ j ω ) Ψ ρψ ρ Ψ 2κ 2 U +S m (g µν, χ m ), however F = F (φ, φ 2,, φ N, Ψ), Z ab = Z ab (φ, φ 2,, φ N, Ψ), U = U(φ, φ 2,, φ N, Ψ)) Laur Järv Scalar-tensor and Multiscalar-tensor cosmology near the general relativity limit 4/6

Two fields case (and ρ = 0) Now expand Ψ(t) = Ψ + x(t), φ(t) = φ + x(t) around 2ω(Ψ, φ ) + 3 = 0, Z(Ψ, φ ) = 0 Derive approximate equations hard to solve generally For instance, if φ Ψ(t) = Ψ ± Ω(t) = ( 2ω + 3 ) Ψ,φ = φ ( e mt aω(t) dt + k ) 2 k2 J n+(ξ) e C t J n(ξ) 4e (m+c)t aω(t) dt, ξ = 2Dk3 2C e C t, ( ) = Z Ψ,φ φ U Ψ,φ = 0 t = Ψ ±D e Ct ( M e Ct M 2 e Ct) 2 m = C 2 + 2C2, n = m 2C, a = 2D k 3 C, C 2, C, D, D constants that specify MSTG, k, k 2, k 3, M, M2 integration constants, J n Bessel function Laur Järv Scalar-tensor and Multiscalar-tensor cosmology near the general relativity limit 5/6

Summary (I) We studied flat FLRW STG cosmology with arbitrary ω(ψ) and V (Ψ) in the potential dominated and dust matter dominated regimes Determined the conditions on a STG for its solutions to dynamically converge to the GR limit Can use to select viable theories Found the general analytic form of solutions near the GR limit, ie Ġ Ψ(t), H(t), can also compute w eff (t), G, etc Complete classification Can use to compare with actual expansion history (cosmography, statefinder diagnostic, etc), Can use as the background for the growth of cosmological perturbations (parameterized post-friedmannian formalism, etc) (II) We also studied MSTG The same methods can be applied here, analytic results are harder to obtain, but still possible in some cases Laur Järv Scalar-tensor and Multiscalar-tensor cosmology near the general relativity limit 6/6