Frågor om matematikundervisning
|
|
- Nils Lindqvist
- för 8 år sedan
- Visningar:
Transkript
1 Frågor om matematikundervisning Ur The Mathematical Intelligencer, Vol 9, No 3, pp 65-67, Översättning: Karl Greger Anthony Ralston är professor i datalogi och matematik vid SUNY at Buffalo. Han har gjort sig internationellt känd som matematikdidaktiker med speciell inriktning på datorns roll i matematikundervisningen. Med några undantag har gymnasie-, universitets- och industrimatematikerna i Förenta Staterna, speciellt forskarna bland dem, visat föga intresse för grundskolans matematikundervisning. Och ändå, som Richard Guy nyss har skrivit i denna tidskrift ("How Good a Mathematician Are You?", Vol 8, No 3, 1986, pp 54-55), "Om matematik är viktig, så gäller detsamma för matematikundervisning". I själva verket borde alla gymnasie- och universitetsmatematiker intressera sig för grundskolans matematikundervisning. De flesta av er brukar, i likhet med mig, antagligen beklaga den låga kunskapsnivå med vilken eleverna och studenterna kommer till våra institutioner. Om du tillhör denna skara, kan det knappast ha undgått dig, att några insatser att förbättra grundskolans matematikundervisning vore på sin plats. En framgångsrik sådan skulle inte endast producera bättre rustade elever utan skulle också skapa större intresse för matematik-intensiva utbildningslinjer. Dessutom skulle den minska behovet av stödundervisning på gymnasie- och högskolenivå. Jag är särskilt intresserad av grundskolans matematikundervisning, eftersom jag f n är ordförande i en pilotgrupp inom Mathematical Sciences Education Board, som ingår i National Research Council, med uppdrag att utarbeta ramar (innehållande målbeskrivningar och rekommendationer) inom vilka sedan kursplanegrupper har frihet att t o m helt omstrukturera grundskolans och gymnasiets kursplaner i matematik. Vi är naturligtvis inte så blåögda att vi tror, att en radikal omstrukturering kan genomföras snabbt. Vi funderar över, hur en kursplan för år 2000 borde se ut. Vi bryr oss inte om att ett större genombrott för ett sådant projekt är rätt osannolikt. Nödvändigheten av en genomgripande omstrukturering är enligt min mening så stor, att även en låg sannolikhet för framgång kan resultera i stora förväntningar inför framtida förändringar. Min pilotgrupp, som omfattar forskare, universitetslärare, statliga och kommunala matematikkonsulenter samt vanliga lärare, vet att den behöver hjälp från många håll, bl a från gymnasielärare och från industrin. Jag vill här ställa en rad diskussionsfrågor, som jag ber er att fundera över och, om andan faller på, besvara helt eller delvis.
2 1 Antag som premiss att matematisk förståelse idag är viktigare i allt fler sammanhang och yrken än någonsin tidigare. la. Vilket värde bör tillmätas aritmetiska algoritmiska färdigheter med penna och papper? Vi kan inte längre påstå att sådana färdigheter har ett värde i sig. Det värde de möjligen ännu har kommer att försvinna i och med att miniräknare blir ännu billigare och pålitligare. Många matematiker har berättat för mig att de lärt sig (dvs förstått) en hel del matematik först efter att ha utfört några (numeriska eller symboliska) manipulationer för att få upp ögonen för djupare matematiska frågeställningar. Jag betvivlar inte riktigheten av sådana påståenden, men vill ställa två frågor i akt och mening att klarlägga relevansen av denna erfarenhet: 1b. Anser du att inlärning av aritmetiska algoritmer med penna och papper kan förmå barn att förstå vad aritmetik i själva verket är och kan användas till? (Den forskning som har utförts har inte visat någon korrelation mellan aritmetisk-algoritmiska färdigheter och förståelse.) 1c. Hur relevanta är egentligen professionella matematikers erfarenheter som vägledare för grundskolans matematikundervisning? När allt kommer omkring skulle även i den bästa av världar endast ett fåtal 7-åringar ha förutsättningar att bli matematiker. Blivande matematikers förutsättningar i matematik skiljer sig antagligen inte bara ifråga om graden utan även ifråga om arten avsevärt från den stora majoritetens, bland vilken ändå många måste kunna lära sig att använda matematik både i sitt yrke och i sitt dagliga liv. * 2 Här kommer några frågor i anslutning till de aritmetiska problem som vidrörts ovan. 2a. Skall den algoritmiska långdivisionen överhuvudtaget läras ut i skolan i framtiden? (Den brittiska rapporten "Mathematic Counts" från 1982, känd under namnet Cockcroftrapporten, rekommenderade faktiskt att långdivision i framtiden inte skulle läras ut i brittiska skolor.) 2b. Skall vi dela ut miniräknare till barnen i förskolan? Om inte, så varför och när skall skolbarnen lära sig använda dem? (Här antas att miniräknare som ges till mycket unga barn skall användas på ett målmedvetet och meningsfullt sätt och inte som leksak!) Aritmetik upptar f n ca 80 % av den tid som ägnas åt matematik i årskurserna c. Vad vore en lämplig andel aritmetik i skolkursen under denna tidsperiod? 2d. Om den totala skoltid som ägnas åt matematik förblir oförändrad, vad skulle du då vilja införa i skolkursen, om aritmetik-andelen minskades? * 3 Nästan alla är överens om att barn behöver utveckla större färdigheter i huvud- och överslagsräkning, nu när miniräknare blir allt vanligare och vikten av algoritmitisk aritmetik med penna och papper avtar. Detta inte minst för att göra det möjligt för barnen att avgöra om miniräknarens svar är rimliga eller inte.
3 3a. Vilken nivå i huvudräknefärdighet är rimlig? Med endast ensiffriga tal? Kanske addition med tvåsiffriga tal samt multiplikation med tvåsiffrig multiplikand och ensiffrig multiplikator? Barn utvecklar ofta den uppfattningen att i matematik, i motsats till andra ämnen, endast ett svar kan vara korrekt. 3b. Håller du med om att inympningen av denna uppfattning hos barn är olycklig, och att ökad vikt vid uppskattningar här skulle kunna återställa balansen? 4 Förutom aritmetik är en stor del av grundskole- och gymnasiematematiken inriktad på utveckling av (algoritmiska och andra "mekaniska") färdigheter. 4a. Om vi kan göra troligt att algoritmisk aritmetik med penna och papper snabbt förlorar i betydelse, varför kan man inte på liknande sätt hävda detta för nästan alla matematiska färdigheter som barn f n förvärvar i grundskolan och i viss utsträckning på gymnasiet?
4 Kom ihåg att vi har siktet inställt på år 2000! Då kommer olika slags miniräknare som kan utföra alla manipulationer i skolans algebra- och analyskurser att vara både lättillgängliga och billiga! Ett exempel är den nyligen av Hewlett-Packard lanserade HP-28C-räknaren. Den kan utföra rätt mycket symbolisk algebra, kan symboliskt derivera uttryck innehållande elementära funktioner, samt kan symboliskt integrera polynomfunktioner. Den kostar f n ca kronor, men priset kan förväntas falla snabbt och prestationsförmågan att bli allt större. 4b. Vilka manipulativa färdigheter kommer att vara nödvändiga för elever som år 2000 skall in på gymnasiet (under den förutsättningen, vilken du kanske inte kan acceptera, att vi kan bibringa elever vad de behöver kunna om den matematik som hör ihop med och ligger bakom dessa manipulativa färdigheter utan att behöva lära ut färdigheterna själva). Här kommer några speciella exempel: 4c. Skall de studerande kunna polynom-aritmetik? 4d. Skall eleverna kunna lösa kvadratiska ekvationer? (Visserligen inte enbart en manipulativ färdighet, men en rätt så "mekanisk" procedur ändå.) 4e. Hur är det med system av två eller tre linjära ekvationer? Om miniräknare kommer att användas för såväl symbolisk som numerisk manipulation, kommer det att bli lika viktigt att kunna avgöra om ett symboliskt svar är rimligt som ett numeriskt. 4f. Vad skall menas med uppskattning av symboliska uttryck? Hur skulle du lära en elev att avgöra, om t ex en symbolisk derivata, erhållen med en miniräknare, är rimlig eller ej? 5 Somliga hävdar att mycket i den traditionella gymnasiekursen i matematik är föråldrat (t ex många manipulativa moment) eller ineffektivt (t ex Euklidisk geometri). Andra framhåller vikten av att man för in nya moment i skolkurserna; de två vanligaste nya momenten tycks vara (1) sannolikhetslära, statistik och EDA samt (2) moment från diskret matematik. 5a. Vilka moment i den traditionella gymnasiekursen i matematik skall finnas kvar till varje pris? 5b. Vilka nya moment är mogna att tillföras gymnasiekursen? 5c. Skall algebra förbli det dominerande ämnet i gymnasiekursen? 5d. Vilken roll skall datorer spela i gymnasiekursen? 6 I långa tider har huvudmålet för de matematik-intensiva gymnasielinjerna varit en kurs i inledande matematisk analys (differential- och integralkalkyl). 6a. Är kunskaper i elementär analys fortfarande ett lämpligt mål för studerande på matematik-intensiva gymnasielinjer? 6b. Eftersom kursplanerna håller på att breddas till att omfatta diskret matematik, borde inte också de matematik-intensiva gymnasielinjernas mål breddas till att omfatta mera än elementär analys?
5 7 Som tidigare nämnts klagar gymnasie- och högskolelärare ständigt över nybörjarnas bristande förkunskaper i matematik. Min inställning är annorlunda. Jag har ingenting emot att nybörjarna kommer med t o m ännu lägre förkunskaper än nu vad gäller fakta-kunskaper, om de bara vet någonting om matematikens "anda" vad det innebär att bevisa något, varför vissa metoder att angripa vissa problem är effektivare än andra, vad det generellt innebär att bedriva matematik i motsats till att manipulera symboler på ett papper. Jag uppfattar denna bristande insikt om vad matematik egentligen är, som mycket mera frustrerande än brister ifråga om fakta-kunskaper, t o m mycket triviala sådana. Om de studenter vi tar emot åtminstone har lärt sig den matematik de "kan" ordentligt, inte som en samling isolerade fakta och färdigheter utan som en integrerad och sammanhängande helhet, skulle jag vara nöjd även om de behärskade färre fakta. 7a. Håller du med om detta? 8 Föregående frågor innehåller fröet till större förändringar av grundskolans kursplaner i matematik. 8a. Om sådana förändringar genomfördes, hur skulle detta påverka grundskolans kursplaner till det bättre eller sämre? Jag hoppas du uppfattar några av mina frågor som provokativa. Jag har endast ytligt försökt dölja mina förutfattade meningar och har därför kanske gjort dig orolig eller arg. I vilket fall som helst vill jag gärna veta vad du anser. Håll i minnet: Hur framgångsrik den än har varit, är amerikansk matematik i likhet med amerikansk naturvetenskap och teknik på väg utför till medelmåttighet. Om du vill ha fakta som bakgrund för ditt eget ställningstagande, titta då på resultaten av "The Second International Mathematics Study" ("The Underachieving Curriculum: Assessing U.S. School Mathematics from an International Perspective", Stipes Publishing Company, Champaigne, IL, USA). Tiden är långt framskriden, vi behöver din hjälp! Departments of Computer Science and Mathematics SUNY at Buffalo 226 Bell Hall Amherst, NY 14260, USA Anmärkning Den ovan nämnda undersökningen är USA:s motsvarighet till IEA:s andra matematikundersökning i Sverige ("Matematik i svensk skola", FoU-rapport 46 SÖ 1983, Liber Utbildningsförlaget ISBN ). Nämnarens redaktion anser det vara mycket angeläget, att lärare och matematiker med intresse för den svenska skolans kursplaner i matematik ger synpunkter på Ralstons frågor och tänkbara svar. Många läsare är intresserade av att de nu aktuella ansträngningarna att förbättra matematikundervisningen intensifierar en diskussion om skolmatematikens innehåll. Redaktionen är alltså tacksam för inlägg!
Miniräknaren metodiskt hjälpmedel
Miniräknaren metodiskt hjälpmedel Mellanstadielärare Elisabeth Rystedt har i ett enskilt arbete på en av kurserna i matematikämnets didaktik, vid Göteborgs universitet, gjort en sammanställning av hur
Hur kan forskningen bidra till utvecklingen av matematikundervisningen?
Hur kan forskningen bidra till utvecklingen av matematikundervisningen? Johan Lithner Johan.Lithner@math.umu.se Umeå Forskningscentrum För Matematikdidaktik www.ufm.org.umu.se 1 Frågor att fundera över
NYA KURSPLANER FÖR GRUNDSKOLAN MATEMATIK GRUNDSKOLAN
NYA KURSPLANER FÖR GRUNDSKOLAN Den 17 mars 1994 fastställde regeringen KURSPLANER FÖR GRUNDSKOLAN att gälla i årskurserna 1 7 från läsåret 1995/96, i årskurs 8 läsåret 1996/97 och i årskurs 9 läsåret 1997/98.
Matematikpolicy Västra skolområdet i Linköping
Matematikpolicy Västra skolområdet i Linköping Syfte Denna matematikpolicy är framtagen i syfte att underlätta och säkerställa arbetet med barns och elevers matematiska utveckling på förskolorna och skolorna
Identification Label. Student ID: Student Name: Elevenkät Avancerad Matematik. Skolverket Bo Palaszewski, Projektledare Stockholm
Identification Label Student ID: Student Name: Elevenkät Avancerad Matematik Skolverket Bo Palaszewski, Projektledare 106 20 Stockholm International Association for the Evaluation of Educational Achievement
Första sidan. Svenska elevers matematikkunskaper i grund- och gymnasieskolan samt elevers fysikkunskaper i gymnasiet
Första sidan Svenska elevers matematikkunskaper i grund- och gymnasieskolan samt elevers fysikkunskaper i gymnasiet TIMSS 2007 & TIMSS Advanced 2008 Båda studierna visar på en betydande negativ kunskapsutveckling
Kursplan. Kurskod GIX711 Dnr MSI 01/02:65 Beslutsdatum 2002-03-01
Matematiska och systemtekniska institutionen (MSI) Kursplan Kurskod GIX711 Dnr MSI 01/02:65 Beslutsdatum 2002-03-01 Kursens benämning Engelsk benämning Ämne Inriktning matematik/matematikdidaktik för de
Ett forskande partnerskap handlar om att forska tillsammans och på lika
Mona Røsseland Vägen till standardalgoritmer Denna artikel tar sin utgångspunkt i ett samarbetsprojekt mellan en lärare som ville utveckla sin undervisning och en aktionsforskare som ville undersöka om
Enkäten inleds med några frågor om demografiska data. Totalt omfattar enkäten 85 frågor. 30-40 år. 41-50 år. 51-60 år. > 60 år. 6-10 år.
1 av 15 2010-11-03 12:46 Syftet med den här enkäten är att lära mer om hur lärare tänker och känner när det gäller matematikundervisningen, särskilt i relation till kursplanen och till de nationella proven.
Likhetstecknets innebörd
Likhetstecknets innebörd Följande av Görel Sterner översatta och bearbetade text bygger på boken: arithmetic & algebra in elementary school. Portsmouth: Heinemann Elever i åk 1 6 fick följande uppgift:
Ämne Matematik (före 2011) Ämnets syfte Gymnasieskolans utbildning i matematik bygger vidare på kunskaper motsvarande de eleverna uppnår i
Ämne Matematik (före 2011) Ämnets syfte Gymnasieskolans utbildning i matematik bygger vidare på kunskaper motsvarande de eleverna uppnår i grundskolan och innebär breddning och fördjupning av ämnet. Utbildningen
30-40 år år år. > 60 år år år. > 15 år
1 av 14 2010-11-02 16:21 Namn: Skola: Epostadress: 1. Kön Kvinna Man 2. Ålder < 30 år 30-40 år 41-50 år 51-60 år > 60 år 3. Har varit verksam som lärare i: < 5 år 6-10 år 11-15 år > 15 år 4. Har du en
Ämnesblock matematik 112,5 hp
2011-12-15 Ämnesblock matematik 112,5 hp för undervisning i grundskolans år 7-9 Ämnesblocket omfattar ämnesstudier inklusive ämnesdidaktik om 90 hp, utbildningsvetenskaplig kärna 7,5 hp och VFU 15 hp.
Olika sätt att lösa ekvationer
Modul: Algebra Del 5: Algebra som språk Olika sätt att lösa ekvationer Cecilia Kilhamn, Göteborgs Universitet och Lucian Olteanu, Linnéuniversitetet Att lösa ekvationer är en central del av algebran, det
måndag, 2010 oktober 11
Har du inte räknat färdigt än? Vad är matematik? Var och hur används matematik? Vad är matematikkunnande? Varför ska vi lära oss matematik? Vad är matematik? Nationalencyklopedin En abstrakt och generell
LMA110, Matematik för lärare 1 30 högskolepoäng
Gäller fr.o.m. vt 11 LMA110, Matematik för lärare 1 30 högskolepoäng Mathematics 1 for Teachers in Secondary School, 30 higher education credits Grundnivå/First Cycle 1. Fastställande Kursplanen är fastställd
Vad händer på SÖ? PEDER CLAESSON, LENNART SKOOGH och LENNART WENDELÖV. *jag = utbildningsministern
Vad händer på SÖ? PEDER CLAESSON, LENNART SKOOGH och LENNART WENDELÖV Proposition som tar upp fortbildning i matematik för klasslärare. Upptakt inför 1982 års Matematikbiennal. De diagnostiska uppgifterna
Dataorientering Mål för kursen
Dataorientering Denna kurs inriktar sig i första hand till dig som är nybörjare i data. Kursen startar med en grundgenomgång i hur datorn fungerar och du får lära dig att hantera musen och tangentbordet.
Likhetstecknets innebörd
Modul: Algebra Del 5: Algebra som språk Likhetstecknets innebörd Följande av Görel Sterner (2012) översatta och bearbetade text bygger på boken: Carpenter, T. P., Franke, M. L. & Levi, L. (2003). Thinking
Räcker kunskaperna i matematik?
Bilaga 2 Räcker kunskaperna i matematik? LARS BRANDELL Bakgrund Ett viktigt underlag för regeringens uppdrag till NCM har varit Högskoleverkets rapport Räcker kunskaperna i matematik? (Högskoleverket,
Hösten 2001 utvärderades matematikutbildningen
DEBATT DEBATT DEBATT DEBATT DEBATT DEBATT DEBATT Här presenterar Anders Tengstrand, f d universitetslektor i matematik vid Växjö Universitet, några reflektioner kring problemen med nybörjarstudenternas
Kursplan. MD1052 Matematik I med didaktisk inriktning. 30 högskolepoäng, Grundnivå 1. Mathematics for Secondary School Teachers Years 7-9
Kursplan MD1052 Matematik I med didaktisk inriktning 30 högskolepoäng, Grundnivå 1 Mathematics for Secondary School Teachers Years 79 30 Higher Education Credits *), First Cycle Level 1 Mål Kursens övergripande
TIMSS 2015 frisläppta uppgifter. Uppgifter i matematik, årskurs 4 och 8
TIMSS 2015 frisläppta uppgifter Uppgifter i matematik, årskurs 4 och 8 Rättigheten till de frisläppta uppgifterna ägs av The International Association for the Evaluation of Educational Achievement (IEA).
TRÄNING I HUVUDRÄKNING. Schema för systematik och individualisering
PEDER CLAESSON I den nya läroplanen är "färdigheter i huvudräkning och överslagsräkning" ett mål för skolans matematikundervisning. Peder Claesson fortsätter här att ge "uppslag" till övningar som leder
Vad innebär det att undervisa i algebra i årskurs 1 3? Vart ska dessa
Åsa Brorsson Algebra för lågstadiet I denna artikel beskriver en lärare hur hon arbetar med algebra redan i de tidiga skolåren. Det är ett arbete som hjälper elever att förstå likhetstecknets betydelse,
Rapport av genomförd lesson study av en lektion med temat geometri i gymnasiets A-kurs
Rapport av genomförd lesson study av en lektion med temat geometri i gymnasiets A-kurs Förberedelser Geometri visade sig vara det svåraste området att planera utifrån tanken om en progression genom skolans
LNM110, Matematik i barnens värld 30 högskolepoäng
Gäller fr.o.m. vt 11 LNM110, Matematik i barnens värld 30 högskolepoäng Mathematics for Teachers in Preeschool and Primary school, 30 higher education credits Grundnivå/First Cycle 1. Fastställande Kursplanen
8G Ma: Bråk och Procent/Samband
8G Ma: Bråk och Procent/Samband Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, - använda
Pedagogisk planering aritmetik (räkning)
Pedagogisk planering aritmetik (räkning) Vi kommer att arbeta med de fyra räknesätten i matematik. Syfte (ur Skolverkets kursplan) Under det här arbetsområdet kommer vi att arbeta med att utveckla följande
Ny kursplan i matematik
Ny kursplan i matematik Läroplanskommitténs förslag till ny kursplan i matematik för grundskolan presenteras på följande sidor. Bengt Johansson och Göran Emanuelsson, som tagit fram underlag till förslaget,
KURSPLAN Matematik för gymnasielärare, 61-90 hp, 30 högskolepoäng
1(5) KURSPLAN Matematik för gymnasielärare, 61-90 hp, 30 högskolepoäng Mathematics för Teachers, 61-90 credits, 30 credits Kurskod: LMGN12 Fastställd av: Utbildningsledare 2012-06-15 Gäller fr.o.m.: HT
Vad gör vi åt Skolverkets lägesbeskrivning och handlingsplan?
Vad gör vi åt Skolverkets lägesbeskrivning och handlingsplan? Skolverket har nyss överlämnat sin fördjupade anslagsframställning 1994/95-1996/97 till regeringen. Här publicerars några valda avsnitt ur
MATEMATIK. Ämnets syfte
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation
Kursplan. Matematiska och systemtekniska institutionen (MSI) Kurskod GUX712 Dnr MSI 03/04:16 Beslutsdatum 2003-10-10
Kursplan Matematiska och systemtekniska institutionen (MSI) Kurskod GUX712 Dnr MSI 03/04:16 Beslutsdatum 2003-10-10 Kursens benämning Engelsk benämning Ämne Specialisering - ämnesfördjupning i matematik/matematikdidaktik
Tillfällen att utveckla fördjupad förståelse en bristvara?
Modul: Undervisa matematik utifrån förmågorna Del 5: Resonemangsförmåga Tillfällen att utveckla fördjupad förståelse en bristvara? Örjan Hansson, Högskolan Kristianstad Matematiklärande är en komplex process
NOFA 3, Karlstad Prof. E. Nordlander1
2011-05-11 NOFA 3, Karlstad Prof. E. Nordlander1 2011-05-11 NOFA 3, Karlstad Prof. E. Nordlander2 Känner ni igen den här frågan? Måste vi kunna det här? Men vad är egentligen svaret? Ja Nej, men ni FÅR!
NAMAS, Masterprogram i matematisk statistik, 120 högskolepoäng Master Programme in Mathematical Statistics, 120 credits
Naturvetenskapliga fakulteten NAMAS, Masterprogram i matematisk statistik, 120 högskolepoäng Master Programme in Program med akademiska förkunskapskrav och med slutlig examen på avancerad nivå / Second
TESTVERSION. Inledande text, Diamant
Inledande text, Diamant Diamant är en diagnosbank i matematik som består av 55 diagnoser, avsedda för grundskolan. Fokus ligger på grundläggande begrepp och färdigheter. Tanken med diagnoserna är att de
Matematik C (MA1203)
Matematik C (MA103) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Mål och betygskriterier Ma C (MA103) Matematik 03-08- Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven
LMA210, Matematik för lärare 2, 30 högskolepoäng
Gäller fr.o.m. vt 11 LMA210, Matematik för lärare 2, 30 högskolepoäng Mathematics 2 for Teachers in Secondary School, 30 higher education credits Grundnivå/First Cycle 1. Fastställande Kursplanen är fastställd
En litteraturstudie utifrån Läs- och skrivsvårigheter och lärande i matematik Björn Jakobsson bjojak-0@student.luth.se 2003-10-19 PÄP404
En litteraturstudie utifrån Läs- och skrivsvårigheter och lärande i matematik Björn Jakobsson bjojak-0@student.luth.se 2003-10-19 PÄP404 Grundskollärare sve/eng 4-9 Luleå Tekniska Universitet 1 2 För att
Om datorns användning matematikundervisningen
i Om datorns användning matematikundervisningen Syftet med denna artikel är att diskutera, och ge några exempel på, hur datorn med fördel kan användas i matematikundervisningen. Karl Greger och Thomas
Vilka typer av matematiska resonemang (ut)värderas i skolmatematiken?
Vilka typer av matematiska resonemang (ut)värderas i skolmatematiken? - En analys av svenska gymnasieprov Mattebron.se En mötesplats för gymnasielärare och högskolelärare i matematik Göteborg 4 maj 2007
Kursplan för Matematik
Sida 1 av 5 Kursplan för Matematik Inrättad 2000-07 SKOLFS: 2000:135 Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematik som behövs för
2. Reflektioner kring föreläsningen om gränsvärdesbegreppet på gymnasium och högskola, exempelvis finns det andra begrepp med liknande problematik?
Sammanfattning av synpunkter framförda vid dialogcaféet vid det andra nationella mötet mellan gymnasielärare och högskolelärare. Stockholm, 10 november, 2006 Mötet kring regeringens matematiksatsning i
Bengt Johansson tar i Nämnaren nr 1
Debatt Debatt Debatt Debatt Debatt Debatt Debatt Elever har rätt att få lära sig matematik Bengt Johansson tar i Nämnaren nr 1 2006 upp frågan om standardalgoritmernas roll i matematikundervisningen. Jag
Problem med stenplattor
Rolf Hedrén, Eva Taflin & Kerstin Hagland Problem med stenplattor Författarna har under flera år bedrivit ett forskningsprojekt med syfte att ta reda på hur lärare och elever tänker om lektioner kring
Om Lgr 11 och Favorit matematik 4 6
Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med
KURSPLAN. Matematik/matematikdidaktik för de senare skolåren och gymnasiet
Dnr: MSI 06/07:61 Matematiska och systemtekniska institutionen (MSI) KURSPLAN Matematik/matematikdidaktik för de senare skolåren och gymnasiet Mathematics/ Mathematical Didactics in Later School Years
Här är två korta exempel på situationer då vi tillämpar den distributiva lagen:
Modul: Algebra Del 8: Avslutande reflektion och utvärdering Distributiva lagen Cecilia Kilhamn, Göteborgs Universitet Distributiva lagen a (b + c) = a b + a c Den distributiva lagen kallas den räknelag
Hur ska måluppfyllelsen öka? Matematiklyftet
Matematiklyftet Ökad måluppfyllelse Hur ska måluppfyllelsen öka? Matematiklyftet Fortbildning i matematikdidaktik för alla matematiklärare Stöd för arbetet med matematik i förskolan och förskoleklassen
LNM110, Matematik i barnens värld 30 högskolepoäng
Gäller fr.o.m. vt 10 LNM110, Matematik i barnens värld 30 högskolepoäng Mathematics for Teachers in Preeschool and Primary school, 30 higher education credits Grundnivå/First Cycle 1. Fastställande Kursplanen
Om matematikämnet på CLGYM. Obligatoriska kurser och förslag på valbara kurser. Inför 2015-16.
Hans Thunberg april 2015 KTH Matematik Om matematikämnet på CLGYM. Obligatoriska kurser och förslag på valbara kurser. Inför 2015-16. Allmänt om matematikkurserna på CL CL är ett av de mest matematikintensiva
Gymnasieelevers färdigheter i huvudräkning och överslagsräkning
Gymnasieelevers färdigheter i huvudräkning och överslagsräkning Anders Lindblom Här redovisas en undersökning av elevers färdigheter i huvudräkning Ett par hundra elever från gymnasiet och ett hundrafemtiotal
Skolenkät. Årskurs 8. Skolverket Stockholm
i j Skolenkät Årskurs 8 Skolverket 106 20 Stockholm International Association for the Evaluation of Educational Achievement Copyright IEA, 2007 h k Allmänna anvisningar Din skola har samtyckt till att
Differentialekvationer och komplexa tal kom under 1900-talet in i den
Jonas Hall & Thomas Lingefjärd Differentialekvationer och komplexa tal med GeoGebra Författarna som vid det här laget är väl kända för Nämnarens läsare ger här ytterligare konkreta förslag på hur GeoGebra
Kurser på GrundVuxNivå
Kurser på GrundVuxNivå Dataorientering, grundläggande... 2 Engelska, grundskolenivå, nivå 1... 2 Engelska, grundskolenivå, nivå 2 och 3... 2 Engelska, grundskolenivå, nivå 4... 2 Hem- och Konsumentkunskap,
Utbildningsplan för Matematikprogrammet (N1MAT) Bachelor s Programme in Mathematics Grundnivå
Naturvetenskapliga fakulteten Dnr G 2015/59 Utbildningsplan för Matematikprogrammet (N1MAT) Bachelor s Programme in Mathematics Grundnivå 1. Utbildningsprogrammets benämning och omfattning Programmet benämns
Key Mathematical concepts in the transition from secondary to university
Key Mathematical concepts in the transition from secondary to university ICME 12 Survey Team 4 Hoda Ashjari hoda.ashjari@liu.se Matematiska institutionen ICME12 Seoul juli 2012 The International Congress
MATEMATIK- OCH FYSIKDIDAKTISKA ASPEKTER
MATEMATIK- OCH FYSIKDIDAKTISKA ASPEKTER Xantcha 2013 2014 Examination. För godkänt betyg i kursen krävs: Samtliga skriftliga inlämningsuppgifter. Närvaro och aktivt deltagande under lektionerna. Frånvaro
OBS! Vik och riv försiktigt! TRENDS IN INTERNATIONAL MATHEMATICS AND SCIENCE STUDY. Elevenkät. Årskurs 8. TIMSS 2015 Skolverket Stockholm
OBS! Vik och riv försiktigt! TRENDS IN INTERNATIONAL MATHEMATICS AND SCIENCE STUDY Elevenkät Årskurs 8 TIMSS 2015 Skolverket 106 20 Stockholm IEA, 2014 Instruktioner I det här häftet finns frågor om dig
Utvidgad aritmetik. AU
Utvidgad aritmetik. AU Delområdet omfattar följande tio diagnoser som är grupperade i tre delar, negativa tal, potenser och närmevärden: AUn1 Negativa tal, taluppfattning AUn Negativa tal, addition och
Parallellseminarium 2
Parallellseminarium 2 201 Naturinspirerad matematik Fö, Föreläsning Annica Nettrup, Anette Barr, Anna Rosdahl På Naturförskolan Snusmumriken utgör naturen runt omkring inspiration till den vardagliga matematiken.
Lgr 11 matriser i Favorit matematik 4 6
Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor
Matematikundervisningen vid de tekniska mellanskolorna
Matematiken vid tekniska läroanstalter i Sverige II: Matematikundervisningen vid de tekniska mellanskolorna av O. Gallander, lektor i Örebro De tekniska skolorna ingår i grupp C i den indelning som är
8G Ma: Bråk och Procent/Samband
8G Ma: Bråk och Procent/Samband Syftet undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera
Räkning med decimaltal
Gard Brekke Räkning med decimaltal I denna artikel beskrivs och diskuteras sådana uppfattningar som kommit fram när man studerat hur elever räknar med tal i decimalform. De uppfattar ibland talen som par
Matematik (1-15 hp) Programkurs 15 hp Mathematics (1-15) 92MA11 Gäller från: Fastställd av. Fastställandedatum. Styrelsen för utbildningsvetenskap
DNR LIU-2009-00464 1(5) Matematik (1-15 hp) Programkurs 15 hp Mathematics (1-15) 92MA11 Gäller från: Fastställd av Styrelsen för utbildningsvetenskap Fastställandedatum 2012-01-09 2(5) Huvudområde Matematik
Är svenska elever dåliga i algebra och geometri?
Är svenska elever dåliga i algebra och geometri? Lena Adolfsson I förra numret gavs en sammanfattande beskrivning av TIMSS-projektets studie av svenska 13-åringars kunskaper i matematik. I denna artikel
Olika proportionella samband, däribland dubbelt och hälften.
Karin Landtblom & Anette De Ron Gruppera mera! Dubbelt och hälften är vanliga inslag i den tidiga matematikundervisningen. Elever ska ringa in hälften av något eller rita så att det blir dubbelt så många.
BEDÖMNINGSSTÖD. till TUMMEN UPP! matte inför betygssättningen i årskurs 6
BEDÖMNINGSSTÖD till TUMMEN UPP! matte inför betygssättningen i årskurs 6 Det här är ett BEDÖMNINGSSTÖD som hjälper dig att göra en säkrare bedömning av elevernas kunskaper inför betygssättningen i årskurs
ÄMAD04, Matematik 4, 30 högskolepoäng Mathematics 4, 30 credits Grundnivå / First Cycle
Humanistiska och teologiska fakulteterna ÄMAD04, Matematik 4, 30 högskolepoäng Mathematics 4, 30 credits Grundnivå / First Cycle Fastställande Kursplanen är fastställd av Naturvetenskapliga fakultetens
Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1
Matematik med didaktisk inriktning för grundlärare i förskoleklass och grundskolans a rskurs 1-3, III, VT18 7,5 högskolepoäng Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1 Ladokkod:
Lokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 4. Samband och förändring Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
Kursplan för kurs på grundnivå
Kursplan för kurs på grundnivå Matematik för gymnasielärare, 60 hp (31-90hp). Ingår i Lärarlyftet II Mathematics Education upper secondary school. In service training for teachers. 60.0 Högskolepoäng 60.0
Hjälpmedel: Miniräknare, skrivmateriel (ex. linjal, gradskiva, passare) och Lgr 11
Matematik och matematikdidaktik för 7,5 högskolepoäng grundlärare med inriktning mot arbete i förskoleklass och grundskolans årskurs 1-3, 7.5 hp VT17 Provmoment: Tentamen Matematik och matematikdidaktik,
HEM KURSER SKRIV UT HEM ÄMNE SKRIV UT
Matematik HEM KURSER SKRIV UT MA200 - Matematik A 110 poäng inrättad 1994-07 SKOLFS: 1994:9 et för kursen är att ge de matematiska kunskaper som krävs för att ta ställning i vardagliga situationer i privatliv
Programinventering matematikinnehåll. Flexprojektet Sid 1 (5) Kurser och kurspaket
Sid 1 (5) Kurser och kurspaket Här följer en översikt av kurser och paket av sådana, samt inför vilka kurser de är att rekommendera. För varje kurs anges vilka andra kurser som utgör förkunskapskrav. En
Matematikundervisningen har under
bengt aspvall & eva pettersson Från datorernas värld Hur kan vi stimulera elever i matematik, och hur kan vi genom matematiken visa delar av datorns funktioner? Författarna visar hur man kan introducera
Det finns flera aspekter av subtraktion som lärare bör ha kunskap om, en
Kerstin Larsson Subtraktion Vad är egentligen subtraktion? Vad behöver en lärare veta om subtraktion och subtraktionsundervisning? Om elevers förståelse av subtraktion och om elevers vanliga missuppfattningar?
Ämne - Matematik (Gymnasieskola före ht 2011)
Ämne - Matematik Ämnets syfte Gymnasieskolans utbildning i matematik bygger vidare på kunskaper motsvarande de eleverna uppnår i grundskolan och innebär breddning och fördjupning av ämnet. Utbildningen
LMN120, Matematik för lärare, tidigare åldrar 30 högskolepoäng
Gäller fr.o.m. vt 11 LMN120, Matematik för lärare, tidigare åldrar 30 högskolepoäng Mathematics for teachers in Primary School, 30 higher education credits Grundnivå/First Cycle 1. Fastställande Kursplanen
Bengt Drath. Högskolan i Skövde Stöpenskolan i Skövde kommun
Prata matematik Bengt Drath Högskolan i Skövde Stöpenskolan i Skövde kommun Matematikkunnande tikk Vad ingår i begreppet matematikkunnande? eller som elever skulle tänka: Hur skall en duktig elev i matte
Kursplan för kurs på grundnivå
Kursplan för kurs på grundnivå Matematik för lärare, 30hp (61-90 hp), gymnasiet - ingår i lärarlyftet 30.0 Högskolepoäng Mathematics for Teachers, 30 hp (61-90 hp), Upper-secondary School - in 30.0 ECTS
Kursplan Grundläggande matematik
2012-12-06 Kursplan Grundläggande matematik Grundläggande matematik innehåller tre delkurser, sammanlagt 600 poäng: 1. Delkurs 1 (200 poäng) GRNMATu, motsvarande grundskolan upp till årskurs 6 2. Delkurs
Utbildningsplan för Matematiska vetenskaper, masterprogram (N2MAT), 120 hp
Dnr G 2015/309 NATURVETENSKAPLIGA FAKULTETEN Utbildningsplan för Matematiska vetenskaper, masterprogram (N2MAT), 120 hp 1. Utbildningsprogrammets benämning och omfattning Matematiska vetenskaper, masterprogram,
DIAMANT. NaTionella DIAgnoser i MAtematik. En diagnosbank i matematik för skolåren före årskurs 6.
DIAMANT NaTionella DIAgnoser i MAtematik En diagnosbank i matematik för skolåren före årskurs 6 Matematikdelegationens betänkande Det är vår övertygelse att alla barn och ungdomar som kan klara en normal
LMN120, Matematik för lärare, tidigare åldrar 30 högskolepoäng
Gäller fr.o.m. vt 10 LMN120, Matematik för lärare, tidigare åldrar 30 högskolepoäng Mathematics for teachers in Primary School, 30 higher education credits Grundnivå/First Cycle 1. Fastställande Kursplanen
Identification Label. School ID: School Name: Skolenkät. Skolverket Bo Palaszewski, projektledare Stockholm
Identification Label School ID: School Name: Skolenkät Skolverket Bo Palaszewski, projektledare 106 20 Stockholm International Association for the Evaluation of Educational Achievement Copyright IEA, 2008
Jag tror att alla lärare introducerar bråk
RONNY AHLSTRÖM Variabler och mönster Det är viktigt att eleverna får förståelse för grundläggande matematiska begrepp. Ett sätt att närma sig variabelbegreppet är via mönster som beskrivs med formler.
Artiklar i avhandlingen
Algoritmiska, intuitiva och formella aspekter av matematiken i dynamiskt samspel En studie av hur studenter nyttjar sina begreppsuppfattningar inom matematisk analys www.math.chalmers.se/math/research/preprints
OBS! Vik och riv försiktigt! TRENDS IN INTERNATIONAL MATHEMATICS AND SCIENCE STUDY. Skolenkät. Årskurs 4. TIMSS 2015 Skolverket Stockholm
OBS! Vik och riv försiktigt! TRENDS IN INTERNATIONAL MATHEMATICS AND SCIENCE STUDY Skolenkät Årskurs 4 TIMSS 2015 Skolverket 106 20 Stockholm IEA, 2014 Skolenkät Din skola är utvald att delta i TIMSS 2015
KURSPLAN. HÖGSKOLAN I KALMAR Naturvetenskapliga institutionen. Fastställd av Nämnden för lärarutbildning och utbildningsvetenskap
KURSPLAN HÖGSKOLAN I KALMAR Naturvetenskapliga institutionen KURS MA200L Matematik och logiskt tänkande II 31-60 högskolepoäng Mathematics and mathematical thought processes II 31-60 higher education credits
Samband mellan räknesätt. Lena Andersson Natur, miljö och samhälle Lärarutbildningen Malmö högskola
Samband mellan räknesätt Lena Andersson Natur, miljö och samhälle Lärarutbildningen Malmö högskola Matematikundervisningens uppgift, Lgr 11 För att frångå att eleven uppfattar varje matematiskt moment
Erik Östergren lärarutbildningen, 5hp HT 2015
Kurslitteratur Matematik ett kärnämne (Nämnaren Tema) Diverse artiklar All kurslitteratur kommer att finnas tillgänglig på Studentportalen. Kurshemsida http://studentportalen.uu.se Undervisning 20 lektionstillfällen.
Addition, subtraktion, summa, differens, algebra, omgruppering, ental, tiotal, multiplikation, division, rimlighet, uppskatta
LPP Matematik räknesätten År 2 Beskrivning av arbetet Addition och subtraktion 0 200 - med utelämnat tal - algebra - med omgruppering och tiotalsövergång Addition och subtraktion med hela 100-tal Se likheter
Ma7-Åsa: Procent och bråk
Ma7-Åsa: Procent och bråk Det fjärde arbetsområdet handlar om procent och bråk. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt
Bedömning för lärande i matematik
Bedömning för lärande i matematik Vilka har arbeta med materialet Varför ser det ut som det gör När och hur kan du som lärare använda materialet Katarina Kjellström PRIM-gruppen Vilka har deltagit i arbetet
Kursinformation, ETE499 8 hp MATEMATIK H Högskoleförberedande matematik
Kursinformation, ETE499 8 hp MATEMATIK H Högskoleförberedande matematik Fristående matematikkurs vid ITN (Institutionen för Teknik och Naturvetenskap i Norrköping) en förberedande matematikkurs inför kurser
Intervjuguide. Att göra inför intervjun: Instruktioner för genomförandet av intervjun: Kontrollera att inspelningsutrustningen fungerar som den ska.
Intervjuguide Att göra inför intervjun: Kontrollera att inspelningsutrustningen fungerar som den ska. Tänk igenom den besökta lektionen så att du kan beskriva den kort och neutralt. Titta på den använda