Med tabell menas enligt Nationalencyklopedin en koncentrerad, överskådlig

Storlek: px
Starta visningen från sidan:

Download "Med tabell menas enligt Nationalencyklopedin en koncentrerad, överskådlig"

Transkript

1 Kerstin Hagland Ta till en tabell Tabeller används traditionellt som stöd för minnet, men de kan även utgöra ett bra verktyg vid problemlösning. Med hjälp av en tabell kan man systematiskt undersöka givna uppgifter, hitta matematiska mönster och därmed förenklingar och generaliseringar. Här presenteras några exempel på detta. Fler liknande problem återfinns på Nämnaren på nätet. Med tabell menas enligt Nationalencyklopedin en koncentrerad, överskådlig uppställning av fakta i rader och kolumner. Tabeller används till vardags exempelvis för att man ska kunna hålla reda på buss- och tågtider eller för att få en bra översikt över priser eller resultat. Ett av de första matematiska hjälpmedlen mänskligheten använde sig av var tabellen. Redan för år sedan utnyttjade sumerer och babylonier tabeller nedskrivna på lertavlor. Tabellerna förenklade olika räkneuppgifter vid multiplikation, division, bråkräkning, beräkning av kvadratrötter och kubikrötter och mycket annat. Här är ett exempel på en sådan lertavla, en sumerisk multiplikationstabell från ca f Kr. Än idag använder vi liknande multiplikationstabeller och vi ger våra elever i uppgift att lära sig dem utantill. Ett sätt att underlätta för eleverna är att tidigt låta dem bekanta sig med kommutativa lagen för multiplikation. Den lagen säger att det inte spelar någon roll i vilken ordning vi multiplicerar talen, resultatet blir detsamma. a b = b a I Kina får eleverna tidigt klart för sig att kommutativa lagen gäller för både addition och multiplikation. Den multiplikationstabell de kinesiska eleverna behöver memorera är därmed enklare än den våra svenska elever vanligtvis i många fall pluggar in. De hoppar helt över ettans tabell och sedan lär de sig bara de förkryssade multiplikationerna, se tabell nästa sida. Nämnaren nr

2 x x x x x x x x 3 x x x x x x x 4 x x x x x x 5 x x x x x 6 x x x x 7 x x x 8 x x 9 x Det är bara 36 multiplikationer att minnas mot våra svenska elevers 81. Kanske något att ta efter? Matematik går ju mycket ut på att förenkla för sig. Tabeller kan också användas för att undersöka givna uppgifter och hitta matematiska mönster och därmed förenklingar. Här är ett exempel på ett problem med en sådan tabellösning. Kulmönster Här är ett växande mönster lagt med vita och blå kulor. figur 1 figur 2 figur 3 a) Hur många vita kulor och hur många blå kulor innehåller figur 5? b) Hur många vita kulor och hur många blå kulor innehåller figur 10? c) Hur många vita kulor och hur många blå kulor innehåller figur 20? d) Hur många vita kulor och hur många blå kulor innehåller figur n? Här är n ett godtyckligt positivt heltal. Ett sätt att lösa problemet är att sätta upp en tabell och noga och systematiskt undersöka de figurer man redan vet något om. Man ska då samtidigt försöka uttrycka det matematiska mönstret med hjälp av figurens nummer. Sedan kan man utgå från de matematiska mönstren man har hittat och enkelt lösa problemet utan att rita eller bygga figurerna. 60 Nämnaren nr

3 Figur nr Antal vita kulor Matematiskt mönster Antal blå kulor Matematiskt mönster = = = = = = 420 n n 2 n(n + 1) Även andra typer av problem kan innehålla matematiska mönster som kan upptäckas med hjälp av en tabell. Här är ett sådant exempel. Djuren hjälps åt Tre djur hjälps åt att bära tunga. Elefanten orkar bära tre gånger så många som hästen. Åsnan orkar bära hälften så många som hästen. a) Om åsnan bär 1 säck, hur många bär de tre djuren totalt? b) Om åsnan bär 2, hur många bär de tre djuren totalt? c) Om åsnan bär 3, hur många bär de tre djuren totalt? d) Om de tillsammans ska bära 63, hur många ska åsnan bära? e) Om de tillsammans ska bära n, hur många ska var och en bära? Här är n ett godtyckligt positivt heltal. Delproblem Åsnans Hästens Elefantens Totalt antal Upptäckter av matematiska mönster a = = = 9 b = = = 18 Totala antalet är c = = = 27 alltid 9 gånger större än åsnans antal. d Då är det totala antalet 9 =7 dividerat med 9 det antal åsnan bär. e n 9 2n 9 6n 9 = 2n 3 n Åsnan bär alltid 1/9 av totala antalet. Hästen bär alltid dubbelt så mycket som åsnan. Elefanten bär alltid 3 gånger så mycket som hästen, alltså 6 gånger så mycket som åsnan. Logiska klurigheter är ännu en problemvariant som kan lösas genom en systematisk undersökning med hjälp av en tabell. Här är ett sådant exempel: Nämnaren nr

4 Häxans kistor I häxan Hemskas skattkammare står det tre kistor på golvet. En kista innehåller gift, en annan innehåller godis, en tredje innehåller gift och godis blandat. Varje kista har en etikett där det står Gift, Godis eller Blandat. Men häxan har varit riktigt elak och satt alla etiketter fel! Din uppgift blir att sätta alla etiketter rätt. Men på varje kista sitter en jättestor, illaluktande och slemmig padda och vaktar. Varje gång man ska öppna en kista måste man tyvärr kyssa den äckliga paddan som sitter ovanpå. Då skuttar den snällt av kistan och man kan öppna och titta efter vad som ligger i kistan. Hur många paddor måste man minst kyssa för att kunna vara säker på att sätta alla etiketter rätt? Med hjälp av en tabell kan man hitta alla alternativ man kan stöta på: Om kistan är märkt kan det i den finnas Då finns i de andra kistorna Slutsatser Gift godis eller blandat blandat och gift Godis innehåller blandat och Blandat innehåller gift gift och godis Godis innehåller gift och Blandat innehåller godis Godis gift eller blandat godis och blandat Gift innehåller blandat och Blandat innehåller godis gift och godis Gift innehåller godis och Blandat innehåller gift Blandat gift eller godis godis och blandat Godis innehåller blandat och Gift innehåller godis gift och blandat Gift innehåller blandat och Godis innehåller gift Genom att följa varje möjlig väg genom tabellen upptäcker man snart att det faktiskt räcker om man tittar i en enda av kistorna. Sedan kan man tänka ut vad det finns i de andra två kistorna, eftersom alla kistor är felmärkta, ingen etikett sitter rätt. Det räcker alltså med att man pussar en enda slemmig padda. Skönt! Det finns en typ av problem där det finns många fakta att ta hänsyn till. För att få ordning på allt kan en tabell vara ett bra redskap. Här är ett sådant exempel. 62 Nämnaren nr

5 Idrottsdagen 26 elever i en klass fick inför en idrottsdag välja mellan simning, cykling och promenad. 11 av dem var flickor. 14 elever valde cykling. 5 pojkar valde simning. 3 flickor och 1 pojke valde promenad. Hur många flickor valde cykling? Vi gör en tabell för att få tydlig översikt och fyller sedan i det vi fått veta: flickor 3 11 pojkar 5 1 Sedan gör vi några enkla beräkningar, t ex följande: 1) Vi tar reda på hur många pojkar det fanns i klassen: = 15 flickor 3 11 pojkar ) Vi tar reda på hur många av pojkarna som valde cykling: = 9 flickor 3 11 pojkar ) Vi tar reda på hur många av flickorna som valde cykling: 14 9 = 5 flickor pojkar Vi fyller i den nya informationen i tabellen: Nu har vi svaret på frågan: Det var 5 flickor som valde simning. Nämnaren nr

6 Observera att man alltså inte behöver fylla i alla tomma rutor i tabellen för att få fram svaret på frågan. Men man kan ta sig till svaret på flera sätt, vilket i klassrummet kan ge upphov till en givande diskussion. Det finns förstås många fler användningsområden av tabeller i matematikundervisningen, t ex inom statistik och funktionslära, men jag nöjer mig med dessa exempel och hoppas de inspirerar till fortsatt kreativ användning av tabeller. Litteratur Butterworth, B. (1999). Den matematiska människan, Stockholm: W&W. Hedrén, R., Taflin, E. & Hagland, K. (2004). Problem med stenplattor. Nämnaren 31(3), s Hagland, K. (2007). Rita en bild! Nämnaren 34(3), s Lester, F. (1988). Teaching mathematical problem solving. Nämnaren 15(3), s Schoyen Collection MS Tillgänglig på 64 Nämnaren nr

Anpassning av problem

Anpassning av problem Modul: Problemlösning Del 7: Anpassning av problem Anpassning av problem Kerstin Hagland och Eva Taflin Detta är en något omarbetad text från boken: Hagland, K., Hedrén R., & Taflin, E. (2005). Rika matematiska

Läs mer

Kängurun Matematikens hopp

Kängurun Matematikens hopp Kängurun Matematikens hopp Benjamin 2009 Här följer svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. De flesta problem kan lösas på flera sätt och

Läs mer

Potenser och logaritmer på en tallinje

Potenser och logaritmer på en tallinje strävorna 2A 7B Potenser och logaritmer på en tallinje begrepp matematikens utveckling taluppfattning algebra Avsikt och matematikinnehåll I läroböcker är det standard att presentera potenslagarna som

Läs mer

Under hösten 2008 deltog jag i en kurs som hette Matematikundervisning

Under hösten 2008 deltog jag i en kurs som hette Matematikundervisning Astrid Karlsson Mönsterproblem i dubbel bemärkelse Med utgångspunkt i det rika problemet Stenplattor synliggörs skillnader i elevers lösningar och hur problem som behandlar mönster kan leda in eleverna

Läs mer

Att förstå bråk och decimaltal

Att förstå bråk och decimaltal Att förstå bråk och decimaltal Flera undersökningar som är gjorda visar att elever har svårt att förstå bråk. I undervisningen är det också vanligt att eleverna lär sig olika regler för bråk, men få förstår

Läs mer

Kängurun Matematikens hopp

Kängurun Matematikens hopp Kängurun Matematikens hopp Ecolier 2010 Här följer svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också lösningsförslag. De flesta problem kan lösas på flera sätt och med olika representationsformer.

Läs mer

Matematik. Ämnesprov, läsår 2014/2015. Bedömningsanvisningar Delprov B, C, D, E. Årskurs

Matematik. Ämnesprov, läsår 2014/2015. Bedömningsanvisningar Delprov B, C, D, E. Årskurs Ämnesprov, läsår 2014/2015 Matematik Bedömningsanvisningar Delprov B, C, D, E Årskurs 6 Prov som återanvänds av Skolverket omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Vid Göteborgs universitet pågår sedan hösten 2013 ett projekt under

Vid Göteborgs universitet pågår sedan hösten 2013 ett projekt under Christina Skodras Muffles truffles Undervisning i multiplikation med systematiskt varierade exempel I Nämnaren 2015:4 beskrivs ROMB-projektet övergripande i Unga matematiker i arbete. Här redovisas och

Läs mer

Matematik klass 2. Vårterminen. Anneli Weiland Matematik åk 2 VT 1

Matematik klass 2. Vårterminen. Anneli Weiland Matematik åk 2 VT 1 Matematik klass 2 Vårterminen Anneli Weiland Matematik åk 2 VT 1 Minns du från höstens bok? Tiokamraterna 10=5+ 10=1+ 10=2+ 10=5+ 10=4+ 10=0+ 10=9+ 10=4+ 10=7+ 10=3+ 10=6+ 10=10+ 10=2+ 10=1+ 10=3+ 10=7+

Läs mer

Matematik 92MA41 (15hp) Vladimir Tkatjev

Matematik 92MA41 (15hp) Vladimir Tkatjev Matematik 92MA41 (15hp) Vladimir Tkatjev Planering Del 1: Redovisning av Uppgift till seminarium 6 Undervisning genom problemlösning Del 2: Grupparbete: rika matematiska problem (förberedelse till SRE2)

Läs mer

Uppgifter till Första-hjälpen-lådan

Uppgifter till Första-hjälpen-lådan Uppgifter till Första-hjälpen-lådan Många Stockholmslärare har fått en första-hjälpen-låda i matematik då de deltagit i de kurser som letts av Karin Kairavuo, matematiklärare från Mattelandet i Helsingfors.

Läs mer

Räkneflyt. Multiplikation och Division. Färdighetsträning i matte. Tabeller 1-10

Räkneflyt. Multiplikation och Division. Färdighetsträning i matte. Tabeller 1-10 Räkneflyt Multiplikation och Division Tabeller 1-10 Färdighetsträning i matte Gunnel Wendick Inga-Lis Klackenmo Innehållsförteckning Introduktion 2-3 Räkneflyt är kopplat till Lgr11 och Diamant 6 Förståelse

Läs mer

Problem med stenplattor

Problem med stenplattor Rolf Hedrén, Eva Taflin & Kerstin Hagland Problem med stenplattor Författarna har under flera år bedrivit ett forskningsprojekt med syfte att ta reda på hur lärare och elever tänker om lektioner kring

Läs mer

Bo skola 1 Matematikmål år F-3 Skriftligt omdöme/kunskapsinformation

Bo skola 1 Matematikmål år F-3 Skriftligt omdöme/kunskapsinformation Bo skola Matematikmål år - Namn: Strävansmål: Vi strävar efter att varje elev ska Utveckla goda baskunskaper i de fyra räknesätten Utvecklar en god förståelse för matematik och matematiska begrepp att

Läs mer

matematik Prov, Övningsblad och Aktiviteter SANOM A UT B IL DNI NG

matematik Prov, Övningsblad och Aktiviteter SANOM A UT B IL DNI NG matematik b Prov, Övningsblad och Aktiviteter SANOM A UT B IL DNI NG Övningsblad Potenser Multiplikation och division av potenser samt potens av potens Potenslagar Multiplikation av potenser med samma

Läs mer

Övningshäfte 2: Induktion och rekursion

Övningshäfte 2: Induktion och rekursion GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2017 INLEDANDE ALGEBRA Övningshäfte 2: Induktion och rekursion Övning D Syftet är att öva förmågan att utgående från enkla samband, aritmetiska och geometriska,

Läs mer

Bråk. Introduktion. Omvandlingar

Bråk. Introduktion. Omvandlingar Bråk Introduktion Figuren till höger föreställer en tårta som är delad i sex lika stora bitar Varje tårtbit utgör därmed en sjättedel av hela tårtan I nästa figur är två av sjättedelarna markerade Det

Läs mer

STARTAKTIVITET 2. Bråkens storlek

STARTAKTIVITET 2. Bråkens storlek STARTAKTIVITET 2 Bråkens storlek Arbeta gärna två och två. Rita en stjärna över de bråk som är mindre än 1 2. Sätt ett kryss över de bråk som är lika med 1 2. Rita en ring runt de bråk som är större än

Läs mer

Matematik klass 3. Höstterminen. Anneli Weiland Matematik åk 3 HT 1

Matematik klass 3. Höstterminen. Anneli Weiland Matematik åk 3 HT 1 Matematik klass 3 Höstterminen Anneli Weiland Matematik åk 3 HT 1 Minns du från klass 2? Tiokamraterna 10=5+ 10=1+ 10=2+ 10=5+ 10=4+ 10=0+ 10=9+ 10=4+ 10=7+ 10=3+ 10=6+ 10=10+ 10=2+ 10=1+ 10=3+ 10=7+ 10=6+

Läs mer

Pedagogiskt café. Problemlösning

Pedagogiskt café. Problemlösning Pedagogiskt café Problemlösning Vad är ett matematiskt problem? Skillnad mellan uppgift och problem - Uppgift är något som eleven träffat på tidigare, kan lösa med vanliga standardmetoder - Matematiskt

Läs mer

1 Josefs bil har gått kilometer. Hur långt har den gått när han har kört (3) tio kilometer till? km

1 Josefs bil har gått kilometer. Hur långt har den gått när han har kört (3) tio kilometer till? km Test, version, lärarversion Instruktion Instruktioner och kommentarer är desamma som i testet i den ursprungliga versionen. Här är ingående tal förändrade och i något fall är uppgiften omformulerad. Betona

Läs mer

jämföra/storleksordna talen jämföra/storleksordna talen Jag kan jämföra/storleksordna talen

jämföra/storleksordna talen jämföra/storleksordna talen Jag kan jämföra/storleksordna talen Utveckling A Taluppfattning 0-100 Jag kan ramsräkna 0-100. Jag kan jämföra/storleksordna talen 0-100. Jag kan markera ut tal 0-100 på en tallinje. Jag förstår tiotal och ental för talen 0-100. B Taluppfattning

Läs mer

Det finns mycket kritik som förs fram om skolan i allmänhet samtidigt

Det finns mycket kritik som förs fram om skolan i allmänhet samtidigt Joakim Samuelsson Expert i matematikklassrummet Vad är det som kännetecknar skickliga matematiklärare? Artikelförfattaren har följt en erkänt duktig matematiklärare och sett hur han bedriver sin undervisning.

Läs mer

Multiplikation genom århundraden

Multiplikation genom århundraden Multiplikation genom århundraden För många elever i skolan kan multiplikation upplevas som något oöverstigligt. Addition och subtraktion kan de förstå sig på men inte multiplikation. Utan förståelse för

Läs mer

Denna uppdelning är ovanlig i Sverige De hela talen (Både positiva och negativa) Irrationella tal (tal som ej går att skriva som bråk)

Denna uppdelning är ovanlig i Sverige De hela talen (Både positiva och negativa) Irrationella tal (tal som ej går att skriva som bråk) UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Olof Johansson, Nina Rudälv 2006-10-24 SÄL 1-10p Avsnitt 1.1 Grundläggande begrepp Detta avsnitt behandlar de symboler som används

Läs mer

Addition, subtraktion, summa, differens, algebra, omgruppering, ental, tiotal, multiplikation, division, rimlighet, uppskatta

Addition, subtraktion, summa, differens, algebra, omgruppering, ental, tiotal, multiplikation, division, rimlighet, uppskatta LPP Matematik räknesätten År 2 Beskrivning av arbetet Addition och subtraktion 0 200 - med utelämnat tal - algebra - med omgruppering och tiotalsövergång Addition och subtraktion med hela 100-tal Se likheter

Läs mer

Systematisk problemlösning enligt EPA-modellen

Systematisk problemlösning enligt EPA-modellen Systematisk problemlösning enligt EPA-modellen - MÖJLIGHETER OCH UTMANINGAR EPA-modellen Total tidsutgång 8o min och uppåt Enskilt Par Alla Planera och organisera. Kollegialt samarbete Välja ut ett lärandemål/centralt

Läs mer

Utmanande uppgifter som utvecklar. Per Berggren och Maria Lindroth

Utmanande uppgifter som utvecklar. Per Berggren och Maria Lindroth Utmanande uppgifter som utvecklar Per Berggren och Maria Lindroth 2014-11-12 Vilka förmågor ska utvecklas Problemlösning (Förstå frågan i en textuppgift, Använda olika strategier när jag löser ett problem,

Läs mer

DIAMANT. NaTionella DIAgnoser i Matematik. Ett diagnosmaterial i matematik för skolåren årskurs F- 9. Anpassat till Lgr 11. Löwing januari 2013

DIAMANT. NaTionella DIAgnoser i Matematik. Ett diagnosmaterial i matematik för skolåren årskurs F- 9. Anpassat till Lgr 11. Löwing januari 2013 DIAMANT NaTionella DIAgnoser i Matematik Ett diagnosmaterial i matematik för skolåren årskurs F- 9 Anpassat till Lgr 11 Diamantmaterialets uppbyggnad 6 Områden 22 Delområden 127 Diagnoser Till varje Område

Läs mer

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Eleven skall år 1 Begrepp Jämförelse- och storleksord, t.ex. stor, större, störst. Positionssystemet

Läs mer

Matematik. Ämnesprov, läsår 2013/2014. Bedömningsanvisningar Delprov B, C, D, E. Årskurs

Matematik. Ämnesprov, läsår 2013/2014. Bedömningsanvisningar Delprov B, C, D, E. Årskurs Ämnesprov, läsår 2013/2014 Matematik Bedömningsanvisningar Delprov B, C, D, E Årskurs 6 Prov som återanvänds av Skolverket omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta

Läs mer

Här är två korta exempel på situationer då vi tillämpar den distributiva lagen:

Här är två korta exempel på situationer då vi tillämpar den distributiva lagen: Modul: Algebra Del 8: Avslutande reflektion och utvärdering Distributiva lagen Cecilia Kilhamn, Göteborgs Universitet Distributiva lagen a (b + c) = a b + a c Den distributiva lagen kallas den räknelag

Läs mer

ALLMÄN BESKRIVNING AV LÄROÄMNET MATEMATIK I ÅRSKURS 1-2

ALLMÄN BESKRIVNING AV LÄROÄMNET MATEMATIK I ÅRSKURS 1-2 ALLMÄN BESKRIVNING AV LÄROÄMNET MATEMATIK I ÅRSKURS 1-2 Läroämnets uppdrag Uppdraget i undervisningen i matematik är att utveckla ett logiskt, exakt och kreativt matematisk tänkande hos eleverna. Undervisningen

Läs mer

Olika proportionella samband, däribland dubbelt och hälften.

Olika proportionella samband, däribland dubbelt och hälften. Karin Landtblom & Anette De Ron Gruppera mera! Dubbelt och hälften är vanliga inslag i den tidiga matematikundervisningen. Elever ska ringa in hälften av något eller rita så att det blir dubbelt så många.

Läs mer

Matematik. Namn: Datum:

Matematik. Namn: Datum: Matematik Namn: Datum: Talraden Skriv färdigt talraden. 195 196 197 393 394 395 397 597 598 600 996 997 999 Addition 199 + 1 = 299 + 1 = 999 + 1 = 199 + 3 = 298 + 3 = 998 + 2 = 599 + 3 = 598 + 4 = 999

Läs mer

Mona Røsseland Författare till Pixel. Vad innebär den nya läroplanen? Hur möter ni den nya utmaningen med Pixel

Mona Røsseland Författare till Pixel. Vad innebär den nya läroplanen? Hur möter ni den nya utmaningen med Pixel Temat för föreläsningen Ny läroplan, nya utmaningar! Vad innebär den nya läroplanen? Hur möter ni den nya utmaningen med Pixel Mona Røsseland Författare till Pixel Hur lyfter PIXEL matematiken? Läraren

Läs mer

Välkommen till Kängurutävlingen Matematikens hopp 2019 Benjamin för elever i åk 5, 6 och 7

Välkommen till Kängurutävlingen Matematikens hopp 2019 Benjamin för elever i åk 5, 6 och 7 Till läraren Välkommen till Kängurutävlingen Matematikens hopp 2019 Benjamin för elever i åk 5, 6 och 7 Tävlingen genomförs under perioden 21 mars 29 mars. Uppgifterna får inte användas tidigare. Sista

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Centralt innehåll. Problemlösning. Taluppfattning och tals användning. Tid och pengar. Sannolikhet och statistik. Geometri.

Centralt innehåll. Problemlösning. Taluppfattning och tals användning. Tid och pengar. Sannolikhet och statistik. Geometri. MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

Undervisa i matematik genom problemlösning

Undervisa i matematik genom problemlösning Modul: Problemlösning Del 1: Matematikundervisning genom problemlösning Undervisa i matematik genom problemlösning Maria Larsson, Mälardalens högskola Att hjälpa barn att bli bättre problemlösare är inte

Läs mer

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal Matematik Mål att sträva mot Vi strävar mot att varje elev ska utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik utveckla sin förmåga att

Läs mer

Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll.

Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll. ÖREBRO MATEMATIK, ÅR 3 1(5) Eleven kan tolka elevnära information med matematiskt innehåll Eleven kan uttrycka sig muntligt, skriftligt och i handling på ett begripligt sätt med hjälp av vardagligt språk,

Läs mer

Steg-Vis. Innehållsförteckning

Steg-Vis. Innehållsförteckning Innehållsförteckning SIDAN Förord 6 Inledning 7 Målgrupp och arbetssätt 8 Dåligt minne? 9 Nyckelfakta 10 Råd till pedagog 11 Tre matematiska lagar 12 10-komplement 14 Från subtraktion till addition 15

Läs mer

Tänka, resonera och räkna

Tänka, resonera och räkna Tänka, resonera och räkna 2018.06.11 Anna Ida Säfström, HH Ola Helenius, NCM Görel Sterner, NCM En strukturerad undervisningsmodell Bakomliggande principer för innehållet Modellens faser Materialet en

Läs mer

Taluppfattning och allsidiga räknefärdigheter

Taluppfattning och allsidiga räknefärdigheter Taluppfattning och allsidiga räknefärdigheter Handbok för stöd och stimulans Alistair McIntosh NCM NSMO Alistair McIntosh Professor emeritus, University of Tasmania Australien Nya vägar i räkneundervisningen

Läs mer

Denna text handlar huvudsakligen om multiplikation, men eftersom

Denna text handlar huvudsakligen om multiplikation, men eftersom Kerstin Larsson Multiplikationsundervisning I artikeln diskuteras olika multiplikativa situationer och hur de kan användas för att representera räknelagarna. Författaren föreslår även en tänkt lärostig

Läs mer

FACIT. Kapitel 1. Version

FACIT. Kapitel 1. Version FACIT Kapitel Vi repeterar talen 0 till 0 000. Titta på bilden. Skriv de tal som fattas. Räkna. är ett fyrsiffrigt tal a. 000 + 00 + 0 + T H T E 0 0 000 Tal skrivs med siffror. Siffrorna är 0,,,,,,,,,

Läs mer

Studenter i lärarprogrammet GF(11GF20) 46 p G: 28 p VG: 38 p

Studenter i lärarprogrammet GF(11GF20) 46 p G: 28 p VG: 38 p 11GF20 MaI Provmoment: Ladokkod: Tentamen ges för: Matematik 0,5 hp Studenter i lärarprogrammet GF(11GF20) 15 högskolepoäng TentamensKod: Tentamensdatum: 18-05-22 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel

Läs mer

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda

Läs mer

TRÄNING I HUVUDRÄKNING. Schema för systematik och individualisering

TRÄNING I HUVUDRÄKNING. Schema för systematik och individualisering PEDER CLAESSON I den nya läroplanen är "färdigheter i huvudräkning och överslagsräkning" ett mål för skolans matematikundervisning. Peder Claesson fortsätter här att ge "uppslag" till övningar som leder

Läs mer

Volym. ARBETSBLAD kopiering tillåten sanoma utbildning Mönster i talföljder. ARBETSBLAD kopiering tillåten sanoma utbildning. Fortsätt talföljden.

Volym. ARBETSBLAD kopiering tillåten sanoma utbildning Mönster i talföljder. ARBETSBLAD kopiering tillåten sanoma utbildning. Fortsätt talföljden. Volym Välj olika kärl. Uppskatta hur mycket du tror att varje kärl rymmer. Mät sedan kärlets volym. 1 :1 Mönster i talföljder Fortsätt talföljden. 1 -hopp. : Kärl Jag uppskattar kärlets volym Kärlets volym

Läs mer

Matematik klass 3. Vårterminen. Anneli Weiland Matematik åk 3 VT 1

Matematik klass 3. Vårterminen. Anneli Weiland Matematik åk 3 VT 1 Matematik klass 3 Vårterminen Anneli Weiland Matematik åk 3 VT 1 Minns du från höstens bok? Räkna. Se upp med likhetstecknet, var finns det? 17-5= 16+ =19 18-2= 15-4= 19=12+ 19-3= 15+4= 20-9= 18=20- +16=20

Läs mer

När vi läste Skolverkets rapport Svenska elevers matematikkunskaper

När vi läste Skolverkets rapport Svenska elevers matematikkunskaper Florenda Gallos Cronberg & Truls Cronberg Två perspektiv på att utveckla algebraiska uttryck Svenska elever påstås ha svårt med mönstertänkande. Eller är det så att de inte får lärarledd undervisning i

Läs mer

Vad är ett problem? Kerstin Hagland och Johan Åkerstedt

Vad är ett problem? Kerstin Hagland och Johan Åkerstedt Modul: Problemlösning Del 1: Matematiska problem Vad är ett problem? Kerstin Hagland och Johan Åkerstedt Var och en av oss har föreställningar om vad matematik är. Dessa föreställningar är ofta ganska

Läs mer

Under läsåret arbetade jag med. Konkretion av decimaltal. En nödvändig ingrediens för förståelse. maria hilling-drath

Under läsåret arbetade jag med. Konkretion av decimaltal. En nödvändig ingrediens för förståelse. maria hilling-drath maria hilling-drath Konkretion av decimaltal En nödvändig ingrediens för förståelse Här presenteras ett sätt att förstärka begrepp kring decimaltal. Med hjälp av tiobasmaterial får eleverna bygga tal för

Läs mer

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se.

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. Matematik Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. ADDITION, SUBTRAKTION, DIVISION OCH MULTIPLIKATION.

Läs mer

Kartläggningsmaterial för nyanlända elever SVENSKA. Algebra Matematik. 1 2 Steg 3

Kartläggningsmaterial för nyanlända elever SVENSKA. Algebra Matematik. 1 2 Steg 3 Kartläggningsmaterial för nyanlända elever Algebra Matematik 1 2 Steg 3 SVENSKA Kartläggningsmaterial för nyanlända elever Algebra åk 3 MA 1. Fortsätt att rita mönstret a) b) 2. Figurerna blir större och

Läs mer

Södervångskolans mål i matematik

Södervångskolans mål i matematik Södervångskolans mål i matematik Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret beträffande tal och taluppfattning kunna läsa av en tallinje mellan 0-20 kunna läsa och ramsräka tal

Läs mer

Lutande torn och kluriga konster!

Lutande torn och kluriga konster! Lutande torn och kluriga konster! Aktiviteter för barn under Vetenskapsfestivalens skolprogram 2001 Innehåll 1 Bygga lutande torn som inte faller 2 2 Om konsten att vinna betingat godis i spel 5 3 Den

Läs mer

Kortfattade lösningar med svar till Gymnasiets Cadet 2006

Kortfattade lösningar med svar till Gymnasiets Cadet 2006 Kängurun Matematikens hopp Gymnasiets Cadet 2006 Kortfattade lösningar med svar till Gymnasiets Cadet 2006 3 poäng 1 B 2 0 0 6 + 2006 = 0 + 2006 2 A De tal som ger rest 2 är 8 och 38, summan är 46. 3 D

Läs mer

Kommentarmaterial, Skolverket 1997

Kommentarmaterial, Skolverket 1997 Att utveckla förstf rståelse för f r hela tal Kommentarmaterial, Skolverket 1997 Att lära sig matematik handlar om att se sammanhang och att kunna föra logiska resonemang genom att känna igen, granska

Läs mer

Kortfattade lösningar med svar till Cadet 2006

Kortfattade lösningar med svar till Cadet 2006 3 poäng Kängurun Matematikens hopp Cadet 2006 Kortfattade lösningar med svar till Cadet 2006 1 B 2 0 0 6 + 2006 = 0 + 2006 2 A De tal som ger rest 2 är 8 och 38, summan är 46. 3 D Första siffran längst

Läs mer

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik

Läs mer

Matematik klass 4. Vårterminen. Namn: Anneli Weiland Matematik åk 4 VT 1

Matematik klass 4. Vårterminen. Namn: Anneli Weiland Matematik åk 4 VT 1 Matematik klass 4 Vårterminen Namn: Anneli Weiland Matematik åk 4 VT 1 Först 12 sidor repetition från höstterminen. Addition 7+5= 8+8= 7+8= 7+7= 8+3= 7+6= 6+6= 8+5= 6+5= 9+3= 9+5= 6+9= Subtraktion 11-2=

Läs mer

Matematik. Syfte. reflektera över rimlighet i situationer med matematisk anknytning, och använda ämnesspecifika ord, begrepp och symboler.

Matematik. Syfte. reflektera över rimlighet i situationer med matematisk anknytning, och använda ämnesspecifika ord, begrepp och symboler. Matematik Kurskod: SGRMAT7 Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska en som sådan.

Läs mer

FACIT. Kapitel 1. Version

FACIT. Kapitel 1. Version FACIT Kapitel Version -0- Version -0- Vi repeterar talen 0 till 0 000 Öva begreppen.. Titta på bilden. Skriv de tal som fattas. Räkn är ett fyrsiffrigt tal 000 + 00 + 0 + 0 0 000 Tal skrivs med siffror.

Läs mer

15 högskolepoäng. Grundläggande matematik fo r la rare med inriktning mot arbete i fo rskoleklass och grund-skolans a rskurs 1-3, 15 hp VT17

15 högskolepoäng. Grundläggande matematik fo r la rare med inriktning mot arbete i fo rskoleklass och grund-skolans a rskurs 1-3, 15 hp VT17 Grundläggande matematik fo r la rare med inriktning mot arbete i fo rskoleklass och grund-skolans a rskurs 1-3, 15 hp VT17 Provmoment: Tentamen Matematik, 5 hp, tillfälle 1 Ladokkod: TE01 Tentamen ges

Läs mer

Svar och arbeta vidare med Benjamin 2008

Svar och arbeta vidare med Benjamin 2008 Svar och arbeta vidare med Det finns många intressanta idéer i årets Känguru och problemen kan säkert ge idéer för undervisning under många lektioner. Här ger vi några förslag att arbeta vidare med. Problemen

Läs mer

Hanne Solem Görel Hydén Sätt in stöten! MATEMATIK

Hanne Solem Görel Hydén Sätt in stöten! MATEMATIK Hanne Solem Görel Hydén Sätt in stöten! MATEMATIK Multiplika tion Multiplikation, 5-tabellen Att multiplicera är detsamma som att addera samma tal flera gånger. Det kallar vi upprepad addition. 3 5 kan

Läs mer

MATEMATIK ÅK 9 TAL. Matematik - Måldokument Lena Folkebrant

MATEMATIK ÅK 9 TAL. Matematik - Måldokument Lena Folkebrant Matematik - Måldokument MATEMATIK ÅK 9 TAL Talet nio anses i många kulturer vara ett mystiskt och ibland också ett heligt tal. Innan kristendomen infördes i Norden ansågs talet 9 vara det mest heliga talet.

Läs mer

Per Berggren och Maria Lindroth 2012-10-30

Per Berggren och Maria Lindroth 2012-10-30 Varierad undervisning Per Berggren och Maria Lindroth 2012-10-30 Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga

Läs mer

Resurscentrums matematikleksaker

Resurscentrums matematikleksaker Resurscentrums matematikleksaker Aktiviteter för barn och vuxna Innehåll 1 Bygga lutande torn som inte faller 2 2 Om konsten att vinna betingat godis i spel 5 3 Den snåle grosshandlarens våg 6 4 Tornen

Läs mer

Tema: Pythagoras sats. Linnéa Utterström & Malin Öberg

Tema: Pythagoras sats. Linnéa Utterström & Malin Öberg Tema: Pythagoras sats Linnéa Utterström & Malin Öberg Innehåll: Introduktion till Pythagoras sats! 3 Pythagoras sats! 4 Variabler! 5 Potenser! 5 Att komma tillbaka till ursprunget! 7 Vi bevisar Pythagoras

Läs mer

Arbetsblad 1:1. Tiondelar på tallinjen 0,1 0,5 0,9 0,2 0,8 0,3 0,8 1,1 1,5 1,6 2,1 2,4 1,1 1,4 2,6 3,2 3,8

Arbetsblad 1:1. Tiondelar på tallinjen 0,1 0,5 0,9 0,2 0,8 0,3 0,8 1,1 1,5 1,6 2,1 2,4 1,1 1,4 2,6 3,2 3,8 Arbetsblad 1:1 Tiondelar på tallinjen 1 Skriv rätt tal på pilarna. 0,1 0,5 0,9 1,2 0 1 2 0,3 0,8 1,1 1,5 0 1 3 1,1 1,6 2,1 2,4 1 2 4 5 0,2 0,8 1,4 2,6 0 1 2 3 1,4 2,6 3,2 3,8 1 2 3 4 6 Sätt ut pilar som

Läs mer

Arbetsblad 1:1. Tiondelar på tallinjen 0,9 1,1 0,8. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4

Arbetsblad 1:1. Tiondelar på tallinjen 0,9 1,1 0,8. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 Arbetsblad 1:1 Tiondelar på tallinjen 1 Skriv rätt tal på pilarna. 0,9 0 1 2 0 1 3 1,1 1 2 4 0,8 0 1 2 3 5 1 2 3 4 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 0 1 7 Sätt ut pilar som pekar

Läs mer

Arbetsblad 1:1. Tiondelar på tallinjen. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4

Arbetsblad 1:1. Tiondelar på tallinjen. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 Arbetsblad 1:1 Tiondelar på tallinjen 1 Skriv rätt tal på pilarna. 0 1 2 0 1 3 1 2 4 0 1 2 3 5 1 2 3 4 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 0 1 7 Sätt ut pilar som pekar på talen:

Läs mer

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som

Läs mer

Skolmatematiktenta 1 LPGG06 Kreativ Matematik Delkurs 1

Skolmatematiktenta 1 LPGG06 Kreativ Matematik Delkurs 1 Skolmatematiktenta 1 LPGG06 Kreativ Matematik Delkurs 1 22 augusti 2016 kl. 8.15-13.15 Ansvarig lärare: Maria Lindström 054-7002146, 070-5699283 På omslagsbladet står att ni måste använda ett blad per

Läs mer

Grundläggande matematik fo r grundlärare med inriktning mot arbete i grundskolans a rskurs 4-6, 15 hp VT ho gskolepoäng

Grundläggande matematik fo r grundlärare med inriktning mot arbete i grundskolans a rskurs 4-6, 15 hp VT ho gskolepoäng Grundläggande matematik fo r grundlärare med inriktning mot arbete i grundskolans a rskurs 4-6, 15 hp VT17 Provmoment: Tentamen Matematik, 4 hp, tillfälle 1 Ladokkod: TE01 Tentamen ges fo r: Studenter

Läs mer

Mattelandet/KK 1. Första hjälpen lådan. Innehåll: Tiobasmaterial Bråkkakor Geobräde Talstavar och skena(1m) Geometriska former Tangram Logiska block

Mattelandet/KK 1. Första hjälpen lådan. Innehåll: Tiobasmaterial Bråkkakor Geobräde Talstavar och skena(1m) Geometriska former Tangram Logiska block Mattelandet/KK 1 Första hjälpen lådan Innehåll: Tiobasmaterial Bråkkakor Geobräde Talstavar och skena(1m) Geometriska former Tangram Logiska block Som namnet antyder är materialet avsett för lärare som

Läs mer

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 TERMINSPLAN HÖSTTERMINEN ÅK 8: 1 1.1 ANDELEN 2 1.2 HÖJNING OCH SÄNKNING 3 FORTS. 1.2 HÖJNING OCH SÄNKNING 4 1.3 HUR STOR ÄR DELEN 1 5 AKTIVITET + 1.4 HUR STOR ÄR

Läs mer

Per Berggren och Maria Lindroth 2014-11-19

Per Berggren och Maria Lindroth 2014-11-19 Varierad matematikundervisning Per Berggren och Maria Lindroth 2014-11-19 Luffarschack Med en utmaning! Sfinxen En rik laborativ matematikuppgift som tar sin början i de första skolåren och fortsätter

Läs mer

PLANERING MATEMATIK - ÅK 8. Bok: Y (fjärde upplagan) Kapitel : 5 Ekvationer Kapitel : 6 Sannolikhet och statistik. Elevens namn: Datum för prov

PLANERING MATEMATIK - ÅK 8. Bok: Y (fjärde upplagan) Kapitel : 5 Ekvationer Kapitel : 6 Sannolikhet och statistik. Elevens namn: Datum för prov PLANERING MATEMATIK - ÅK 8 Bok: Y (fjärde upplagan) Kapitel : 5 Ekvationer Kapitel : 6 Sannolikhet och statistik Elevens namn: markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ

Läs mer

Här ska jag presentera en variant

Här ska jag presentera en variant kerstin hagland Allting är relativt I artikeln beskriver författaren en variant av sudoku som förutom de vanliga sudokureglerna även tar hänsyn till de ingående talens storleksrelation. Förslag ges på

Läs mer

Rika matematiska problem

Rika matematiska problem Rika matematiska problem Författare: Kerstin Hagland, Rolf Hedrén, Eva Taflin Här finner du ett antal matematiska problem hämtade ur boken. Du kan skriva ut sidorna och använda exempelvis i din undervisning.

Läs mer

Språkstart Matematik Facit. Matematik för nyanlända. Jöran Petersson

Språkstart Matematik Facit. Matematik för nyanlända. Jöran Petersson Språkstart Matematik Facit Matematik för nyanlända Jöran Petersson Positionssystem hela tal s. 4-5 3. Skriv med siffror. 52 502 5002 65 665 6665 31 131 3131 4. Skriv hur mycket siffran är värd. 300 4 1000

Läs mer

Gillar du uppgifterna kan du hitta fler i bloggen, lillehammer.moobis.se. Matematik. Namn: Datum:

Gillar du uppgifterna kan du hitta fler i bloggen, lillehammer.moobis.se. Matematik. Namn: Datum: Matematik Namn: Datum: Mattepapper Blandad räkning 340 + 210 = 720 + 130 = 400-50 = 800-350 = 40 2 = 30 2 = 800 = + 300 700 = + 350 Visa hur du löser uppgifterna! 58 + 29 129 + 37 Visa hur du löser uppgifterna!

Läs mer

Arbeta vidare med Milou 2008

Arbeta vidare med Milou 2008 Arbeta vidare med Vi hoppas att problemen i Milou väckte intresse och lust att arbeta vidare. Nu kan ni kontrollera lösningarna genom att pröva konkret, klippa och bygga. Variera också problemen genom

Läs mer

1 Julias bil har gått km. Hur långt har den gått när den har körts tio (3) kilometer till? Rita en ring runt det största bråket.

1 Julias bil har gått km. Hur långt har den gått när den har körts tio (3) kilometer till? Rita en ring runt det största bråket. Test 9, lärarversion Instruktion Instruktioner och kommentarer är desamma som i testet i den ursprungliga versionen. Här är ingående tal förändrade och i något fall är uppgiften omformulerad. Betona ordet

Läs mer

Matematik klass 4. Vårterminen FACIT. Namn:

Matematik klass 4. Vårterminen FACIT. Namn: Matematik klass 4 Vårterminen FACIT Namn: Använd ditt facit ofta för att se om du är på rätt väg och förstår. Om det är något som är konstigt, diskutera med din lärare eller en kompis. Du måste förstå

Läs mer

Matematik 92MA41 (15hp) Vladimir Tkatjev

Matematik 92MA41 (15hp) Vladimir Tkatjev Matematik 92MA41 (15hp) Vladimir Tkatjev Med anledning av de nya kursplanerna har Strävorna reviderats. Formen, en matris med rutor, är densamma men istället för att som tidigare anknyta till mål att sträva

Läs mer

Upprepade mönster (fortsättning från del 1)

Upprepade mönster (fortsättning från del 1) Modul: Algebra Del 2: Resonemangsförmåga Upprepade mönster (fortsättning från del 1) Anna-Lena Ekdahl och Robert Gunnarsson, Högskolan i Jönköping Ett viktigt syfte med att arbeta med upprepade mönster

Läs mer

Ladokkod: Studenter i lärarprogrammet GF 11GF20 vt17 tillfälle 1 och vt16 tillfälle 4

Ladokkod: Studenter i lärarprogrammet GF 11GF20 vt17 tillfälle 1 och vt16 tillfälle 4 11GF20 MaI Provmoment: Ladokkod: Tentamen ges för: Matematik 0,5 hp 15 högskolepoäng Studenter i lärarprogrammet GF 11GF20 vt17 tillfälle 1 och vt16 tillfälle 4 TentamensKod: Tentamensdatum: 17-05-12 Tid:

Läs mer

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013 Repetitionsuppgifter inför Matematik Matematiska institutionen Linköpings universitet 0 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Facit 4 Repetitionsuppgifter inför Matematik Repetitionsuppgifter

Läs mer

Hanne Solem Görel Hydén Sätt in stöten! MATEMATIK. Division

Hanne Solem Görel Hydén Sätt in stöten! MATEMATIK. Division Hanne Solem Görel Hydén Sätt in stöten! MATEMATIK Division Division med,, och Om karameller ska delas lika mellan barn, får de var. (läses åtta delat med två är lika med ). Räkna i huvudet. 0 0 0 0 0 0

Läs mer

Måluppfyllelse i svenska/svenska som andraspråk vid nationella prov årskurs 3 vårterminerna 2009 och 2010 TOTALT ANTAL ELEVER 2009: 72

Måluppfyllelse i svenska/svenska som andraspråk vid nationella prov årskurs 3 vårterminerna 2009 och 2010 TOTALT ANTAL ELEVER 2009: 72 Sedan vårterminen 2009 görs nationella prov i svenska och matte för årskurs 3 i hela landet. Från och med höstterminen 2009 får varje elev i Valdemarsviks kommun skriftligt omdöme varje termin i de ämnen

Läs mer

Taluppfattning och allsidiga räknefärdigheter

Taluppfattning och allsidiga räknefärdigheter Taluppfattning och allsidiga räknefärdigheter Handbok med förslag och råd till lärare för att kartlägga, analysera och åtgärda elevers svårigheter och begreppsliga missuppfattningar inom området tal och

Läs mer

Lärares tankar vid arbete med rika problem

Lärares tankar vid arbete med rika problem ROLF HEDRÉN, KERSTIN HAGLAND & EVA TAFLIN Lärares tankar vid arbete med rika problem Detta är den tredje artikeln i serien om arbete med rika problem. Övriga artiklar var införda i Nämnaren nummer 3, 2004

Läs mer

Taluppfattning och tals användning Matematik

Taluppfattning och tals användning Matematik Kartläggningsmaterial för nyanlända elever Taluppfattning och tals användning Matematik 1 2 Steg 3 SVENSKA Kartläggningsmaterial för nyanlända elever Taluppfattning och tals användning åk 3 MA 1 Skriv

Läs mer