TIMSS 2015 frisläppta uppgifter. Uppgifter i matematik, årskurs 4 och 8
|
|
- Anita Nyberg
- för 8 år sedan
- Visningar:
Transkript
1 TIMSS 2015 frisläppta uppgifter Uppgifter i matematik, årskurs 4 och 8
2 Rättigheten till de frisläppta uppgifterna ägs av The International Association for the Evaluation of Educational Achievement (IEA).
3 Innehållsförteckning Inledning... 2 Läsanvisning... 3 Årskurs Årskurs
4 1 Inledning TIMSS (Trends in International Mathematics and Science Study) är en internationellt jämförande studie som undersöker elevers kunskaper i och attityder till matematik och naturvetenskap i årskurs 4 och 8. I TIMSS 2015 deltog Sverige för tredje gången med årskurs 4 och för femte gången med årskurs 8. Totalt deltog nästan 60 länder i TIMSS Denna bilaga, till TIMSS 2015 Svenska grundskoleelevers kunskaper i matematik och naturvetenskap i ett internationellt perspektiv, är en redovisning av resultaten på de provuppgifter som frisläppts sedan TIMSS genomfördes Syftet med bilagan är av ämnesdidaktisk karaktär då den kan tjäna som material i undervisningen samt visa på vilka sorters provuppgifter som resultatet i den internationella jämförelsen bygger på. Bilagan över de frisläppta uppgifterna i matematik har tagits fram i samarbete med Peter Nyström på Nationellt Centrum för Matematikutbildning (NCM) vid Göteborgs universitet. 1.1 Ramverk TIMSS ramverk specificerar vilka områden i matematik som är viktiga att täcka in i proven, och har tagits fram gemensamt av de länder som deltar. Ramverket är organiserat kring två dimensioner; en innehållslig dimension och en kognitiv dimension. I den innehållsliga dimensionen i matematikprovet i TIMSS 2015 årskurs 4 ingår ämnesområdena Taluppfattning och aritmetik, Geometriska former och mått och Datapresentation. I matematikprovet i TIMSS 2015 årskurs 8 ingår Taluppfattning och aritmetik, Algebra, Geometri och Statistik och sannolikhet. Den kognitiva dimensionen specificerar de områden eller tankeprocesser som ingår i bedömningen och beskriver de tankeprocesser som krävs av eleverna för att besvara uppgifterna i matematik. De kognitiva områdena Veta, Tillämpa och Resonera är desamma för årskurs 4 och 8. Se fördelningen av områdena i tabell 1.1. Tabell 1. Andel provuppgifter (procent) utifrån olika områden enligt ramverket i TIMSS Matematik - årskurs 4 Matematik - årskurs 8 Innehållsliga områden Andel Innehållsliga områden Andel Taluppfattning och aritmetik 50 Taluppfattning och aritmetik 30 Geometriska former och mått 35 Algebra 30 Datapresentation 15 Geometri 20 Statistik och sannolikhet 20 Kognitiva områden Andel Kognitiva områden Andel Veta 40 Veta 35 Tillämpa 40 Tillämpa 40 Resonera 20 Resonera 25 Innehållsområdena är uppdelade i olika kunskapsområde, som vart och ett beskrivs som en lista över lärandemål som återfinns i kursplaner för matematik från en majoritet av de deltagande länderna. 2
5 I ett internationellt prov som TIMSS är det viktigt att påpeka att indelningen i dessa innehållsliga områden nödvändigtvis inte motsvara matematikundervisningens uppbyggnad i alla länder. Även om TIMSS ramverk utgår från de deltagande ländernas kursplaner motsvarar inte matematiken i TIMSS varje enskilt lands unika kursplan i detalj. 1.2 Innehållsliga områden, matematik årskurs 4 och 8 Området Taluppfattning och aritmetik handlar i årskurs 4 om förståelse och ekvationer samt mönster och samband. Geometriska former och mått handlar om punkter, linjer och vinklar, samt två- och tredimensionella former. Eleverna ska också känna till vanliga geometriska figurer och deras egenskaper, beräkna area, omkrets och volym för enkla former. Datapresentation handlar om att läsa och tolka tabeller och enkla diagram, och att organisera och presentera data i enkla diagram. I årskurs 8 vidgas och fördjupas de tre områdena som finns i årskurs 4 och dessutom tillkommer området Algebra. Området Taluppfattning och aritmetik omfattar alla hela tal samt förhållanden, proportionalitet och procent. Till skillnad från årskurs 4 handlar nu beräkningar om bråk och decimaltal snarare än hela tal. Algebra handlar om talmönster, algebraiska uttryck, samt ekvationer, formler och funktioner. Geometri handlar precis som motsvarande område i årskurs 4 om geometriska former och mått samt koordinatsystem, men utifrån mer komplexa begrepp och mer formella uttryckssätt. Statistik och sannolikhet innehåller beskrivande statistik som att göra olika diagram för att presentera data och att beräkna medelvärden och median. Här ingår också bland annat att identifiera vilseledande statistik och bedöma samt göra skattningar av sannolikheter. 2 Läsanvisning De frisläppta uppgifterna i denna bilaga följer den uppdelning av de matematiska innehållsliga områden som TIMSS anger. För ytterligare fördjupning i TIMSS olika områden hänvisas till IEAs rapport TIMSS 2015 Assessment Frameworks. 1 Provuppgifterna utgörs både av uppgifter där eleverna ska välja mellan färdiga svarsalternativ (flervalssvar) samt av uppgifter som kräver att eleverna själva formulerar svar (öppna svarsfrågor). Flervalsfrågorna och de öppna frågorna i elevproven är jämnt fördelade inom de olika innehållsliga och kognitiva områdena. Öppna svarsfrågor presenterar själva uppgiften följd av den rättningsmall som använts för att bedöma svaren. Resultaten registrerades i form av tvåsiffriga koder där den första siffran gav antal poäng medan den andra siffran användes för att skilja ut olika svarstyper. Rättningsmallen har utformats för att ge högsta möjliga reliabilitet så att rättare i olika länder ska rätta på samma sätt. Den är alltså inte anpassad för att t.ex. ge återkoppling till den elev som genomfört provet och lämpar sig därför ibland inte för användning i en undervisningssituation. Koderna innebär att eleven får 1 poäng, att eleven får 2 poäng, står för fel svar medan 99 står för utelämnat svar. 1 Mullis, I. & Martin, M. O. (2013), TIMSS 2015 Assessment Frameworks. Chestnut Hill: TIMSS & PIRLS International Study Center, Boston College. 3
6 4
7 ÅRSKURS 4 5
8 TALUPPFATTNING OCH ARITMETIK Uppgift MO61243A och MO61243B Öppen svarsfråga Kognitivt område: Veta MO61243 Flickor Pojkar Totalt 2 poäng 53,7* 56,2* 54,9 Fel svar 21,0 *Kod 20, korrekt svar på både A och B. 6
9 TALUPPFATTNING OCH ARITMETIK Uppgift MO61029 Flervalsfråga Kognitivt område: Resonera MO61029 Flickor Pojkar Totalt A 4,1 B 7,8 C* 81,0 72,3 76,6 D 8,8 7
10 TALUPPFATTNING OCH ARITMETIK Uppgift MO61031 Flervalsfråga Kognitivt område: Resonera MO61031 Flickor Pojkar Totalt A 8,8 B 32,6 C 9,9 D* 43,3 50,2 46,8 8
11 TALUPPFATTNING OCH ARITMETIK Uppgift MO61050 Flervalsfråga Kognitivt område: Tillämpa MO61050 Flickor Pojkar Totalt A* 58,1 52,2 55,1 B 24,4 C 2,8 D 13,2 9
12 TALUPPFATTNING OCH ARITMETIK Uppgift MO61167 Öppen svarsfråga Kognitivt område: Veta MO61167 Flickor Pojkar Totalt 1 poäng 73,4 65,6 69,4 Fel svar 26,1 10
13 GEOMETRI OCH MÄTNINGAR Uppgift MO61206 Flervalsfråga Kognitivt område: Tillämpa MO61206 Flickor Pojkar Totalt A 3,9 B 54,2 C* 33,1 35,2 34,1 D 5,7 11
14 GEOMETRI OCH MÄTNINGAR Uppgift MO61265A och MO61265B Öppen svarsfråga och flervalsfråga Kognitivt område: Tillämpa MO61265A Flickor Pojkar Totalt 1 poäng 62,3 71,2 66,8 Fel svar 28,3 MO61265B Flickor Pojkar Totalt A 22,4 B* 42,8 42,5 42,7 C 12,8 D 16,4 12
15 GEOMETRI OCH MÄTNINGAR Uppgift MO61185 Flervalsfråga Kognitivt område: Tillämpa MO61185 Flickor Pojkar Totalt A 16,8 B 6,3 C* 68,2 70,0 69,1 D 3,5 13
16 DATAREPRESENTATION Uppgift MO61239A och MO61239B Öppen svarsfråga Kognitivt område: Tillämpa MO61239 Flickor Pojkar Totalt 1 poäng 87,8 85,1 86,4 Fel svar 4,7 14
17 ÅRSKURS 8 15
18 TALUPPFATTNING OCH ARITMETIK Uppgift MO52209 Flervalsfråga Kognitivt område: Veta MO52209 Flickor Pojkar Totalt A 12,9 B 5,4 C* 70,4 68,6 69,4 D 5,6 16
19 TALUPPFATTNING OCH ARITMETIK Uppgift MO52142 Flervalsfråga Kognitivt område: Tillämpa MO52142 Flickor Pojkar Totalt A* 41,4 47,6 44,7 B 26,7 C 7,0 D 16,3 17
20 TALUPPFATTNING OCH ARITMETIK Uppgift MO52035 Öppen svarsfråga Kognitivt område: Veta MO52035 Flickor Pojkar Totalt 1 poäng 42,9 41,5 42,0 Fel svar 52,6 18
21 TALUPPFATTNING OCH ARITMETIK Uppgift MO52016 Öppen svarsfråga Kognitivt område: Tillämpa MO52016 Flickor Pojkar Totalt 1 poäng 45,1 60,9 53,6 Fel svar 43,1 19
22 ALGEBRA Uppgift MO52064 Flervalsfråga Kognitivt område: Veta MO52064 Flickor Pojkar Totalt A 12,7 B 21,2 C* 36,6 42,5 39,7 D 16,9 20
23 ALGEBRA Uppgift MO52126 Öppen svarsfråga Kognitivt område: Tillämpa MO52126 Flickor Pojkar Totalt 1 poäng 16,3 17,8 17,0 Fel svar 70,2 21
24 ALGEBRA Uppgift MO52103 Flervalsfråga Kognitivt område: Veta MO52103 Flickor Pojkar Totalt A 5,3 B* 29,0 29,7 29,3 C 18,7 D 35,9 22
25 ALGEBRA Uppgift MO52066 Flervalsfråga Kognitivt område: Tillämpa MO52066 Flickor Pojkar Totalt A 17,5 B 15,3 C* 49,6 39,7 44,0 D 12,5 23
26 GEOMETRI Uppgift MO52041 Flervalsfråga Kognitivt område: Resonera MO52041 Flickor Pojkar Totalt 1 poäng 9,4 11,7 10,6 Fel svar 65,2 24
27 GEOMETRI Uppgift MO52057 Flervalsfråga Kognitivt område: Resonera 25
28 MO52057 Flickor Pojkar Totalt A 7,0 B 21,4 C 6,7 D* 55,3 59,1 57,3 26
29 GEOMETRI Uppgift MO52417 Öppen svarsfråga Kognitivt område: Tillämpa MO52417 Flickor Pojkar Totalt 1 poäng 38,7 34,8 36,5 Fel svar 43,9 27
30 STATISTIK OCH SANNOLIKHET Uppgift MO52501 Öppen svarsfråga Kognitivt område: Resonera MO52501 Flickor Pojkar Totalt 1 poäng 50,3 37,6 43,3 Fel svar 27,1 28
31 STATISTIK OCH SANNOLIKHET Uppgift MO52410 Flervalsfråga Kognitivt område: Tillämpa MO52410 Flickor Pojkar Totalt A 22,3 B* 50,9 56,0 53,7 C 10,6 D 2,1 29
32 STATISTIK OCH SANNOLIKHET Uppgift MO52170 Flervalsfråga Kognitivt område: Tillämpa MO52170 Flickor Pojkar Totalt A 9,1 B* 35,8 36,7 36,5 C 25,2 D 14,3 30
33 31
TIMSS 2015 frisläppta uppgifter. Uppgifter i NO, årskurs 4 och 8
TIMSS 2015 frisläppta uppgifter Uppgifter i NO, årskurs 4 och 8 Rättigheten till de frisläppta uppgifterna ägs av The International Association for the Evaluation of Educational Achievement (IEA). Innehållsförteckning
UPPGIFTSRAPPORT TILL RAPPORT Matematikuppgifter i TIMSS 2003
UPPGIFTSRAPPORT TILL RAPPORT 255 2004 Matematikuppgifter i Beställningsadress: Fritzes kundservice 106 47 Stockholm Telefon: 08-690 95 76 Telefax: 08-690 95 50 E-postadress: skolverket@fritzes.se www.skolverket.se
Kursplan Grundläggande matematik
2012-12-06 Kursplan Grundläggande matematik Grundläggande matematik innehåller tre delkurser, sammanlagt 600 poäng: 1. Delkurs 1 (200 poäng) GRNMATu, motsvarande grundskolan upp till årskurs 6 2. Delkurs
Är svenska elever dåliga i algebra och geometri?
Är svenska elever dåliga i algebra och geometri? Lena Adolfsson I förra numret gavs en sammanfattande beskrivning av TIMSS-projektets studie av svenska 13-åringars kunskaper i matematik. I denna artikel
MATEMATIK. Ämnets syfte. Kurser i ämnet
MATEMATIK Ämnet matematik behandlar begrepp, metoder och strategier för att kunna lösa matematiska problem i vardags- och yrkeslivet. I ämnet ingår att föra och följa matematiska resonemang samt att arbeta
Geometri. Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock
Geometri Matematik åk 4-6 - Centralt innehåll Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock Konstruktion av geometriska objekt Skala Symmetri
Terminsplanering årskurs 6 Matematik Ärentunaskolan
Inledning Terminsplanering årskurs 6 Matematik Ärentunaskolan På Ärentunaskolan arbetar vi med läromedlet MatteBorgen. Förutom uppgifter i boken arbetar vi med problemlösning och tränar olika strategier
TIMSS 2008 Advanced Skolsamordnarträff
TIMSS 2008 Advanced Skolsamordnarträff TIMSS Trends in International Mathematics and Science Study TIMSS 2008 Advanced Bo Palaszewski Projektledare Sofia Silva Projektkoordinator Peter Nyström Vetenskaplig
ESN lokala kursplan Lgr11 Ämne: Matematik
ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband
Del ur Lgr 11: kursplan i matematik i grundskolan
Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet
Indelning av grundläggande vuxenutbildning i matematik i delkurser c, d, e och f. 150 verksamhetspoäng vardera.
1 Indelning av grundläggande vuxenutbildning i matematik i delkurser c, d, e och f. 150 verksamhetspoäng vardera. Bakgrund Den nya kursplanen i matematik för grundläggande vuxenutbildning börjar gälla
Skolverkets förslag till kursplan i matematik i grundskolan. Matematik
Matematik Matematiken har en mångtusenårig historia med bidrag från många kulturer. Den har utvecklats ur människans praktiska behov och hennes naturliga nyfikenhet och lust att utforska. Matematisk verksamhet
2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ
Matematik, 600 verksamhetspoäng Ämnet handlar bland annat om mängder, tal och geometriska figurer. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska
Förslag den 25 september Matematik
Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Kurskod: GRNMAT2 Verksamhetspoäng: 600
Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 lust att utforska matematiken som sådan. Matematisk verksamhet är till sin lad till den samhälleliga, sociala och tekniska utvecklingen. Kunskaper
Centralt innehåll. I årskurs 1.3
3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.
Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 9
PLANERING OCH BEDÖMNING MATEMATIK ÅK 9 TERMINSPLAN HÖSTTERMINEN ÅK 9: 1 1.1 TALMÄNGDER 2 1.2 NEGATIVA TAL 3 FORTS. 1.2 NEGATIVA TAL 4 1.3 POTENSER 5 1.4 RÄKNA MED POTENSER 6 TALUPPFATTNING + RESONERA 7
matematik Syfte Kurskod: GRNMAT2 Verksamhetspoäng: 600 1. KuRSplanER FöR KoMMunal VuxEnutBildninG på GRundläGGandE nivå 55
Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att
Kursplanen i matematik 2011 - grundskolan
Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust
Betygskriterier i matematik på Parkskolan Namn: Klass:
Betygskriterier i matematik på Parkskolan Namn: Klass: Taluppfattning Utvecklar sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform. Ha goda färdigheter i och kunna
ämnesområden. Funktioner och räta linjens ekvation. Hur funktioner kan användas för att undersöka förändring, förändringstakt och andra samband.
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Pedagogisk planering i matematik
Pedagogisk planering i matematik Myrstacken Äldre årskurs 6, Hällby skola L= mest för läraren E= viktigt för eleven Gäller för första delen av HT15 Förankring i kursplanen - L Syfte L Eleven ska genom
Matematikpolicy Västra skolområdet i Linköping
Matematikpolicy Västra skolområdet i Linköping Syfte Denna matematikpolicy är framtagen i syfte att underlätta och säkerställa arbetet med barns och elevers matematiska utveckling på förskolorna och skolorna
Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik
Betyg i årskurs 6 Betyg i årskurs 6, respektive årskurs 7 för specialskolan, träder i kraft hösten 2012. Under läsåret 2011/2012 ska kunskapskraven för betyget E i slutet av årskurs 6 respektive årskurs
BILDER AV SKOLAN. - Vad är det som driver kunskapsbildningen? - Hur ser bilden av framtidens skola ut? Mikael Alexandersson
BILDER AV SKOLAN - Vad är det som driver kunskapsbildningen? - Hur ser bilden av framtidens skola ut? Mikael Alexandersson DRAMATURGIN KOMPETENSBEGREPPET DE NYA GRÄNSERNA SÄRSKILJANDETS PRINCIP Från trygga
MATEMATIK 5.5 MATEMATIK
5.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Syfte. Malmö stad Komvux Malmö Södervärn PRÖVNING. prövning grundläggande matematik
prövning grundläggande matematik Malmö stad Komvux Malmö Södervärn PRÖVNING Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer.
MATEMATIK 3.5 MATEMATIK
TETIK 3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.
Första sidan. Svenska elevers matematikkunskaper i grund- och gymnasieskolan samt elevers fysikkunskaper i gymnasiet
Första sidan Svenska elevers matematikkunskaper i grund- och gymnasieskolan samt elevers fysikkunskaper i gymnasiet TIMSS 2007 & TIMSS Advanced 2008 Båda studierna visar på en betydande negativ kunskapsutveckling
MATEMATIK 3.5 MATEMATIK
3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Bedömning för lärande i matematik
Bedömning för lärande i matematik Vilka har arbeta med materialet Varför ser det ut som det gör När och hur kan du som lärare använda materialet Katarina Kjellström PRIM-gruppen Vilka har deltagit i arbetet
Lgr 11 matriser i Favorit matematik 4 6
Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor
TIMSS Advanced 2008. Vad kan den användas till? Peter Nyström Umeå universitet. Peter Nyström Umeå universitet. Ett syfte med TIMSS är
TIMSS Advanced 2008 Vad kan den användas till? Peter Nyström Umeå universitet Ett syfte med TIMSS är att beskriva och jämföra elevprestationer både nationellt och internationellt samt redovisa elevernas
Kursplan för Matematik
Sida 1 av 5 Kursplan för Matematik Inrättad 2000-07 SKOLFS: 2000:135 Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematik som behövs för
Dagens innehåll 2014-10-27. Bedömning för lärande i matematik. PRIM-gruppen. Katarina Kjellström Inger Ridderlind Anette Skytt
Bedömning för lärande i matematik Mullsjö 16 juni 2014 Katarina Kjellström Inger Ridderlind Anette Skytt PRIM-gruppen Dagens innehåll Vad är syftet med detta bedömningsstöd Vilka har arbeta med materialet
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
Arbetsområde: Huvudsakligt ämne: Matematik, åk 4-6 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa
Kursplan för matematik År 1-5 Rösjöskolan TÄBY KOMMUN
RUMSUPPFATTNING GEOMETRI OCH MÄTNING MATEMATIK REDOVISNING OCH MATEMATISKT SPRÅK TALUPPFATTNING, OCH RÄKNEMETODER STATISTIK Kursplan för matematik År 1-5 Rösjöskolan TÄBY KOMMUN Kursplan i matematik Lgr
Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret
Balderskolan, Uppsala musikklasser 2009 Matematik Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret läsa och skriva tal inom talområdet 0 10 000 räkna de fyra räknesätten med olika metoder
Sammanställning av de 114 diagnosernas indelning i områden och delområden
Sammanställning av de 114 diagnosernas indelning i områden och delområden Områden Delområden Diagnoser Markering Nya diagnoser Diagnoser där någon uppgift är ändrad Nya diagnoser upp till årskurs 6 Nya
NYA KURSPLANER FÖR GRUNDSKOLAN MATEMATIK GRUNDSKOLAN
NYA KURSPLANER FÖR GRUNDSKOLAN Den 17 mars 1994 fastställde regeringen KURSPLANER FÖR GRUNDSKOLAN att gälla i årskurserna 1 7 från läsåret 1995/96, i årskurs 8 läsåret 1996/97 och i årskurs 9 läsåret 1997/98.
Luleå universitet 16 mars 2012 PRIM-gruppen Astrid Pettersson
Kunskapskrav och nationella prov i matematik Luleå universitet 16 mars 2012 PRIM-gruppen Astrid Pettersson Disposition PRIM-gruppens uppdrag Bedömning Lgr 11 och matematik Det nationella provsystemet PRIM-gruppens
Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8
PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 TERMINSPLAN HÖSTTERMINEN ÅK 8: 1 1.1 ANDELEN 2 1.2 HÖJNING OCH SÄNKNING 3 FORTS. 1.2 HÖJNING OCH SÄNKNING 4 1.3 HUR STOR ÄR DELEN 1 5 AKTIVITET + 1.4 HUR STOR ÄR
Lärarenkät Matematik. Årskurs 8 TRENDS IN INTERNATIONAL MATHEMATICS AND SCIENCE STUDY. OBS! Vik och riv försiktigt!
OBS! Vik och riv försiktigt! TRENDS IN INTERNATIONAL MATHEMATICS AND SCIENCE STUDY Lärarenkät Matematik Årskurs 8 TIMSS 2015 Skolverket 106 20 Stockholm IEA, 2014 Lärarenkät Din skola är utvald att delta
_ kraven i matematik åk k 6
Förmågor och värdeord v _ kraven i matematik åk k Till vilka förmågor refererar värdeorden i kursplanen årskurs?. att lösa problem på ett [välfungerande/relativt väl fungerande/i huvudsak fungerande] sätt.
Studenter i lärarprogrammet Ma 4-6 I
Ma 4-6 I Provmoment: Ladokkod: Tentamen ges för: Matematik 4hp Studenter i lärarprogrammet Ma 4-6 I 15 högskolepoäng TentamensKod: Tentamensdatum: 12-08-16 Tid: 09.00-13.00 Hjälpmedel: Skrivmaterial och
2014-09-26. Dagens innehåll. Syftet med materialet är att. Bedömning för lärande i matematik. Katarina Kjellström
Bedömning för lärande i matematik Växjö 18 september 2014 Katarina Kjellström PRIM-gruppen Dagens innehåll Vad är syftet med detta bedömningsstöd Vilka har arbeta med materialet Varför ser det ut som det
2015-03-11. Kunskapskrav. Materialet består av flera olika komponenter.
Bedömning för lärande i matematik Dagens innehåll Biennette i Malmö 15 mars 2015 Katarina Kjellström Olika bedömningsstöd i matematik Vad är syftet med bedömningsstödet för åk 1-9 Vilka har arbeta med
Under det senaste året har Nämnarens
jukka törnroos Matematikkunskaper i Finland i internationell jämförelse Här granskas finska resultat i PISA 2003 och TIMSS 1999 närmare. Eleverna som deltog i PISA 2003 i Finland gick i årskurs 8 eller
EXAMENSARBETE. Matematikkunskapernas försämring i grundskolan
EXAMENSARBETE 2005:054 Matematikkunskapernas försämring i grundskolan Susanne Ericsson Camilla Svanberg Luleå tekniska universitet Lärarutbildning Allmänt utbildningsområde C-nivå Institutionen för Utbildningsvetenskap
Remissversion av kursplan i matematik i grundskolan. Matematik. Syfte
Matematik Syfte Matematiken har en mångtusenårig historia med bidrag från många kulturer och har utvecklats ur människans praktiska behov och naturliga nyfikenhet. Matematiken är kreativ och problemlösande
Arbetsområde: Jag får spel
Arbetsområde: Jag får spel Huvudsakligt ämne: Matematik, åk 7-9 Läsår: Tidsomfattning: 6-9 lektioner à 60 minuter Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för
22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod:
SMID Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 3hp Studenter i inriktningen GSME 22,5 högskolepoäng Tentamensdatum: 12-08-30 Tid: 09.00-13.00 Hjälpmedel: Inga Totalt antal poäng på
INTERNATIONELLA STUDIER RAPPORT TIMSS Uppgifter i matematik, årskurs 8
RAPPORT 401 2014 INTERNATIONELLA STUDIER TIMSS 2011 Uppgifter i matematik, årskurs 8 Beställningsadress: Fritzes kundservice 106 47 Stockholm Telefon: 08-690 95 76 Telefax: 08-690 95 50 E-post: skolverket@fritzes.se
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
Arbetsområde: Huvudsakligt ämne: Negativa tal Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa problem
Nationella strävansmål i matematik. Skolan skall i sin undervisning i matematik sträva efter att eleven
Nationella strävansmål i matematik Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära
Lokal planering i Matematik, fskkl Moment Lokalt mål Strävansmål Metod
Lokal planering i Matematik, fskkl. 080415 Grundläggande taluppfattning 1-10, talkamrater 1-10. Träna begrepp som före/efter, mer/mindre, hälften/dubbelt. Parbildning. Ordningstal Längd meter. Vikt kg.
Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning
Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:
Lokal planering i matematik
2007-05-16 Lokal planering i matematik gemensam för Ölmbrotorps skola, Ervalla skola, Hovstaskolan, Lillåns södra skola, Lillåns norra skola och Lillåns skola 7-9 2007-05-16 1 Bakgrund Detta är ett dokument
7E Ma Planering v45-51: Algebra
7E Ma Planering v45-51: Algebra Arbetsform under en vecka: Måndagar (40 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar
Lärarenkät. MATEMATIK Årskurs 8. Skolverket Stockholm
q i Lärarenkät MATEMATIK Årskurs 8 Skolverket 106 20 Stockholm International Association for the Evaluation of Educational Achievement Copyright IEA, 2007 j h Din skola har samtyckt till att delta i TIMSS
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Lokal pedagogisk planering i matematik för åk 8
Lokal pedagogisk planering i matematik för åk 8 Arbetsområde Geometri kap. 3 PRIO Syfte http://www.skolverket.se/laroplaner-amnen-ochkurser/grundskoleutbildning/sameskola/matematik#anchor2 formulera och
Lokala mål i matematik
Lokala mål i matematik År 6 År 7 År 8 År 9 Taluppfattning (aritmetik) förstår positionssystemets uppbyggnad med decimaler ex: kan skriva givna tal adderar decimaltal ex: 15,6 + 3,87 subtraherar decimaltal
Undervisningen i ämnet matematik ska ge eleverna förutsättningar att utveckla följande:
Matematik Skolverkets förslag, redovisat för regeringen 2010-09-23. Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans
Samband och förändringar Olika proportionella samband, däribland dubbelt och hälften.
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Matematik 1A 4 Potenser
Matematik 1A 4 Potenser förklara begrepp t ex. potens, bas, exponent och grundpotensform (Nivå E C) tolka, skriva och räkna med tal i grundpotensform (Nivå E A) helst kunna redogöra för räkneregler för
Resonemangsförmåga. Örjan Hansson, Högskolan Kristianstad
Modul. Undervisa matematik utifrån förmågorna Del 5: Resonemangsförmåga Resonemangsförmåga Örjan Hansson, Högskolan Kristianstad Resonemangsförmåga handlar om att utveckla ett logiskt och systematiskt
Bedömning för lärande i matematik
HANDLEDNING TILL Bedömning för lärande i matematik FÖR ÅRSKURS 1 9 1 Handledning I denna handledning ges förslag på hur du kan komma igång med materialet Bedömning för lärande i matematik åk 1 9. Du börjar
TIMSS 2015 RAPPORT Svenska grundskoleelevers kunskaper i matematik och naturvetenskap i ett internationellt perspektiv
RAPPORT 448 2016 INTERNATIONELLA STUDIER TIMSS 2015 Svenska grundskoleelevers kunskaper i matematik och naturvetenskap i ett internationellt perspektiv TIMSS 2015 Svenska grundskoleelevers kunskaper i
ARBETSPLAN MATEMATIK
ARBETSPLAN MATEMATIK Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt värdera
INTERNATIONELLA STUDIER RAPPORT TIMSS Uppgifter i matematik, årskurs 4
RAPPORT 400 2014 INTERNATIONELLA STUDIER TIMSS 2011 Uppgifter i matematik, årskurs 4 Beställningsadress: Fritzes kundservice 106 47 Stockholm Telefon: 08-690 95 76 Telefax: 08-690 95 50 E-post: skolverket@fritzes.se
Lokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 4. Samband och förändring Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
Lgr 11, miniräknare och skrivmaterial. 33 p 20 p. Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in.
Matematik för alla 15 högskolepoäng Provmoment: Matematik 3hp Ladokkod: Tentamen ges för: Studenter i lärarprogrammet SMEN/GSME/MIG 2 TentamensKod: Tentamensdatum: 12-02-03 Tid: 09.00-13.00 Hjälpmedel:
DIAMANT. NaTionella DIAgnoser i Matematik. Ett diagnosmaterial i matematik för skolåren årskurs F- 9. Anpassat till Lgr 11. Löwing januari 2013
DIAMANT NaTionella DIAgnoser i Matematik Ett diagnosmaterial i matematik för skolåren årskurs F- 9 Anpassat till Lgr 11 Diamantmaterialets uppbyggnad 6 Områden 22 Delområden 127 Diagnoser Till varje Område
Np MaA vt Innehåll
Innehåll Bedömningsanvisningar Tidsbunden del... 3 Allmänna bedömningsanvisningar... 3 Positiv bedömning... 3 Uppgifter där endast svar fordras... 3 Uppgifter där fullständig redovisning fordras... 3 Bedömning
Ämnesplan i matematik för Häggenås, Bringåsen och Treälven
Ämnesplan i matematik för Häggenås, Bringåsen och Treälven (2009-05-14) Namn Utarbetad under läsåret 08/09 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik
Centralt innehåll som vi arbetar med inom detta område:
BRÅK & PROCENT PEDAGOGISK PLANERING/KUNSKAPSKRAV MATEMATIK Ö7 HT 2012 Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att ü formulera och lösa problem med hjälp
Kunskapskrav och nationella prov i matematik
Kunskapskrav och nationella prov i matematik Luleå universitet 16 mars 2012 PRIM-gruppen Astrid Pettersson Disposition PRIM-gruppens uppdrag Bedömning Lgr 11 och matematik Det nationella provsystemet PRIM-gruppens
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Röda tråden. Skyttorps skola, Vattholmaskolan, Pluggparadiset, Storvretaskolan och Ärentunaskolan Reviderad:
Matematik Åk 1 Åk 2 Åk 3 Taluppfattning och tals användning. Naturliga tal och deras egenskaper samt hur talen kan delas upp och hur det kan användas för att ange antal och ordning. Kunna läsa och skriva
Kap 1: Aritmetik - Positiva tal - " - " - " - " - - " - " - " - " -
År Startvecka Antal veckor 2013 34 18 Planering för ma 1b/c - ma 5000- boken OBS: För de i distansgruppen, meddela lärare innan prov. (justeringar för 1c ännu ej genomförda) Vecka Lektio n (2h) Datum Kapitel
Matematik 5000 Kurs 1a röd lärobok eller motsvarande., ISBN 978-91-27-42156-1. Prövningen är skriftlig, eventuellt kompletterad med en muntlig del
prövning matematik 1a Malmö stad Komvux Malmö Södervärn PRÖVNING PRÖVNINGSANVISNINGAR Prövningen avser Kurskod Matematik 1a MATMAT01a Gymnasiepoäng 100 Läromedel Prövningsutformning Bifogas Matematik 5000
8F Ma Planering v45-51: Algebra
8F Ma Planering v45-51: Algebra Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar
Med fokus på matematik
Med fokus på matematik Analys av samstämmighet mellan svenska styrdokument och den internationella studien TIMSS 2015 Samuel Sollerman och Astrid Pettersson Med fokus på matematik Analys av samstämmighet
"Läsårs-LPP med kunskapskraven för matematik"
"Läsårs-LPP med kunskapskraven för matematik" Grundskola 4 6 1 LPP för hela läsåret med tillhörande kunskapskrav i matrisform Skapad 2016-08-17 av Charlotte Steinwig i Lerbäckskolan 4-6, Lund Grundskolor
Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer
Matematik Steg: Bas ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i talområdet 0-10 bråk- och decimalform ordningstal upp till 5 ha en grundläggande rumsuppfattning och kunna
Matematikplanering 3 geometri HT-12 VT-13 7 a KON
Matematikplanering 3 geometri HT-12 VT-13 7 a KON MÅL Grundkurs Mäta (med gradskiva) och beräkna vinklar Känna till triangelns vinkelsumma och använda den för att räkna ut vinklar Kunna namnen på några
Om Lgr 11 och Favorit matematik 4 6
Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med
DIAMANT. NaTionella DIAgnoser i MAtematik. En diagnosbank i matematik för skolåren före årskurs 6.
DIAMANT NaTionella DIAgnoser i MAtematik En diagnosbank i matematik för skolåren före årskurs 6 Matematikdelegationens betänkande Det är vår övertygelse att alla barn och ungdomar som kan klara en normal
International Civic and Citizenship Education Study 2009 (ICCS)
Vetenskapsrådets forskarmöte om internationella studier på skolområdet 2007-02-02 International Civic and Citizenship Education Study 2009 (ICCS) I detta blad finns information om: Bakgrund och syfte Instrument
Studenter i lärarprogrammet GF(11GF20) 46 p G: 28 p VG: 38 p
11GF20 MaI Provmoment: Ladokkod: Tentamen ges för: Matematik 0,5 hp Studenter i lärarprogrammet GF(11GF20) 15 högskolepoäng TentamensKod: Tentamensdatum: 18-05-22 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel
Identifikationsetikett Umeå universitet Enheten för pedagogiska mätningar 901 87 UMEÅ Skol-ID: Stratum ID: Huvudstudie Skolenkät Årskurs 8 Din skola har samtyckt till att delta i TIMSS 2003, en stor internationell
Ämnesprovet i matematik i årskurs 6, 2016/2017
Anette Nydahl och Inger Ridderlind PRIM-gruppen, Stockholms universitet Inledning I denna rapport redovisas resultat från PRIM-gruppens insamling av lärarnas svar på en enkät och elevernas resultat från
8G Ma: Bråk och Procent/Samband
8G Ma: Bråk och Procent/Samband Syftet undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera
Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se.
Matematik Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. ADDITION, SUBTRAKTION, DIVISION OCH MULTIPLIKATION.
Bagarmossens skolas kravnivåer beträffande tal och talens beteckningar som eleven ska ha uppnått efter:
Matematik 1-5 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik och
TESTVERSION. Inledande text, Diamant
Inledande text, Diamant Diamant är en diagnosbank i matematik som består av 55 diagnoser, avsedda för grundskolan. Fokus ligger på grundläggande begrepp och färdigheter. Tanken med diagnoserna är att de
INTRESSEVÄCKANDE UNDERVISNING I MATEMATIK. Izet Omanovic, förstelärare i matematik Söderkullaskolan i Malmö
INTRESSEVÄCKANDE UNDERVISNING I MATEMATIK Izet Omanovic, förstelärare i matematik Söderkullaskolan i Malmö MIN AMBITION Inspirera lärare att arbeta med eget undervisningsmaterial som är anpassat efter
Matematikundervisningen i fokus
Matematikundervisningen i fokus 8.30-10.00 Föreläsning 10.00-10.30 Kaffe 10.30-11.30 Workshop F-5 i sal 6-9 i sal 11.30-12.00 Återsamling i föreläsningssalen. Utvärdering och avslutning. TIMSS advanced,
Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. En uppgift per blad och inga svar på baksidan av bladen Lycka till!
Matematik 4-6 II Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 4 hp Studenter i lärarprogrammet LAG 4-6 T3 15 högskolepoäng Tentamensdatum: 15-01-15 Tid: 09.00 13.00 Hjälpmedel: Lgr 11,