Arbetsblad 2:1. 1 a) 3 m = cm b) 2,8 m = cm. 2 a) 5,3 m = cm b) 6,07 m = cm c) 0,55 m = cm. 3 a) 7 dm = cm b) 6,4 dm = cm c) 0,9 dm = cm

Storlek: px
Starta visningen från sidan:

Download "Arbetsblad 2:1. 1 a) 3 m = cm b) 2,8 m = cm. 2 a) 5,3 m = cm b) 6,07 m = cm c) 0,55 m = cm. 3 a) 7 dm = cm b) 6,4 dm = cm c) 0,9 dm = cm"

Transkript

1 Arbetsblad 2:1 Längdeneter Skriv i eneten centimeter. Grundbok: grundkurs s. 7 blå kurs s. 7 1 m = 10 dm = 100 cm = mm 1 a) m = cm b) 2,8 m = cm c) 0, m = cm 2 a), m = cm b),07 m = cm c) 0, m = cm a) 7 dm = cm b), dm = cm c) 0,9 dm = cm a) 2 mm = cm b) mm = cm c) 7 mm = cm Skriv i eneten meter. a) dm = m b) 8, dm = m c) 1 dm = m a) cm = m b) 9, cm = m c) 0 cm = m 7 a) 7 cm = m b) 10 cm = m c) 178 cm = m 8 a) 2 mm = m b) 2 mm = m c) 20 mm = m Fyll i rätt svar. 9 a) 2 cm = m b) 2 cm = dm c) 2 cm = mm 10 a) 1 00 mm = m b) 7 0 mm = m c) 98 mm = m 11 a) 2, m = cm b) 7,8 mm = cm c),7 mm = cm Fyll i rätt svar. 12 a) km = m b) 0, km = m 1 km = m 1 mil = 10 km c) 1 km = m 1 a) m = km b) 2 00 m = km c) 1 70 m = km 1 a) 2 mil = km b) 2,9 mil = km c) 0, mil = km oc författarna

2 Arbetsblad 2:2 Cirkelns omkrets 1 eräkna cirkelns omkrets. a) b) c) Grundbok: grundkurs s. 9 blå kurs s. 77 Räkna med π 10 cm m 0 m Mät i figuren. 2 Hur lång är cirkelns a) diameter b) radie c) omkrets eräkna omkretsen av figuren. oc författarna

3 Arbetsblad 2: Areaeneter Grundbok: grundkurs s. 0 blå kurs s Skriv i eneten kvadratcentimeter. 1 cm 2 a) 1 dm 2 = cm 2 b) dm 2 = cm 2 c) 0, dm 2 = cm 2 1 dm 2 d) 2, dm 2 = cm 2 e) 1,2 dm 2 = cm 2 2 Skriv i eneten kvadratdecimeter. a) 100 cm 2 = dm 2 b) 200 cm 2 = dm 2 c) 20 cm 2 = dm 2 d) 0 cm 2 = dm 2 e) 12 cm 2 = dm 2 f) 0 cm 2 = dm 2 Vad ska det stå på linjen? a) dm 2 = cm 2 b) cm 2 = dm 2 c) 0,8 dm 2 = cm 2 d) 0,72 dm 2 = cm 2 Skriv i eneten kvadratdecimeter. 1 m 2 = 100 dm 2 a) m 2 = dm 2 b),8 m 2 = dm 2 c) 0,2 m 2 = dm 2 d) 1,2 m 2 = dm 2 Skriv i eneten kvadratmeter. a) 200 dm 2 = m 2 b) 0 dm 2 = m 2 c) 12 dm 2 = m 2 d) dm 2 = m 2 oc författarna

4 Arbetsblad 2: Stora areaeneter 1 Skriv som kvadratmeter. a) 2 a = m 2 b) 12 a = m 2 Grundbok: grundkurs s. 1 1 ar =100 m 2 1 a = m 2 1 km 2 = m 2 c) 0, a = m 2 d) 0,2 a = m 2 e) 0,2 a = m 2 f),8 a = m 2 2 Skriv som ektar. a) m 2 = a b) m 2 = a c) 000 m 2 = a d) m 2 = a e) 000 m 2 = a f) 00 m 2 = a g) 00 m 2 = a ) 2 m 2 = a Skriv som kvadratmeter. a) 1 km 2 = m 2 b) 2, km 2 = m 2 c) km 2 = m 2 d) 9,8 km 2 = m 2 e) 0, km 2 = m 2 f) 0,02 km 2 = m 2 Vad ska det stå på linjen? a) 8 a = m 2 b) 00 m 2 = a c) m 2 = a d) 900 m 2 = a e) km 2 = m 2 f) m 2 = km 2 g) 1 km 2 = a ) 1 a = km 2 oc författarna

5 Arbetsblad 2: Cirkelns area 1 eräkna cirkelns area. a) b) c) Grundbok: grundkurs s. blå kurs s. 79 Räkna med π 10 cm m 0 m 2 Mät i cirkeln oc beräkna arean. a) b) a) b) Mät i figuren oc beräkna omkrets oc area. a) b) O = O = A = A = oc författarna

6 Arbetsblad 2: Cirkelbåge oc cirkelsektor Grundbok: grundkurs s. 1 Hur stor andel av ela cirkeln är cirkelsektorn i figur Räkna med π A A Cirkelbågens längd: v π 2r 0 C r = cm Cirkelsektorns area: v π r2 0 2 eräkna cirkelsektorns area i figur A d = 10 cm C Hur lång är cirkelbågen i figur A C 120 r = cm C Mät radien oc beräkna cirkelsektorns area i figur D E D F 0 eräkna cirkelbågens längd i figur 10 D E F E 10 F oc författarna

7 Arbetsblad 2:7 Volymeneter Grundbok: grundkurs s. blåkurs s Skriv i eneten kubikdecimeter. 1 liter = 1 dm = cm a) cm = dm b) 00 cm = dm c) 0,7 liter = dm 1 dm 10 cm d) 2, liter = dm e) 1,2 liter = dm 1 dm 10 cm 1 dm 10 cm Skriv i eneten kubikcentimeter. V = 1 dm 1 dm 1 dm = 1 dm V = 10 cm 10 cm 10 cm = cm 2 a) 1 dm = cm a) liter = cm b) 2, dm = cm b),2 liter = cm c) 0, dm = cm c) 0,2 liter = cm Skriv i eneten kubikcentimeter. 1 ml = 1 cm a) 2 ml = cm a) 8 liter = cm b) ml = cm b) 1, liter = cm c) 2 ml = cm c) 0, liter = cm Skriv i eneten kubikdecimeter. 1 m = dm a) 2 m = dm b), m = dm 7 a) 0,1 m = dm b),7 m = dm Skriv i eneten kubikmeter. 8 a) dm = m b) 20 liter = m 9 a) 20 dm = m b) 2 liter = m oc författarna

8 Arbetsblad 2:8 Olika eneter Grundbok: grundkurs s. blå kurs s. 80 Fyll i tabellen. 1 m dm cm a) 1 b) 0,8 c) 2 m 2 dm 2 cm 2 a) 1 b) 0,8 Här använder du både längd-, area- oc volymeneter. c) m dm cm a) 1 b) 0,8 c) Askens bottenarea är 90 cm 2. Skriv arean i eneten a) dm 2 b) m 2 Askens volym är 0 cm. Skriv volymen i eneten a) dm b) m 1 Lådans bottenarea är 10 dm 2. Skriv arean i eneten (dm) a) cm 2 b) m 2 7 Lådans volym är 0 dm. Skriv volymen i eneten a) cm b) m 2 8 assängens bottenarea är 2 m 2. Skriv arean i eneten (m) a) dm 2 b) cm 2 1, 8 9 assängens volym är m. Skriv volymen i eneten a) dm b) cm oc författarna

9 Arbetsblad 2:9 Volym av olika kroppar Grundbok: grundkurs s. blå kurs s. 81 Namnge kropparna oc beräkna volymen. 1 Namn: = 2, dm = 12 dm 2 2 Namn: = cm = 2 cm 2 Namn: =, dm = 18 dm 2 Namn: Namn: Namn: oc författarna

10 Arbetsblad 2:10 Cylinderns volym eräkna volymen. Grundbok: grundkurs s. 7 blå kurs s. 82 Räkna med π 1 a) = 2,0 m =, m 2 b) = dm = dm 2 2 a) = 1 cm r = cm r b) = 1, m r = 2 dm r = = V = V = a) = 0 cm d = 8 cm b) = 18 cm d =, cm d d eräkna volymen av ela konstverket. Den andra oc den tredje pelarens öjd är älften av den föregående pelarens öjd. Diametern är älften av den föregående pelarens diameter. =, m d = 1,2 m d oc författarna

11 Arbetsblad 2:11 Arean av cylinderns begränsningsyta Grundbok: grundkurs s. 7 blåkurs s. 8 Använd π i dina beräkningar. 1 eräkna a) basytans area = 8 cm d = 10 cm b) arean av mantelytan 2 eräkna a) basytans area b) arean av mantelytan = 12 cm r = cm eräkna arean av a) basytan b) mantelytan = 1 cm r = 2, cm c) begränsningsytan En plåtink är formad som en cylinder. a) Hur mycket plåt beövdes för att tillverka inken, som saknar lock? = 0 cm r = 22 cm b) Hur stor volym ar inken? Avrunda oc svara i liter. I agility finns bland annat tunnlar som undarna ska springa genom. Tunnlarna görs ibland av tyg. Hur mycket tyg beövs för att sy en tunnel som ar a) längden 2 m oc diametern 0 cm b) längden m oc diametern 70 cm Du beöver inte räkna med sömsmån. oc författarna

12 Arbetsblad 2:12 Pyramid oc kon Grundbok: grundkurs s. 8 blåkurs s. 8 eräkna volymen. Använd π. 1 a) = dm = 9 dm 2 b) = dm = 9 dm 2 2 a) = dm b) = dm = 12 dm 2 = 12 dm 2 a) (m) b) (m) a) b) oc författarna

13 Arbetsblad 2:1 landade volymer Grundbok: grundkurs s. 9 1 Tänk dig att du ar en klump med modellera. Du formar först ett rätblock med de mått som är utsatta i figuren. eräkna rätblockets volym. Skriv svaret med fyra olika eneter. V = cm V = dm V = ml V = liter 2 Du formar nu en cylinder av samma mängd lera. Hur stor area ar basytan i cylindern om öjden är som i figuren? a) b) c) d) 0, = = = = Du fortsätter att göra cylindrar av samma lerklump. Hur ög blir cylindern om basytan är a) cm 2 b) 2 cm 2 c) 9 cm 2 d) 0,8 cm 2 = = = = Nu formar du ett prisma av samma lerklump. asytan ska vara i form av en triangel. Hur ögt blir prismat om basytan ar de mått som visas i figuren? a) b) c) d) 2, = = = = oc författarna

14 Arbetsblad 2:1 Klotets volym Grundbok: grundkurs s. 9 1 eräkna klotets volym. Räkna med π Klotets volym = πr a) b) c) r = 1,0 m r = 10 cm d = 1,0 m V = V = V = 2 eräkna klotets volym. Svara i liter. a) b) c) r = 2 dm r = 0 cm r = 20 cm V = V = V = eräkna volymen av a) golfbollen. V = r = 21 mm b) bordtennisbollen. V = d = 0 mm c) krocketklotet. V = d) bowlingklotet. V = r =, cm r = 22 cm Hur lång sträcka rullar bollarna oc kloten i uppgift om de rullar 20 varv? a) Golfbollens sträcka: b) ordtennisbollens sträcka: c) Krocketklotets sträcka: d) owlingklotets sträcka: Pia ar en liter deg. Av den rullar on bullar som i genomsnitt ar diametern cm. Hur många bullar räcker degen till? oc författarna

15 Arbetsblad 2:1 Mer om omkrets eräkna omkretsen av den skuggade figuren. Räkna i ditt räkneäfte. Grundbok: rödkurs s. 87 Räkna med π 1 a) (dm) b) 12 (m) 10 c) 2 cm 8 cm 2 cm 2 En und är bunden med ett 12 meter långt rep vid örnet av ett us. Husse vill sätta ett staket längs omkretsen av det område som unden kan nå. Hur långt blir staketet? m 12 m 8 m Ett antal ringar ar länkats iop till en kedja som visas i figuren. Det finns 20 ringar i kedjan. Hur lång är kedjan, dvs. ur lång är sträckan d? d Skriv ett uttryck för trådens längd om den sträcker sig längs a) cirklar 1 2 n 1 n d... b) n cirklar oc författarna

16 Arbetsblad 2:1 landade volymer A 1 eräkna volymen. a) b) c) (dm) (m) Grundbok: rödkurs s. 92 Räkna med π,1 (dm) V = V = V = 2 eräkna begränsningsytans area av a) prismat i uppgift 1a b) cylindern i uppgift 1b A = A = eräkna volymen. a) (m) b) (m) c), 9,0,, V = V = V = eräkna ur ög figuren ska vara för att rymma 1 liter. a) b) c) = = = oc författarna

17 Arbetsblad 2:17 landade volymer Räkna i ditt räkneäfte. Grundbok: rödkurs s Får saften i kannan plats i glaset? 11 Räkna med π, I en kub med sidan 10 cm placeras en så stor cylinder som möjligt. a) Hur stor volym ar cylindern? b) Hur många procent av kubens volym utgör cylindern? En idrottsklubb tillverkar en egen prispall av fiberskivor. Framsidan av prispallen målas med guldfärg. a) Hur stor är arean av framsidan? (dm) b) Hur stor är prispallens begränsningsarea? (Undersidan av prispallen är inte täckt av någon skiva) Trappan på bilden ska målas. Den är 1 meter bred oc varje trappsteg är 20 cm ögt. a) Hur stor yta beöver målas? b) Trappan är gjuten. Hur stor volym ar trappan? Smyckeskrinet på bilden är gjort av mässing. a) Hur stor area ar den synliga gaveln? b) Hur mycket mässingsplåt går det åt för att 8 1 tillverka locket? c) Hur mycket mässingsplåt består ela skrinet av? oc författarna

Lathund, geometri, åk 9

Lathund, geometri, åk 9 Lathund, geometri, åk 9 I årskurs 7 och 8 räknade ni med sträckor och ytor i en dimension (1D) respektive två dimensioner (2D). Nu i årskurs 9 har ni istället börjat räkna volymer av geometriska kroppar

Läs mer

Övningsblad 3.1 A. Omkrets och area. 1 Beräkna figurernas omkrets och area. Varje ruta har arean 1 cm 2.

Övningsblad 3.1 A. Omkrets och area. 1 Beräkna figurernas omkrets och area. Varje ruta har arean 1 cm 2. Övningsblad 3.1 A Omkrets och area 1 Beräkna figurernas omkrets och area. Varje ruta har arean 1 cm 2. a) b) O = A = O = A = 2 Skugga rektangelns area och markera triangelns omkrets. (m) (m) 25 80 80 70

Läs mer

markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ TRE TRE FYRA FYRA klart

markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ TRE TRE FYRA FYRA klart PLANERING MATEMATIK - ÅK 8 Bok: Y (fjärde upplagan) Kapitel : 3 Algebra oc mönster Kapitel : 4 Geometri Elevens namn: markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ TRE TRE FYRA

Läs mer

Arbetsblad 3:1. Hur stor är vinkeln? 1 Vilken eller vilka av vinklarna är. 2 Uppskatta (gör en bra gissning) hur stora vinklarna är.

Arbetsblad 3:1. Hur stor är vinkeln? 1 Vilken eller vilka av vinklarna är. 2 Uppskatta (gör en bra gissning) hur stora vinklarna är. Arbetsblad :1 Hur stor är vinkeln? 1 Vilken eller vilka av vinklarna är a) rät b) spetsig c) trubbig A C D F E G 2 Uppskatta (gör en bra gissning) hur stora vinklarna är. A C D E F G Mät vinklarna och

Läs mer

150 cm 2 m 70 dm. 280 cm 3,5 m 40 dm 3,50 0,50. 200 cm 1,5 2,5. 6 m. 30 cm 4 dm 500 mm. 2 m. 70 dm. 150 cm. 3,5 m. 40 dm. 280 cm.

150 cm 2 m 70 dm. 280 cm 3,5 m 40 dm 3,50 0,50. 200 cm 1,5 2,5. 6 m. 30 cm 4 dm 500 mm. 2 m. 70 dm. 150 cm. 3,5 m. 40 dm. 280 cm. Skriv sträckorna i storleksordning. Längdenheter: meter (m), decimeter (dm), centimeter (cm) och millimeter (mm). Längden 15 cm kan skrivas på olika sätt: 15 cm = 1 m 5 cm = 1,5 m eller 15 dm cm eller

Läs mer

Planering Geometri a r 9

Planering Geometri a r 9 Planering Geometri a r 9 Mål När du har arbetat med det här kapitlet ska du kunna: förstå vad volym är för något ge namn och känna igen olika rymdgeometriska kroppar, till exempel rätblock, kub, cylinder,

Läs mer

Lokal pedagogisk planering i matematik för åk 8

Lokal pedagogisk planering i matematik för åk 8 Lokal pedagogisk planering i matematik för åk 8 Arbetsområde Geometri kap. 3 PRIO Syfte http://www.skolverket.se/laroplaner-amnen-ochkurser/grundskoleutbildning/sameskola/matematik#anchor2 formulera och

Läs mer

,5 10. Skuggat. Svart ,2 4. Randigt. b) 0,4 10. b) 0,3 10. b) 0,08. b) 0, ,7 0, ,17 0,95 0,15 0,2 + 0,7

,5 10. Skuggat. Svart ,2 4. Randigt. b) 0,4 10. b) 0,3 10. b) 0,08. b) 0, ,7 0, ,17 0,95 0,15 0,2 + 0,7 Tal a) 00 50 00 c) 5 00 a) 0,0 0,5 c) 0,05 Färg Bråkform Decimalform Röd Grön _ Gul _ Blå _ a) 7 00 70 00 07 00 5 00 50 00 05 00 00 0,0 00 0,0 0 00 0, 0 00 0, 0,07 0,7,07,05 0,5,5 5 a) Bråkform Decimalform

Läs mer

a) 4a + a b) 4a 3a c) 4(a + 1)

a) 4a + a b) 4a 3a c) 4(a + 1) REPETITION 2 A 1 Förenkla uttrycken. a) 4a + a b) 4a 3a c) 4(a + 1) 2 Johannas väg till skolan är a m lång. a) Robins skolväg är 200 m längre än Johannas. Teckna ett uttryck för hur lång skolväg Robin

Läs mer

REPETITION 2 A. a) 4a + a b) 4a 3a c) 4(a + 1)

REPETITION 2 A. a) 4a + a b) 4a 3a c) 4(a + 1) REPETITION 2 A 1 Förenkla uttrycken. a) 4a + a b) 4a 3a c) 4(a + 1) 2 Johannas väg till skolan är a m lång. a) Robins skolväg är 200 m längre än Johannas. Teckna ett uttryck för hur lång skolväg Robin

Läs mer

Arbetsblad 3:1. Vika kuber. 1 a) Figuren ska vikas till en kub. b) Vilken av figurerna kan. 2 Vilka av figurerna kan du vika till en kub?

Arbetsblad 3:1. Vika kuber. 1 a) Figuren ska vikas till en kub. b) Vilken av figurerna kan. 2 Vilka av figurerna kan du vika till en kub? Arbetsblad :1 sid 75 Vika kuber 1 a) Figuren ska vikas till en kub. b) Vilken av figurerna kan Vilken av kuberna blir det? vikas till den är kuben? 2 Vilka av figurerna kan du vika till en kub? Klipp ut

Läs mer

Arbetsblad 2:1. 1 a) Figuren ska vikas till en kub. Vilken av kuberna blir det? 2 Vilka av figurerna kan du vika till en kub?

Arbetsblad 2:1. 1 a) Figuren ska vikas till en kub. Vilken av kuberna blir det? 2 Vilka av figurerna kan du vika till en kub? Arbetsblad 2:1 Vika kuber 1 a) Figuren ska ikas till en kub. Vilken a kuberna blir det? Grundbok: grundkurs s. 59, blå kurs s. 81 b) Vilken a figurerna kan ikas till den här kuben? A B A B C D C D 2 Vilka

Läs mer

8F Ma Planering v2-7 - Geometri

8F Ma Planering v2-7 - Geometri 8F Ma Planering v2-7 - Geometri Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar

Läs mer

9E Ma Planering v2-7 - Geometri

9E Ma Planering v2-7 - Geometri 9E Ma Planering v2-7 - Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (45 min): Läsa på anteckningar

Läs mer

Arbetsblad 2:1 Repetition skala

Arbetsblad 2:1 Repetition skala :1 Repetition skala 1 a) Hur lång är nålen i naturlig storlek? b) Hur lång blir nålen i skala 1:3? 1 cm 3 cm Skala 1:1 a) Hur lång är tråden i naturlig storlek? 10 cm Skala 1:1 b) Hur lång blir tråden

Läs mer

7F Ma Planering v2-7: Geometri

7F Ma Planering v2-7: Geometri 7F Ma Planering v2-7: Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar

Läs mer

Förpackningsprojekt !!!!!

Förpackningsprojekt !!!!! Förpackningsprojekt Ni ska få möjlighet att i grupp utveckla och visa på era kunskaper om volym och begränsningsarea, enhetsomvandlingar, formelhantering samt skala kommer också att ingå. Inlämning Röd:17/4

Läs mer

Att man bara kan konstruera fem platonska kroppar hänger samman med vinkelsumman som bildas då sidorna möts i kroppens hörn.

Att man bara kan konstruera fem platonska kroppar hänger samman med vinkelsumman som bildas då sidorna möts i kroppens hörn. Geometri Mål När eleverna har studerat det här kapitlet ska de: förstå vad volym är för något kunna ge namn på och känna igen olika rymdgeometriska kroppar såsom rätblock, kub, cylinder, prisma, klot,

Läs mer

4 Sätt in punkternas koordinater i linjens ekvation och se om V.L. = H.L. 5 Räkna först ut nya längden och bredden.

4 Sätt in punkternas koordinater i linjens ekvation och se om V.L. = H.L. 5 Räkna först ut nya längden och bredden. Läxor Läxa 7 En sådan timme skulle ha 00 00 s = 0 000 s. 8 a) O = π d och A = π r r. 0 Beräkna differensen mellan hela triangelns area och arean av den vita triangeln i toppen. Läxa 9 Hur stor andel målar

Läs mer

Övningsuppgifter omkrets, area och volym

Övningsuppgifter omkrets, area och volym Stockholms Tekniska Gymnasium 01-0-0 Övningsuppgifter omkrets, area och volym Uppgift 1: Beräkna arean och omkretsen av nedanstående figur. 4 7 Uppgift : Beräkna arean och omkretsen av nedanstående figur.

Läs mer

Facit åk 6 Prima Formula

Facit åk 6 Prima Formula 1 Facit åk 6 Prima Formula Kapitel 2 - Volym och skala Sidan 51 1 a C, F och G b D och H 2 A: sexsidigt prisma B: rätblock C: kon D: tetraeder (tresidig pyramid), E: tresidigt prisma F: klot G: cylinder

Läs mer

Gruppledtrådar 6-2A (i samband med sidorna 50-60) Ledtråd 2 Den har 4 begränsningsytor (B). Ledtråd 1 Polyedern är regelbunden.

Gruppledtrådar 6-2A (i samband med sidorna 50-60) Ledtråd 2 Den har 4 begränsningsytor (B). Ledtråd 1 Polyedern är regelbunden. Gruppledtrådar 6-2A (i samband med sidorna 50-60) Polyedern är regelbunden. Den har 4 begränsningsytor (B). Polyedern har 4 hörn (H). Antal kanter (K) kan beräknas med formeln B + H K = 2 Begränsningsytorna

Läs mer

Ordlista 5A:1. term. faktor. täljare. nämnare. Dessa ord ska du träna. Öva orden

Ordlista 5A:1. term. faktor. täljare. nämnare. Dessa ord ska du träna. Öva orden Ordlista 5A:1 Öva orden Dessa ord ska du träna term Talen som du räknar med i en addition eller subtraktion kallas termer. faktor Talen som du räknar med i en multiplikation kallas faktorer. täljare Talet

Läs mer

PLANGEOMETRI I provläxa med facit ht18

PLANGEOMETRI I provläxa med facit ht18 PLANGEOMETRI I provläxa med facit ht18 På det här avsnittet kommer du i första hand att utveckla din begrepps metod och kommunikations förmåga. Det är nödvändigt att ha en linjal för att klara avsnittet.

Läs mer

Kartläggningsmaterial för nyanlända elever SVENSKA. Geometri Matematik. 1 2 Steg 3

Kartläggningsmaterial för nyanlända elever SVENSKA. Geometri Matematik. 1 2 Steg 3 Kartläggningsmaterial för nyanlända elever Geometri Matematik 1 2 Steg 3 SVENSKA Kartläggningsmaterial för nyanlända elever Geometri åk 3 MA 1. Rita färdigt bilden så att mönstret blir symmetriskt. 2.

Läs mer

Innehåll. 1 Allmän information 5. 4 Formativ bedömning 74. 5 Diagnoser och tester 90. 6 Prov och repetition 107. 2 Kommentarer till kapitlen 18

Innehåll. 1 Allmän information 5. 4 Formativ bedömning 74. 5 Diagnoser och tester 90. 6 Prov och repetition 107. 2 Kommentarer till kapitlen 18 Innehåll 1 Allmän information Seriens uppbyggnad Lärobokens struktur 6 Kapitelinledning 7 Avsnitten 7 Pratbubbleuppgifter Aktivitet Taluppfattning och huvudräkning 9 Resonera och utveckla 9 Räkna och häpna

Läs mer

PENGAR TILLBAKA 2. GEOMETRI P. Ett snöre på 5 dm klipps i bitar som är 8 cm långa. Hur många bitar på 8 cm går det att få? E P Påbörjad lösning

PENGAR TILLBAKA 2. GEOMETRI P. Ett snöre på 5 dm klipps i bitar som är 8 cm långa. Hur många bitar på 8 cm går det att få? E P Påbörjad lösning 2. GEOETRI P R PENGAR TILLBAA Ett snöre på 5 dm klipps i bitar som är 8 cm långa. Hur många bitar på 8 cm går det att få? E P Påbörjad lösning E R Löser problemet och ger korrekt svar E Redovisningen är

Läs mer

5B1134 Matematik och modeller

5B1134 Matematik och modeller KTH Matematik 1 5B1134 Matematik och modeller 2006-09-04 1 Första veckan Geometri med trigonometri Veckans begrepp cirkel, cirkelsegment, sektor, korda, båglängd, vinkel, grader, radianer, sinus, cosinus,

Läs mer

Tal Repetitionsuppgifter

Tal Repetitionsuppgifter epetitionsuppgifter Till varje kapitel finns repetitionsuppgifter i form av Arbetsblad. Uppgifterna är relaterade till innehållet i respektive kapitel och täcker hela kapitlet. De uppgifter som kräver

Läs mer

CENTRALA INNEHÅLL. Matteord. Geometriska objekt och deras inbördes relationer. Geometriska egenskaper hos dessa objekt.

CENTRALA INNEHÅLL. Matteord. Geometriska objekt och deras inbördes relationer. Geometriska egenskaper hos dessa objekt. Omkrets och Area Geometri - CENTRALA INNEHÅLL Geometriska objekt och deras inbördes relationer. Geometriska egenskaper hos dessa objekt. Avbildning och konstruktion av geometriska objekt. Skala vid förminskning

Läs mer

Läxa 9 7 b) Dividera 84 cm med π för att få reda på hur lång diametern är. 8 1 mm motsvarar 150 / 30 mil = = 5 mil. Omvandla till millimeter.

Läxa 9 7 b) Dividera 84 cm med π för att få reda på hur lång diametern är. 8 1 mm motsvarar 150 / 30 mil = = 5 mil. Omvandla till millimeter. LEDTRÅDAR LÄXOR Läa Förläng så att du får ett heltal i nämnaren. Använd division. Varje sekund klipper Karin, m =, m. Läa 0 ml = 0,0 liter Använd sambandet s = v t. Räkna ut hur mycket vattnet väger när

Läs mer

20 Gamla tentamensuppgifter

20 Gamla tentamensuppgifter 20 Gamla tentamensuppgifter 20.1 Lätta avdelningen Övning 20.1 Beräkna f 0 ( 3) för f(x) = 3x2 2x + 1 med jälp av derivatans definition. Lösning: Här är det allmänna uttrycket för derivatans definition

Läs mer

Poolbygge. fredag 11 april 14

Poolbygge. fredag 11 april 14 Poolbygge Första lektionen vart jag klar med att rita och skriva ritningen. Först skrev jag poolen i skalan 1:60 vilket vi inte fick göra så jag gjorde den till 1:30, alltså har jag minskat den 30 gånger

Läs mer

Föreläsning 5: Geometri

Föreläsning 5: Geometri Föreläsning 5: Geometri Geometri i skolan Grundläggande begrepp Former i omvärlden Plangeometriska figurer Symmetri och tessellering Tredimensionell geometri och geometriska kroppar Omkrets, area, volym

Läs mer

Min pool. Hanna Lind 7:2 Alfa

Min pool. Hanna Lind 7:2 Alfa Min pool Hanna Lind 7:2 Alfa RITNING Jag började med att räkna ut ett antal rimliga mått som jag visste blev heltal när jag delade dom på 30, det gjorde jag då skalan var 1:30. I min ritning visar jag

Läs mer

9D Ma: Geometri VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att:

9D Ma: Geometri VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att: 9D Ma: Geometri VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera

Läs mer

4-9 Rymdgeometri Namn:.

4-9 Rymdgeometri Namn:. 4-9 Rymdgeometri Namn:. Inledning Rymden har alltid fascinerat. Men vad menas med rymd i matematisk eller geometrisk mening? Här skall du få studera 3- dimensionella figurer och hur man beräknar volymen

Läs mer

INTRESSEVÄCKANDE UNDERVISNING I MATEMATIK. Izet Omanovic, förstelärare i matematik Söderkullaskolan i Malmö

INTRESSEVÄCKANDE UNDERVISNING I MATEMATIK. Izet Omanovic, förstelärare i matematik Söderkullaskolan i Malmö INTRESSEVÄCKANDE UNDERVISNING I MATEMATIK Izet Omanovic, förstelärare i matematik Söderkullaskolan i Malmö MIN AMBITION Inspirera lärare att arbeta med eget undervisningsmaterial som är anpassat efter

Läs mer

P O O L B Y G G E. Bilden tagen utav - Andrej Trnkoczy, ifrån flickr. tisdag 8 april 14

P O O L B Y G G E. Bilden tagen utav - Andrej Trnkoczy, ifrån flickr. tisdag 8 april 14 P O O L B Y G G E Bilden tagen utav - Andrej Trnkoczy, ifrån flickr Det du behöver veta i denna keynote är.. Vad skala är/ hur man räknar med skala Vad omkrets är/ hur man räknar med omkrets Vad area är/

Läs mer

Kunskapsmål och betygskriterier för matematik

Kunskapsmål och betygskriterier för matematik 1 (1) 2009-0-12 Kunskapsmål och betygskriterier för matematik För betyget G i matematik skall eleven kunna utföra beräkningar, lösa problem samt se enklare samband utifrån de kunskapsmål som anges under

Läs mer

9A Ma: Geometri. Det tredje arbetsområdet handlar om geometri.

9A Ma: Geometri. Det tredje arbetsområdet handlar om geometri. 9A Ma: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier

Läs mer

4-8 Cirklar. Inledning

4-8 Cirklar. Inledning Namn: 4-8 Cirklar Inledning Du har arbetat med fyrhörningar (parallellogrammer) och trehörningar (trianglar). Nu skall du studera en figur som saknar hörn, och som består av en böjd linje. Den kallas för

Läs mer

9 Geometriska begrepp

9 Geometriska begrepp 9 Geometriska begrepp Rita figurer som visar vad vi menar med... 261 a) 4 cm och 4 cm 2 b) 5 cm och 5 cm 2 262 Rita två olika figurer som båda har arean 8 cm 2 263 Rita tre olika figurer som alla har arean

Läs mer

SF1620 Matematik och modeller

SF1620 Matematik och modeller KTH Teknikvetenskap, Institutionen för matematik 1 SF1620 Matematik och modeller 2007-09-03 1 Första veckan Geometri med trigonometri Till att börja med kom trigometrin till för att hantera och lösa geometriska

Läs mer

fredag den 11 april 2014 M I N P O O L

fredag den 11 april 2014 M I N P O O L M I N P O O L http://en.wikipedia.org/wiki/file:backyardpool.jpg MIN FÖRSTA KLADD Min första kladd så kladda jag lite och då hade inte jag riktigt förstått uppgiften så jag bara kladda lite runt men det

Läs mer

Vi människor föds in i en tredimensionell värld som vi accepterar och

Vi människor föds in i en tredimensionell värld som vi accepterar och Güner Ahmet & Thomas Lingefjärd Symbolen π och tredimensionellt arbete med Geogebra I grundskolans geometriundervisning möter elever oftast tvådimensionella former trots att de har störst vardagserfarenhet

Läs mer

Matematik CD för TB = 5 +

Matematik CD för TB = 5 + Föreläsning 4 70 a) Vi delar figuren i två delar, en triangel (på toppen) och en rektangel. Summan av dessa två figurers area ger den eftersökta. Vi behöver följande formler: A R = b h A T = b h Svar:

Läs mer

fredag den 11 april 2014 POOL BYGGE

fredag den 11 april 2014 POOL BYGGE POOL BYGGE KLADD Såhär ser min kladd ut: På min kladd så bestämde jag mig för vilken form poolen skulle ha och ritade ut den. På min kladd har jag även skrivit ut måtten som min pool skulle vara i. Proportionerna

Läs mer

Södervångskolans mål i matematik

Södervångskolans mål i matematik Södervångskolans mål i matematik Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret beträffande tal och taluppfattning kunna läsa av en tallinje mellan 0-20 kunna läsa och ramsräka tal

Läs mer

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Eleven skall år 1 Begrepp Jämförelse- och storleksord, t.ex. stor, större, störst. Positionssystemet

Läs mer

REPETITION 2 A. a) Är sträckan proportionell mot tiden? b) Beräkna medelhastigheten under de fem första sekunderna.

REPETITION 2 A. a) Är sträckan proportionell mot tiden? b) Beräkna medelhastigheten under de fem första sekunderna. REPETITION Hur mcket är a) 9 b) 00 0 c) 00 På en karta i skala : 0 000 är det, cm mellan två små sjöar. Hur långt är det i verkligheten? Grafen visar hur långt en bil hinner de se första sekunderna efter

Läs mer

Storvretaskolans Kursplan för Matematik F-klass- år 5

Storvretaskolans Kursplan för Matematik F-klass- år 5 2010-11-01 Storvretaskolans Kursplan för Matematik F-klass- år 5 Skolan skall i sin undervisning sträva efter att eleven : utvecklar intresse för matematik samt tilltro till det egna tänkandet och den

Läs mer

sträckan = tiden. hastigheten hastigheten = sträckan tiden 210 hastigheten = 3 = 70 Bilisten kör 70 km/h. tiden =

sträckan = tiden. hastigheten hastigheten = sträckan tiden 210 hastigheten = 3 = 70 Bilisten kör 70 km/h. tiden = Enheter och skala I det här kapitlet kan du lära dig mer om hastighet att skriva minuter som del av timme att räkna om km/h till m/s något om hastigheter till sjöss om volymenheterna cm 3, dm 3 och m 3

Läs mer

GEOMETRISKA TILLÄMPNINGAR

GEOMETRISKA TILLÄMPNINGAR INNEHÅLL GEOMETRISKA TILLÄMPNINGAR GEOMETRISKA TILLÄMPNINGAR 251 252 GEOMETRISKA TILLÄMPNINGAR I samband med ett åskväder regnade det enligt en regnmätare 38 mm. Hur många liter vatten kom det a) på en

Läs mer

4 Dividera höjningen (0,5 %) med räntesatsen från början (1 %). 7 Du kan pröva dig fram till exempel så här: Från Till Procent- Procent enheter

4 Dividera höjningen (0,5 %) med räntesatsen från början (1 %). 7 Du kan pröva dig fram till exempel så här: Från Till Procent- Procent enheter ledtrådar LäOr Läa 8 Räkna först ut hur mycket tiokronorna och enkronorna är värda sammanlagt. Läa 8 Räkna först ut hur mycket allt vatten i hinken väger när den är full. Läa MGN = 8 Tänk dig att näckrosen

Läs mer

Rep 1 NÅGOT EXTRA. Sidan 88. Sidan 85. Sidan 89. Sidan 86. Sidan 87. Sidan 90

Rep 1 NÅGOT EXTRA. Sidan 88. Sidan 85. Sidan 89. Sidan 86. Sidan 87. Sidan 90 2 VOLYM OCH SKALA / REP 1 FACIT TILL ELEVBOKEN 125 a dl b ml c cl d l 126 5 st 127 200 cm 3 (2 dl = 0,2 l = 0,2 dm 3 = 200 cm 3 ) Sidan 85 128 A B C D Vas tom 235 g 528 g 0,85 kg 1,250 kg Vas med vatten

Läs mer

Begrepp Uttryck, värdet av ett uttryck, samband, formel, graf, funktion, lista, diagram, storhet, enhet, tabell.

Begrepp Uttryck, värdet av ett uttryck, samband, formel, graf, funktion, lista, diagram, storhet, enhet, tabell. Aktivitetsbeskrivning Denna aktivitet samlar ett antal olika sätt att hantera rymdgeometriska beräkningar med formler på en grafräknare. Dessa metoder finns som uppgifter eller som en samling tips i en

Läs mer

2146 a. v = 290 v = 290 omvandlingsfaktor rad v = 290 v = rad v 5.1 rad

2146 a. v = 290 v = 290 omvandlingsfaktor rad v = 290 v = rad v 5.1 rad 146 a v = 38 v = 38 omvandlingsfaktor rad v = 38 180 rad v = 0.663 rad v 0.7 rad c v = 90 v = 90 omvandlingsfaktor rad v = 90 180 rad v = 5.061 rad v 5.1 rad b v = 196 v = 196 omvandlingsfaktor rad v =

Läs mer

Student. a: 5 b: 6 c: 7 d: 8 e: 3

Student. a: 5 b: 6 c: 7 d: 8 e: 3 Student Avdelning. Trepoängsproblem. Talen 3 och 4 samt två okända tal skrivs in i de fyra rutorna. Summan av talen i raderna blir 5 och 0 och summan av talen i den ena kolumnen blir 9. Vilket är det största

Läs mer

Avdelning 1, trepoängsproblem

Avdelning 1, trepoängsproblem vdelning, trepoängsproblem. Med hjälp av bilden bredvid kan vi se att + 3 + 5 + 7 = 4 4. Vad är + 3 + 5 + 7 + 9 +... + 7 + 9 + 2? : 0 0 : C: 2 2 D: 3 3 E: 4 4 2. Summan av talen i båda raderna är den samma.

Läs mer

REPETITION 3 A. a) b) a) 1 4 av 200 kr b) 10 % av 750 kr c) 2 3. av 60 kg. a) b) c) b) a) 6 8. a) b) b) 0,075 c) d) 0,9.

REPETITION 3 A. a) b) a) 1 4 av 200 kr b) 10 % av 750 kr c) 2 3. av 60 kg. a) b) c) b) a) 6 8. a) b) b) 0,075 c) d) 0,9. DEL I 1 Mät vinklarna. Gradtalen ska sluta på 0 eller 5. 2 Hur mycket är a) 1 4 av 200 kr b) 10 % av 750 kr c) 2 3 av 60 kg 3 Mät sidorna i hela och halva centimeter. Beräkna sedan omkrets och area av

Läs mer

Arbetsblad 1. Addition och subtraktion i flera steg 1 524 + 162 = 2 374 + 424 = 3 762 + 218 = 4 257 + 431 = 5 287 + 372 = 6 415 + 194 = 7 665 58 =

Arbetsblad 1. Addition och subtraktion i flera steg 1 524 + 162 = 2 374 + 424 = 3 762 + 218 = 4 257 + 431 = 5 287 + 372 = 6 415 + 194 = 7 665 58 = Arbetsblad NAMN: Addition och subtraktion i flera steg + 3 + 3 + + 3 + 3 + 9 3 3 9 9 9 39 3 3 + 39 3 + 99 0 3 Kopiering tillåten Matematikboken Författarna och Liber AB Arbetsblad Addition och subtraktion

Läs mer

6 cm. 106 Beräkna a) 3 ( 4) b) ( 2) 5 c) 4 ( 2,5) d) ( 8) 1,5. T.ex. print(3 * -4) 13 Beräkna cirkelns a) diameter b) omkrets

6 cm. 106 Beräkna a) 3 ( 4) b) ( 2) 5 c) 4 ( 2,5) d) ( 8) 1,5. T.ex. print(3 * -4) 13 Beräkna cirkelns a) diameter b) omkrets 1 Print 1 Tal Multiplikation och division med negativa tal 106 Beräkna a) 3 ( 4) b) ( 2) 5 c) 4 ( 2,5) d) ( 8) 1,5 print(3 * -4) 2 Geometri Cirkelns omkrets 13 Beräkna cirkelns a) diameter b) omkrets 6

Läs mer

Pool - bygge. Alicia Åbrink. https://www.flickr.com/photos/andrejtrnkoczy/ /

Pool - bygge. Alicia Åbrink. https://www.flickr.com/photos/andrejtrnkoczy/ / Pool - bygge Alicia Åbrink https://www.flickr.com/photos/andrejtrnkoczy/9937515753/ Behöver veta för att räkna ut skala https://www.flickr.com/photos/lainer/132663371/ https://www.flickr.com/photos/ludiecochrane/4673663670/

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 Beräkna 1 a) 0,5 + 0,7 b) 0,45 + 1,6 c) 2,76 0,8 2 a) 4,5 10 b) 30,5 10 c) 0,45 1 000 3 Vilka av produkterna är a) större än 6 1,09 6 0,87 6 1 6 4,3 6 0,08 6 b) mindre än 6 4 Skriv

Läs mer

Gamla tentemensuppgifter

Gamla tentemensuppgifter Inte heller idag någon ny teori! Gamla tentemensuppgifter 1 Bestäm det andragradspolynom vars kurva skär x-axeln i x = 3 och x = 1 och y-axeln i y = 3 f(x) = (x 3)(x + 1) = x x 3 är en bra start, men vi

Läs mer

2. 1 L ä n g d, o m k r e t s o c h a r e a

2. 1 L ä n g d, o m k r e t s o c h a r e a 2. 1 L ä n g d, o m k r e t s o c h a r e a Ett plan är en yta som inte är buktig och som är obegränsad åt alla håll. På ett plan kan man rita en linje som är rak (rät). En linje är obegränsad åt båda

Läs mer

Vardagsord. Förstår ord som fler än, färre än osv. Har kunskap om hälften/dubbelt. Ex. Uppfattning om antal

Vardagsord. Förstår ord som fler än, färre än osv. Har kunskap om hälften/dubbelt. Ex. Uppfattning om antal TALUPPFATTNING Mål som eleven ska ha uppnått i slutet av det femte skolåret: Eleven skall ha förvärvat sådana grundläggande kunskaper i matematik som behövs för att kunna beskriva och hantera situationer

Läs mer

Centralt innehåll i matematik Namn:

Centralt innehåll i matematik Namn: Centralt innehåll i matematik Namn: T - Taluppfattning T1 Tiosystemet 5,23 1000 = 523/0,01= T2 Positionerna 2,39-0,4 = T3 Primtal Vilka är de fem första primtalen. Vad är ett primtal? T4 Primtalsfaktorering.

Läs mer

lång och 15 cm bred. Hur stor area har tomten i verkligheten? 4,5 2 l b) 2-2- 3 4

lång och 15 cm bred. Hur stor area har tomten i verkligheten? 4,5 2 l b) 2-2- 3 4 LÄXA 12 1 Beräkna med huvudräkning a) En kvadrat har arean 81 cm 2. Hur stor är omkretsen? b) Hur mycket kostar 600 g fläskfile, om priset per kilogram är 120 kr? c) En burk energidryck innehåller 200

Läs mer

Lokala mål i matematik

Lokala mål i matematik Lokala mål i matematik År 6 År 7 År 8 År 9 Taluppfattning (aritmetik) förstår positionssystemets uppbyggnad med decimaler ex: kan skriva givna tal adderar decimaltal ex: 15,6 + 3,87 subtraherar decimaltal

Läs mer

Matematiktävling för högstadieelever. Kvalificeringstest. Tid : 60 minuter Antal uppgifter: 15 Max poäng: 15 poäng. C: 1,101 D:!!!

Matematiktävling för högstadieelever. Kvalificeringstest. Tid : 60 minuter Antal uppgifter: 15 Max poäng: 15 poäng. C: 1,101 D:!!! PYTHAGORAS QUEST Matematiktävling för högstadieelever Kvalificeringstest Tid : 60 minuter Antal uppgifter: 15 Max poäng: 15 poäng. 1 Vilket av talen nedan är närmast talet 1? A: " B: "" C: 1,101 D: """

Läs mer

Arbetsblad 1:1. 1 Svara i bråkform hur stor andel av den stora rutan som är. 2 Svara i decimalform hur stor andel av den stora rutan som är.

Arbetsblad 1:1. 1 Svara i bråkform hur stor andel av den stora rutan som är. 2 Svara i decimalform hur stor andel av den stora rutan som är. Arbetsblad 1:1 Tal i bråkform och i decimalform Grundbok: grundkurs s. 8 blåkurs s. 0 1 Svara i bråkform hur stor andel av den stora rutan som är a) grå b) kryssad c) prickad d) vit 2 Svara i decimalform

Läs mer

Avdelning 1, trepoängsproblem

Avdelning 1, trepoängsproblem Avdelning 1, trepoängsproblem 1. I ett akvarium finns det 00 fiskar varav 1 % är blå medan övriga är gula. Hur många gula fiskar måste avlägsnas från akvariet för att de blå fiskarna ska utgöra % av alla

Läs mer

Ma7-Per: Geometri. Det tredje arbetsområdet handlar om geometri.

Ma7-Per: Geometri. Det tredje arbetsområdet handlar om geometri. Ma7-Per: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda

Läs mer

Lokal studieplan matematik åk 1-3

Lokal studieplan matematik åk 1-3 Lokal studieplan matematik åk 1-3 Kunskaps område Taluppfat tning och tals användni ng Centralt Innehåll Kunskapskrav Moment Åk1 Moment Åk2 Moment Åk3 Naturliga tal och deras egenskaper samt hur talen

Läs mer

Avdelning 1, trepoängsproblem

Avdelning 1, trepoängsproblem vdelning 1, trepoängsproblem 1. Vilket av dessa resultat får man när 20102010 divideras med 2010? : 11 : 101 :1001 D: 10001 E: Kvoten är ej ett heltal 2. Ivan fick 85 % av totalpoängen på ett prov medan

Läs mer

Start Matematik facit

Start Matematik facit FACIT Start Matematik facit Årskurs 4-9 Facit till Start Matematik 47-60-0 Liber AB Får kopieras 2 Kapitel Siffror och tal a) 9-42 a) 9-42 c) 84 d) 555 e) -6 f) 7 400 c) 84 d) 555 e) -6 f) 7 400 g) 985

Läs mer

Arbetsblad 1:1. 1 Svara i bråkform hur stor andel av den stora rutan som är. 2 Svara i decimalform hur stor andel av den stora rutan som är.

Arbetsblad 1:1. 1 Svara i bråkform hur stor andel av den stora rutan som är. 2 Svara i decimalform hur stor andel av den stora rutan som är. Arbetsblad 1:1 Tal i bråkform och i decimalform Grundbok: grundkurs s. 8 blåkurs s. 0 1 Svara i bråkform hur stor andel av den stora rutan som är a) grå b) kryssad c) prickad d) vit 2 Svara i decimalform

Läs mer

Facit Arbetsblad. 7 a) 32 b) 35 c) 27 8 a) 5 b) 18 c) 4 9 a) 18 b) 30 10 a) 17 b) 19 11 a) 6 b) 0 12 a) 24 b) 35. 1 Tal

Facit Arbetsblad. 7 a) 32 b) 35 c) 27 8 a) 5 b) 18 c) 4 9 a) 18 b) 30 10 a) 17 b) 19 11 a) 6 b) 0 12 a) 24 b) 35. 1 Tal 1 Tal Arbetsblad 1:1 1 a) 18 9 06 b) 85 10 00 c) 0 1 080 9 060 d) 5 105 6 780 e) 78 8 970 9 05 f) 990 75 102 5 2 a) 0 = 2 2 2 5 b) 75 = 5 5 c) 6 = 2 2 a) 8 = 2 2 2 2 b) 28 = 2 2 7 c) 90 = 2 5 a) = 2 2

Läs mer

Facit Träningshäfte 9:2

Facit Träningshäfte 9:2 Kapitel 1 1 a) 4 800 000 b) 300 200 c) 25 085 d) 0,8 e) 0,25 f) 0,785 2 a) 2 miljoner 35 tusen: 2 035 000 235 tusen: 235 000 tjugotretusen femhundra: 23 500 b) 12 tiondelar: 1,2 12 hundradelar: 0,12 12

Läs mer

8A Ma: Geometri. Det tredje arbetsområdet handlar om geometri.

8A Ma: Geometri. Det tredje arbetsområdet handlar om geometri. 8A Ma: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 1 Är talet a) 5 ett heltal b) 9 ett naturligt tal c) π ett rationellt tal d) 5 ett reellt tal 6 2 Rita av figuren och placera in talen rätt talmängd. naturliga tal hela tal rationella

Läs mer

5B1134 Matematik och modeller Lösningsförslag till tentamen den 12 januari 2005

5B1134 Matematik och modeller Lösningsförslag till tentamen den 12 januari 2005 KTH Matematik B Matematik modeller Lösningsförslag till tentamen den januari. a) I en triangel är två av sidlängderna 7 respektive 8 längdeneter vinkeln mellan dessa sidor är. Bestäm den tredje sidans

Läs mer

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60.

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60. Förord Det här häftet är tänkt som ett komplement till kapitel 5, Genrepet, i läroboken Matte Direkt år 9. Häftet vänder sig främst till de elever som har svårigheter att klara Genrepets nivå i boken och

Läs mer

18 a) 36 b) 900 c) 25 d) 1 REPETITIONSUPPGIFTER 2. 1 a) 20 m 2 b) 16 m 2 c) 10 m 2 d) 48 m 2 (50, 24 m 2 )

18 a) 36 b) 900 c) 25 d) 1 REPETITIONSUPPGIFTER 2. 1 a) 20 m 2 b) 16 m 2 c) 10 m 2 d) 48 m 2 (50, 24 m 2 ) epetitionsuppgifter Till varje kapitel finns repetitionsuppgifter i form av Arbetsblad. Uppgifterna är relaterade till innehållet i respektive kapitel och täcker hela kapitlet. De uppgifter som kräver

Läs mer

Junior. låda 1 låda 2 låda 3 låda 4 låda 5 B V B V. a: det är omöjligt att göra så b: A c: V d: O e: R

Junior. låda 1 låda 2 låda 3 låda 4 låda 5 B V B V. a: det är omöjligt att göra så b: A c: V d: O e: R Junior vdelning 1. Trepoängsproblem 1. I fem lådor ligger kort. arje kort är märkt med en av bokstäverna,, R, O och. Peter ska plocka bort kort så att det blir ett enda kort kvar i varje låda och så att

Läs mer

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som

Läs mer

Alternativdiagnos 1. 1 Vilka av talen är. 2 Vilka av talen är delbara med. 3 Dela upp talen i primfaktorer. 5 a) 4 ( 6) b) ( 12) c) ( 3) ( 7)

Alternativdiagnos 1. 1 Vilka av talen är. 2 Vilka av talen är delbara med. 3 Dela upp talen i primfaktorer. 5 a) 4 ( 6) b) ( 12) c) ( 3) ( 7) Alternativdiagnos 1 1 Vilka av talen är a) naturliga b) eltal c) rationella d) reella 2 Vilka av talen är delbara med a) 2 b) 3 c) 5 d) 6 3,4 2 7 5 8 6 243 450 394 3 Dela upp talen i primfaktorer a) 15

Läs mer

Planering Geometri år 7

Planering Geometri år 7 Planering Geometri år 7 Innehåll Övergripande planering... 2 Bedömning... 2 Begreppslista... 3 Metodlista... 6 Arbetsblad... 6 Facit Diagnos + Arbeta vidare... 10 Repetitionsuppgifter... 11 Övergripande

Läs mer

Geometri. Kapitel 3 Geometri. Borggården sidan 68 Diagnos sidan 82 Rustkammaren sidan 84 Tornet sidan 90 Sammanfattning sidan 94 Utmaningen sidan 96

Geometri. Kapitel 3 Geometri. Borggården sidan 68 Diagnos sidan 82 Rustkammaren sidan 84 Tornet sidan 90 Sammanfattning sidan 94 Utmaningen sidan 96 Kapitel 3 Eleverna har tidigare arbetat med omkrets och area. I kapitlet repeteras först begreppet area och hur man beräknar rektangelns area. Enheten kvadratdecimeter, dm 2, för area introdu ceras. Här

Läs mer

Diplomingenjörs- och arkitektutbildningens gemensamma antagning 2017 Arkitektantagningens prov i matematik , Lösningar(SERIE A)

Diplomingenjörs- och arkitektutbildningens gemensamma antagning 2017 Arkitektantagningens prov i matematik , Lösningar(SERIE A) Diplomingenjörs- och arkitektutbildningens gemensamma antagning 017 Arkitektantagningens prov i matematik..017, Lösningar(SERIE A) 1. a) Vilka reella tal x uppfyller likheten x =? (1 p.) b) Vilka reella

Läs mer

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Enhet 591 Ekholmen Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Fakta Förståelse Färdighet Förtrogenhet De olika formerna samspelar och utgör varandras förutsättningar. För att

Läs mer

Tillämpad Matematik I Övning 3

Tillämpad Matematik I Övning 3 HH/ITE/BN Tillämpad Matematik I, Övning 3 1 Tillämpad Matematik I Övning 3 Allmänt Övningsuppgifterna, speciellt Typuppgifter i första hand, är eempel på uppgifter du kommer att möta på tentamen. På denna

Läs mer

PRIMA MATEMATIK EXTRABOK 3 FACIT

PRIMA MATEMATIK EXTRABOK 3 FACIT PRIMA MATEMATIK EXTRABOK FACIT t.ex. Dela upp talet. = + + = + + = + + Dela upp talet i lika stora delar. = +, +++ = ++ = +, ++ = ++++ = + = + + Skriv alla uppdelningar du kan av talet, lika stora delar.,

Läs mer

FACIT 0, ,10 0, ,75. b) 3 3 = 1. d) 5 2 = a) b) 60 c) d) 1,818 e) 0,898 f) Ex. 3 0,25 = 0,75

FACIT 0, ,10 0, ,75. b) 3 3 = 1. d) 5 2 = a) b) 60 c) d) 1,818 e) 0,898 f) Ex. 3 0,25 = 0,75 FACIT Ç TUMMEN UPP! MATTE ÅK KARTLÄGGNING TALUPPFATTNING 7 a) 00 0,0 Exempel: 0 = 0 0 = 0 7 b) 0 00 0 0,0 0 kr = 0 c) 0 00 0,0 7 0 kr = 0 = 0 Eget val a) 7 b) c) d) 0 e) 0 f) g) h) 0 0 0% % 0, 0 7% 00

Läs mer

Matematik. Namn: Datum:

Matematik. Namn: Datum: Matematik Namn: Datum: Multiplikation, tabell 2 och 4. Hur många ben har djuren tillsammans? + = = + + = = + + + + = = + = = + + + = = Skriv färdigt multiplikationen! 3 4 = 4 2 = 2 5 = 4 6 = 4 0 = 4 5

Läs mer

5-3 Areaskalan och volymskalan Namn:.

5-3 Areaskalan och volymskalan Namn:. 5-3 Areaskalan och volymskalan Namn:. Detta kapitel är klart överkursbetonat. Men tycker du att det är kul med problemlösning: kör så det ryker! Inledning I föregående kapitel studerade du skalor, och

Läs mer

Formula 9 facit. 1 Beräkningar med positiva tal 1

Formula 9 facit. 1 Beräkningar med positiva tal 1 Beräkningar med positiva tal Formula 9 facit a) 5,5 (5,50) b) 5,59 c) 5,99 d) 5,54 2 a) 3 (3,00) b) 3,09 c) 3,49 d) 3,04 3 a) 6, (6,0) b) 6,0 c) 5,6 d) 6,06 4 a) 9,04 b) 8,95 c) 8,55 d) 9 (9,00) 5 a) 25

Läs mer

Detta prov består av del 1 och 2. Här finns också facit och förslag till poängsättning

Detta prov består av del 1 och 2. Här finns också facit och förslag till poängsättning Allmänt om proven Detta prov består av del 1 och. Här finns också facit och förslag till poängsättning och bedömning. Provet finns på lärarwebben, dels som pdf-fil och dels som redigerbar Word-fil. Del

Läs mer