Syntax, Semantik, Pragmatik
|
|
- Oliver Hedlund
- för 8 år sedan
- Visningar:
Transkript
1 Semantik Hercules Dalianis NADA-KTH Tel: Hercules Dalianis sid 1 Syntax, Semantik, Pragmatik Syntax (grek. ordning) Bestämmer ordningen mellan symbolerna Semantik (grek. betydelse) Bestämmer hur symbolerna är relaterade till de objekt de beskriver Pragmatik (grek. verklighet) Bestämmer hur symbolerna är relaterade till verkligheten, kommunikationen mellan människorna Hercules Dalianis sid 2 talat språk skrivet språk Metaforer (Grek. bort-transport) Ordspråk Idiom Kroppsspråk gester Intonation fonetisk analys morfologisk analys syntaktisk analys semantisk analys lexikal analys semantisk representation kunskapsrepresentation transfer (översättning) styrning av datasystem SQL generering Hercules Dalianis sid 3 Hercules Dalianis sid 4 Semantisk representation Kunskapsrepresentation Formellt språk Entydigt Syllogismer-SatsmönsterAristoteles (300 f. kr) Satslogik (Boole mitten av 1800 talet) Predikatlogik (Frege slutet på 1800 talet) Framerepresentation, (Minsky 1975) Conceptual Dependency (CD) Scripts (Schank 77) Semantiska nät Konceptuella strukturer, (Sowa 1984) Ontologier (Kunskap inte formalism) Hercules Dalianis sid 5 Hercules Dalianis sid 6 1
2 Montaguegrammatik / semantik Montague 1970 Situationssemantik (Barwise & Perry 1983) Stanford University Discourse Representation Theory (Kamp 1980) Slutsatsdragning Regel: Om det regnar, så blir det blött på marken. Observation: Det regnar. Slutsats: Det blir blött på marken. Deduktion: regel + observation -> slutsats (modus ponens) Induktion: observation + slutsats -> regel (modus tollens) Abduktion: regel + slutsats - (?!) -> obeservation Hercules Dalianis sid 7 Hercules Dalianis sid 8 Satslogik konnektiv: och,(&) eller (V), icke, om...så, implikation (=>), om och om endast så, ekvivalens (<=>) Symboler: a, b, lisa, pelle, springer, älskar,... Sanningsvärden,sann (s), falsk (f) lisa älskar pelle => pelle är snäll Predikatlogik I Predikatlogik tillkommer Kvantifierare: för alla( ), det existerar ( ), minst en Predikat generella Hercules Dalianis sid 9 Hercules Dalianis sid 10 Naturligt språk meningen Alla män älskar en kvinna Har två predikatlogikrepresentationer: 1) x(man(x) -> Y(kvinna(Y) & älskar (X,Y))) 2) Y(kvinna(Y) & X(man(X) -> älskar (X,Y))) Det två första predikatlogikrepresentationer har två naturligt språk parafraser. 1) Betyder att Alla män i världen älskar minst en kvinna och denna kvinna är älskad av minst en man. 2) Alla män i världen älskar minst en kvinna och denna kvinna är älskad av alla män or alternative: Det existerar minst en kvinna som är älskad av varje man som är älskad av varje man i världen. Varje man älskar samma kvinna eller kvinnor. Hercules Dalianis sid 11 Prolog Prolog är som predikatlogik Prolog har dock ingen existenskvantifierare och ingen riktig negation Inbyggd teorembevisare Prologklausulerna är en axiommängd där ett teorem (en fråga) skall bevisas genom att man negerar teoremet. Hercules Dalianis sid 12 2
3 Lisa älskar alla män. Pelle är en man x (man(x) => älskar(lisa,x)) man(pelle) älskar(lisa,x) :- man(x) man(pelle) Conceptual Dependency (CD) Entydig mening i CD (Interlingua) Primitive acts PTRANS (physical transfer), PROPEL (physical force), MTRANS (mental transfers, like tell) ATRANS (represents transfer of possession of a physical object from one person to another.) 11 primitiver (1977) Hercules Dalianis sid 13 Hercules Dalianis sid 14 John gives Mary a book: o R +---> Mary John <===> ATRANS <--- book < > John "o" betyder att boken är Atrans objekt "R" relation is a mottagare-givare beroende (recipient-donor dependency between),mellan Mary, John, and the book. Scripts Example: The restaurant script. $RESTAURANT o --> inside(&rest.) Go in. &PATRON <=> PTRANS <-- &PATRON - ^ --< c Jack went to a restaurant. Sit down. &PATRON <=> PTRANS Look at the menu. ^-c- MTRANS Decide what to order. ^-c- MBUILD Order your meal. ^-c- MTRANS He ordered a hamburger. (Wait.) Waiter brings food. ^-c- PTRANS Eat. ^-c- INGEST Pay. ^-c- ATRANS He paid... Tip waiter. ^-c- ATRANS Leave. ^-c- PTRANS...and left. Hercules Dalianis sid 15 Hercules Dalianis sid 16 Framerepresentationer Frames, slot och slotvärden Arv och procedurer Car I SA vehicle Car:Volvo 740 Color:red Nr_of_Wheels: four Type_of_engine: B 41 Owner: Hercules Dalianis Semantiska nät Hercules Dalianis sid 17 Hercules Dalianis sid 18 3
4 Ontologier CYC Wordnet Ord -> Begrepp Mångspråkiga ontologier Engelska- Japanska för Maskinöversättningen Till varje syntaxregel hör en semantisk regel Hercules Dalianis sid 19 Hercules Dalianis sid 20 Montague grammatik Montague 1970 Till varje syntaktisk regel hör en semantisk regel Kompositionalitetsprincipen (Freges Princip) Mängdlära, predikatlogik,modallogik, lambdakalkyl, typteori Möjligvärldssemantik Ett antal möjliga världar Tolkning sann i en värld, falsk i de andra Katten Misse sover, sann i en värld, falsk i alla andra världar. Montaguegrammatik standardlösning Hercules Dalianis sid 21 Hercules Dalianis sid 22 Situationssemantik Barwise & Perry 1981 Stanford University Situationer och situationsschema Yttrandesituationer Beskriven situation Bakgrundssituationen Lexical eller fonetisk analys istället för syntaktisk analys Tolkning av de olika situationerna En situation ger en partiell tolkning av en situation Flervärd logik En tillämpning kommer från Oslo Universitet, Vestre 1988 Frågor är ett ofullständigt situationsschema, som returneras ifyllda som svar Hercules Dalianis sid 23 Hercules Dalianis sid 24 4
5 DRT och DRS DRT Discourse Representation Theory DRS Discourse Representation Structure Hans Kamp En hel text kan formaliseras (Logisk semantik tar en sats i taget) Korsreferens och referens markerare. Sanning har med att finna individer som korresponderar till referensmarkerare Hercules Dalianis sid 25 s --> np, vp. np --> det, noun. np --> pn. vp --> iv. vp --> tv, np. DCG det --> [a]. det --> [every]. noun --> [man]. noun --> [woman]. pn --> [pelle]. pn --> [lisa]. tv --> [loves]. iv --> [lives] Hercules Dalianis sid 26 DCG-syntaxträd s(s(np(x),vp(y))) --> np( X), vp(y). np(np(det(x),noun(y))) --> det(x), noun(y). np(np(x)) --> pn(x). vp(vp(iv(x)) --> iv(x). vp(vp(tv(x),np(y))) --> tv(x), np(y). det(a) --> [a]. det(every) --> [every]. noun(man) --> [man]. noun(woman) --> [woman]. pn(pelle) --> [pelle]. pn(lisa) --> [lisa]. tv(loves) --> [loves]. iv(lives) --> [lives] Hercules Dalianis sid 27 Hercules Dalianis sid 28 s(p) --> np(x,p1,p), vp(x,p1). np(x,p1,p) --> det(x,p2,p1,p), noun(x,p3), rel_clause(x,p3,p2). np(x,p,p) --> pn(x). DCG-Montague det(x,p1,p2,all(x,(p1->p2))) --> [every]. det(x,p1,p2,exists(x,(p1&p2))) --> [a]. noun(x,man(x)) --> [man]. noun(x,woman(x)) --> [woman]. pn(john) --> [pelle]. pn(john) --> [lisa]. vp(x,p) -->tv(x,y,p1),np(y,p1,p). vp(x,p) --> iv(x,p). tv(x,y,loves(x,y)) --> [loves]. iv(x,lives(x)) --> [lives]. rel_clause(x,p1,(p1&p2)) --> [that], vp(x,p2). rel_clause(_,p,p) --> [ ]. s(x) :- s(x,[every, man, loves, a, woman],[]). Hercules Dalianis sid 29 5
Semantik och pragmatik (Serie 4)
Semantik och pragmatik (Serie 4) Satser och logik. Mats Dahllöf Institutionen för lingvistik och filologi April 2015 1 / 30 Så här långt (satslogik) Konjunktion (p q): att två enklare satser båda är uppfyllda.
Innehåll. Föreläsning 7. Satslogiken är för grov. Samma sak i predikatlogik: Första ordningens predikatlogik. Logik med tillämpningar
Innehåll Föreläsning 7 Logik med tillämpningar 99-03-01 Första ordningens predikatlogik Objekt, predikat, kvantifierare Funktioner, termer, wffs Bindning och räckvidd Tolkningar och värderingar Satisfiering,
Vad är semantik? LITE OM SEMANTIK I DATORLINGVISTIKEN. Språkteknologi semantik. Frågesbesvarande
LITE OM SEMANTIK I DATORLINGVISTIKEN (FORMELL SEMANTIK) Vad är semantik? Form (abstrakt struktur): grammatik Innehåll (betydelse): semantik Användning: pragmatik/diskurs Mats Dahllöf Språkteknologisk motivation
Föreläsning 5. Deduktion
Föreläsning 5 Deduktion Hur ett deduktivt system fungerar Komponenter - Vokabulär Ett deduktivt system använder ett visst slags språk som kan kallas för systemets vokabulär. I mindre formella fall är kanske
Tommy Färnqvist, IDA, Linköpings universitet. 2 Strukturer 2 2.1 Domäner... 2 2.2 Tolkningar... 3
Föreläsning 2 Semantik 729G06 Logikdelen Föreläsningsanteckningar i Programmering och logik 27 januari 2014 Tommy Färnqvist, IDA, Linköpings universitet 2.1 Innehåll Innehåll 1 Lite mer syntax 1 2 Strukturer
Filosofisk Logik (FTEA21:4) föreläsningsanteckningar/kompendium. v. 2.0, den 29/ III. Metalogik 17-19
Filosofisk Logik (FTEA21:4) föreläsningsanteckningar/kompendium IV v. 2.0, den 29/4 2013 III. Metalogik 17-19 Modeller för satslogiken 18.1 Vi har tidigare sagt att en modell är en tolkning av en teori
FTEA12:2 Filosofisk metod. Att värdera argumentation I
FTEA12:2 Filosofisk metod Att värdera argumentation I Dagens upplägg 1. Några generella saker att tänka på vid utvärdering av argument. 2. Grundläggande språkfilosofi. 3. Specifika problem vid utvärdering:
Semantik och pragmatik
Semantik och pragmatik OH-serie 4 http://stp.lingfil.uu.se/~matsd/uv/uv12/semp/ Mats Dahllöf Institutionen för lingvistik och filologi Januari 2012 Om barnet har svårt att andas eller har ont i bröstet
7, Diskreta strukturer
Objektorienterad modellering och diskreta strukturer 7, Diskreta strukturer Sven Gestegård Robertz Datavetenskap, LTH 2015 Modeller Matematiska modeller Kontinuerliga modeller Kontinuerliga funktioner
Datorlingvistisk grammatik I Institutionen för lingvistik och filologi Oktober 2007 Mats Dahllöf
UPPSALA UNIVERSITET Datorlingvistisk grammatik I Institutionen för lingvistik och filologi Oktober 2007 Mats Dahllöf http://stp.ling.uu.se/ matsd/uv/uv07/dg1/ Logisk semantik II 1 Predikatlogik, generella
Semantik och pragmatik (Serie 3)
Semantik och pragmatik (Serie 3) Satser och logik. Mats Dahllöf Institutionen för lingvistik och filologi April 2015 1 / 37 Logik: språk tanke (Saeed kapitel 4.) Satser uttrycker (ofta) tankar. Uttrycksrikedom
DD1350 Logik för dataloger. Fö 2 Satslogik och Naturlig deduktion
DD1350 Logik för dataloger Fö 2 Satslogik och Naturlig deduktion 1 Satslogik En sats(eller utsaga)är ett påstående som kan vara sant eller falskt. I satslogik(eng. propositionallogic) representeras sådana
7, Diskreta strukturer
Objektorienterad modellering och diskreta strukturer 7, Diskreta strukturer Sven Gestegård Robertz Datavetenskap, LTH 2013 1 Inledning 2 Satslogik Inledning Satslogiska uttryck Resonemang och härledningar
Logisk semantik I. 1 Lite om satslogik. 1.1 Konjunktioner i grammatisk bemärkelse. 1.2 Sant och falskt. 1.3 Satssymboler. 1.
UPPSALA UNIVERSITET Datorlingvistisk grammatik I Institutionen för lingvistik och filologi Oktober 2007 Mats Dahllöf http://stp.ling.uu.se/ matsd/uv/uv07/dg1/ Logisk semantik I 1 Lite om satslogik 1.1
Tommy Färnqvist, IDA, Linköpings universitet. 1 Kursadministration 1. 2 Introduktion 2 2.1 Varför logik?... 2 2.2 Satslogik... 2
Föreläsning 1 Syntax 729G06 Logikdelen Föreläsningsanteckningar i Programmering och logik 21 januari 2014 Tommy Färnqvist, IDA, Linköpings universitet 1.1 Innehåll Innehåll 1 Kursadministration 1 2 Introduktion
729G06 Logik FÖRELÄSNING 1 ANDERS MÄRAK LEFFLER IDA/HCS
729G06 Logik FÖRELÄSNING 1 ANDERS MÄRAK LEFFLER IDA/HCS 160127 Vad är logik? Som ämne, område... 2 Läran om korrekta resonemang Följer slutsatserna av ens antaganden? 3 Alla hundar är djur. Alla enhörningar
Grundläggande logik och modellteori (5DV102)
Tentamen 2013-10-31 Grundläggande logik och modellteori (5DV102) M. Berglund och K. Markström Totalt antal uppgifter 11 Maximalt antal poäng 30 Krav för 3 i betyg 14 poäng Krav för 4 i betyg 19 poäng,
Pragmatik. Olika nivåer. Tumregler. Grice s samarbetsprinciper. Pragmatik och diskurs
Pragmatik och diskurs Hercules Dalianis NADA-KTH Email: hercules@nada.kth.se Tel: 08-790 91 05 http://www.nada.kth.se/~hercules Pragmatik Studerar vilken mening yttranden har i situationer (Leech, 1983)
En introduktion till predikatlogik
rasmus.blanck@gu.se FT1200, LC1510 och LGFI52 VT2017 (Premiss 1) (Premiss 2) (Slutsats) Alla människor är dödliga Sokrates är en människa Sokrates är dödlig Detta argument är intuitivt giltigt: Det finns
Sanningsvärdet av ett sammansatt påstående (sats, utsaga) beror av bindeord och sanningsvärden för ingående påståenden.
MATEMATISK LOGIK Matematisk logik formaliserar korrekta resonemang och definierar formellt bindeord (konnektiv) mellan påståenden (utsagor, satser) I matematisk logik betraktar vi påståenden som antingen
Varför är logik viktig för datavetare?
Varför är logik viktig för datavetare? 1. Datavetenskap handlar ofta om att automatisera processer som tidigare styrts av människor. Intuition, intelligens och mänskliga resonemang ersätts av beräkningar.
Generellt kan vi säga att för att vi ska värdera ett argument som bra bör det uppfylla åtminstone följande kriterier:
FTEA12:2 Föreläsning 3 Att värdera en argumentation I: Vad vi hittills har gjort: beaktat argumentet ur ett mer formellt perspektiv. Vi har funnit att ett argument kan vara deduktivt eller induktivt, att
DD1350 Logik för dataloger. Vad är logik?
DD1350 Logik för dataloger Fö 1 - Introduktion Vad är logik? Vetenskapen som studerar hur man bör resoneraoch dra slutsatser utifrån givna påståenden (=utsagor, satser). 1 Aristoteles (384-322 f.kr) Logik
Semantik och pragmatik
Semantik och pragmatik OH-serie 5 http://stp.lingfil.uu.se/~matsd/uv/uv12/semp/ Mats Dahllöf Institutionen för lingvistik och filologi Januari 2012 Så här långt Konjunktion (p q): att två enklare satser
A. MENING OCH SANNINSGVÄRDE HOS IDENTITETSPÅSTÅENDE. Freges utgångspunkt: mening och meningsfullhet hos identitetspåståenden
II. FREGE A. MENING OCH SANNINSGVÄRDE HOS IDENTITETSPÅSTÅENDE Freges utgångspunkt: mening och meningsfullhet hos identitetspåståenden antag att namn A står för objekt a och namn B står för objekt b antag
Avslutning. Vad? Hur? Anmärkningar inför tentan 2. Vad ska ni kunna?
Avslutning Anmärkningar inför tentan Vad ska ni kunna? Avslutning 1 Vad? Anmärkningar inför tentan 1 Att ha en bra förståelse för det som behandlades på föreläsningarna, inlämningsuppgifterna och gruppövningarna
Semantik och pragmatik
Semantik och pragmatik OH-serie 6 http://stp.lingfil.uu.se/~matsd/uv/uv13/semp/ Mats Dahllöf Institutionen för lingvistik och filologi Februari 2013 Tillämpningar av semantik allmänt Analys av grammatik:
Grundläggande logik och modellteori
Grundläggande logik och modellteori Kapitel 8: Predikatlogik Henrik Björklund Umeå universitet 2. oktober, 2014 Första ordningens predikatlogik Signaturer och termer Första ordningens predikatlogik Formler
FÖRELÄSNING 8 ANDERS MÄRAK LEFFLER IDA/HCS
729G06 Logik FÖRELÄSNING 8 ANDERS MÄRAK LEFFLER IDA/HCS 160309 Idag Sammanfattning*/uppsamling 2 Mer problemöversikt (och lite definitioner) Inte ersättning för andra föreläsningar! 3 Vad är enlogik? Syntax
FTEA12:2 Filosofisk Metod. Grundläggande argumentationsanalys II
TEA12:2 ilosofisk Metod Grundläggande argumentationsanalys II Dagens upplägg 1. Kort repetition. 2. Logisk styrka: några intressanta specialfall. 3. ormalisering: översättning från naturligt språk till
A. MENING OCH SANNINGSVÄRDE HOS IDENTITETSPÅSTÅENDE. antag att namn A står för objekt a och namn B står för objekt b antag att a och b är distinkta
FREGE, FÖRELÄSNINGSANTECKNINGAR HT17 IB A. MENING OCH SANNINGSVÄRDE HOS IDENTITETSPÅSTÅENDE Freges analys av identitetspåståenden antag att namn A står för objekt a och namn B står för objekt b antag att
FÖRELÄSNING 3 ANDERS MÄRAK LEFFLER IDA/HCS
729G06 Logik FÖRELÄSNING 3 ANDERS MÄRAK LEFFLER IDA/HCS 160208 Idag C-regeln, informell (och formell) inledning till predikatlogik (Bevis kommer senare.) 2 3 Vår (Snöfritt Cykla) (Vår Snöfritt) Cykla Lätt
p /\ q r DD1350 Logik för dataloger Kort repetition Fö 3 Satslogikens semantik
DD1350 Logik för dataloger Fö 3 Satslogikens semantik 1 Kort repetition Satslogik formellt språk för att uttrycka påståenden med variabler och konnektiv /\, \/,, t.ex. p /\ q r 1 Kort repetition Naturlig
Lite om bevis i matematiken
Matematik, KTH Bengt Ek februari 2013 Material till kursen SF1662, Diskret matematik för CL1: Lite om bevis i matematiken Inledning Bevis är centrala i all matematik Utan (exakta definitioner och) bevis
Satslogik grundläggande definitioner 3. Satslogik. Uppgift 1. Satslogikens syntax (välformade formler) Satslogikens semantik (tolkningar)
Satslogik grundläggande definitioner Satslogikens syntax (välformade formler) Satslogikens semantik (tolkningar) Modeller, logisk konsekvens och ekvivalens Några notationella förenklingar Kompletta mängder
K3 Om andra ordningens predikatlogik
KTH Matematik Bengt Ek Maj 2005 Kompletteringsmaterial till kursen 5B1928 Logik för D1: K3 Om andra ordningens predikatlogik Vi presenterar på dessa sidor kortfattat andra ordningens predikatlogik, vilket
Övningshäfte 1: Logik och matematikens språk
GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2014 INLEDANDE ALGEBRA Övningshäfte 1: Logik och matematikens språk Övning A Målet är att genom att lösa och diskutera några inledande uppgifter få erfarenheter
FTEA21:3 Spr akfilosofi F orel asning I Martin J onsson
FTEA21:3 Språkfilosofi Föreläsning I Martin Jönsson Att lära Varför Frege varken tror att ett ords mening är dess referens eller något mentalt. Freges egen teori om mening Tre semantiska principer Kompositionalitetsprincipen,
Filosofisk Logik. föreläsningsanteckningar/kompendium (FTEA21:4) v. 2.0, den 5/ Kompakthet och Löwenheim-skolemsatsen
Filosofisk Logik (FTEA21:4) föreläsningsanteckningar/kompendium VI v. 2.0, den 5/5 2014 Kompakthet och Löwenheim-skolemsatsen 19.6-19.7 Närhelst vi har en mängd satser i FOL som inte är självmotsägande
Grundläggande logik och modellteori (5DV102)
Tentamen 2014-01-10 Grundläggande logik och modellteori (5DV102) M. Berglund och K. Markström Totalt antal uppgifter 10 Maximalt antal poäng 30 Krav för 3 i betyg 1 Krav för 4 i betyg 19 poäng, vara minst
Grundläggande logik och modellteori
Grundläggande logik och modellteori Kapitel 3: Bevissystem, Hilbertsystem Henrik Björklund Umeå universitet 8. september, 2014 Bevissystem och Hilbertsystem Teorier och deduktionsproblemet Axiomscheman
Semantik och pragmatik (serie 5)
Semantik och pragmatik (serie 5) (Predikat)logik Mängdlära överkurs (och repetition för en del). Mats Dahllöf Institutionen för lingvistik och filologi April 2015 1 / 41 Korsning av två egenskaper E 1
Semantik och pragmatik
Semantik och pragmatik Lingvistik 1 vt06 Uppsala universitet 1 Nyckelord idag Semantik Fras- och satssemantik Semantiska roller Kompositionalitetsprincipen Metaforer och idiom Pragmatik Språklig kontext
MATEMATIKENS SPRÅK. Avsnitt 1
Avsnitt 1 MATEMATIKENS SPRÅK Varje vetenskap, liksom varje yrke, har sitt eget språk som ofta är en blandning av vardagliga ord och speciella termer. En instruktionshandbok för ett kylskåp eller för en
Viktiga frågor att ställa när ett argument ska analyseras och sedan värderas:
FTEA12:2 Föreläsning 2 Grundläggande argumentationsanalys II Repetition: Vid förra tillfället började vi se närmre på vad som utmärker filosofisk argumentationsanalys. Vi tittade närmre på ett arguments
Formell logik Kapitel 1 och 2. Robin Stenwall Lunds universitet
Formell logik Kapitel 1 och 2 Robin Stenwall Lunds universitet Kapitel 1: Atomära satser Drömmen om ett perfekt språk fritt från vardagsspråkets mångtydighet och vaghet (jmf Leibniz, Russell, Wittgenstein,
Logik och semantik. Mats Dahllöf, Plan. Semantik och pragmatik
Semantik och pragmatik Logik och semantik Mats Dahllöf, 2005-05-20. Plan Sanning och logik. Logik i lexikala begreppssystem. Logik i satsinnehåll. Aristotelisk logik. (En enkel typ av formalisering. För
Vad är det? Översikt. Innehåll. Vi behöver modeller!!! Kontinuerlig/diskret. Varför modeller??? Exempel. Statiska system
Vad är det? Översikt Discrete structure: A set of discrete elements on which certain operations are defined. Discrete implies non-continuous and therefore discrete sets include finite and countable sets
Avslutning. Vad? Hur? Anmärkningar inför tentan 2. Vad ska kunnas?
Avslutning Anmärkningar inför tentan Vad ska kunnas? Avslutning 1 Vad? Anmärkningar inför tentan 1 Att ha en bra förståelse för det som behandlades på föreläsningarna och gruppövningarna räcker i princip.
Formell logik Kapitel 3 och 4. Robin Stenwall Lunds universitet
Formell logik Kapitel 3 och 4 Robin Stenwall Lunds universitet Kapitel 3: De Booleska konnektiven Vi sade att predikaten och namnen kan variera mellan olika FOL Vi ska nu titta på några språkliga element
Filosofisk logik Kapitel 19. Robin Stenwall Lunds universitet
Filosofisk logik Kapitel 19 Robin Stenwall Lunds universitet Dagens upplägg Gödels fullständighetsteorem Sundhet och fullständighet Fullständighetsbeviset Vittneskonstanter Henkinteorin Eliminationsteoremet
Logik och modaliteter
Modallogik Introduktionsföreläsning HT 2015 Formalia http://gul.gu.se/public/courseid/70391/lang-sv/publicpage.do Förkunskaper etc. Logik: vetenskapen som studerar argument med avseende på (formell) giltighet.
7. FORMELL SATSLOGIK (SL)
7. FORMELL SATSLOGIK (SL) 7.1 VEM BEHÖVER FORMELL LOGIK? Ingen använder formell logik i det dagliga livet. Den logik vi använder, den naturliga eller intuitiva logiken, är, som vi sett, varierande och
Utsagor (Propositioner) sammansatta utsagor sanningstabeller logisk ekvivalens predikat (öppna utsagor) kvantifierare Section
Föreläsning 1 Utsagor (Propositioner) sammansatta utsagor sanningstabeller logisk ekvivalens predikat (öppna utsagor) kvantifierare Section 1.1-1.3 i kursboken Definition En utsaga (proposition) är ett
*UXSS YQLQJ±/RJLNPHGWLOOlPSQLQJDUYW
*USS YQLQJ±/RJLNPHGWLOOlPSQLQJDUYW 8SSJLIW Här kommer några teoretiska frågor, skriv svaren med egna ord, dvs skriv inte av ohbilderna: a. Vad är en beslutsprocedur? En algoritm som terminerar och som
Föreläsning 6. pseudokod problemlösning logik algoritmer
Föreläsning 6 pseudokod problemlösning logik algoritmer Inledning Logik är läran om korrekt resonemang att kunna dra korrekta slutledningar utifrån det man vet. Vi gör detta ständigt utan att tänka på
D. x 2 + y 2 ; E. Stockholm ligger i Sverige; F. Månen är en gul ost; G. 3 2 = 6; H. x 2 + y 2 = r 2.
Logik Vid alla matematiskt resonemang måste man vara säker på att man verkligen menar det man skriver ner på sitt papper. Därför måste man besinna hur man egentligen tänker. Den vetenskap, som sysslar
Filosofisk Logik (FTEA21:4) föreläsningsanteckningar I. v. 2.0, den 24/4 2013
Filosofisk Logik (FTEA21:4) föreläsningsanteckningar I v. 2.0, den 24/4 2013 Om detta kompendium: Filosofiska institutionen, Lunds Universitet staffan.angere@fil.lu.se Förberedande Det här kompendiet är
Om semantisk följd och bevis
Matematik, KTH Bengt Ek december 2017 Material till kursen SF1679, Diskret matematik: Om semantisk följd och bevis Logik handlar bla om studiet av korrekta slutledningar, dvs frågan om när det är riktigt
Syntaktisk parsning (Jurafsky & Martin kapitel 13)
Syntaktisk parsning (Jurafsky & Martin kapitel 13) Mats Wirén Institutionen för lingvistik Stockholms universitet mats.wiren@ling.su.se DH2418 Språkteknologi DA3010 Språkteknologi för datorlingvister Föreläsning
Formell logik Kapitel 7 och 8. Robin Stenwall Lunds universitet
Formell logik Kapitel 7 och 8 Robin Stenwall Lunds universitet Kapitel 7: Konditionalsatser Kapitlet handlar om konditionalsatser (om-så-satser) och deras logik Idag: bevismetoder för konditionalsatser,
Formell logik Föreläsning 1. Robin Stenwall
Formell logik Föreläsning 1 Robin Stenwall Betygskriterier Mål Godkänt Väl godkänt Redogöra för grundprinciperna för härledning och översättning i sats- och predikatlogik. Utföra grundläggande översättningar
8 MODAL SATSLOGIK. omöjligt - inte omöjligt. tänkbart - inte tänkbart
8 MODAL SATSLOGIK 8.1 BEGREPPEN MÖJLIG OCH NÖDVÄNDIG Att det finns en skillnad mellan att ett påstående är möjligen sant, sant och nödvändigtvis sant är uppenbart. Det är möjligen sant att Aristoteles
TDDA94 LINGVISTIK, 3 poäng tisdag 19 december 2000
Lars Ahrenberg, sid 1(5) TENTAMEN TDDA94 LINGVISTIK, 3 poäng tisdag 19 december 2000 Inga hjälpmedel är tillåtna. Maximal poäng är 36. 18 poäng ger säkert godkänt. Del A. Besvara alla frågor i denna del.
Hornklausuler i satslogiken
Hornklausuler i satslogiken Hornklausuler (efter logikern Alfred Horn) är ett viktigt specialfall som tillåter effektiva algoritmer och ligger till grund för regelbaserade expertsystem och logiska programspråk
BER AKNINGSBARHET F OR DATALOGER. Kent Petersson. Institutionen for Datavetenskap Goteborgs Universitet / Chalmers Goteborg, Sweden
BER AKNINGSBARHET F OR DATALOGER Fran till P Kent Petersson Institutionen for Datavetenskap Goteborgs Universitet / Chalmers 412 96 Goteborg, Sweden ii Kent Petersson Department of Computer Science Goteborgs
Föreläsningsanteckningar och övningar till logik mängdlära
Inledande matematisk analys tma970, 010, logik, mängdlära Föreläsningsanteckningar och övningar till logik mängdlära Dessa öreläsningsanteckningar kompletterar mycket kortattat kap 0 och appendix B i Persson/Böiers,
Grundläggande logik och modellteori
Grundläggande logik och modellteori Kapitel 4: Konjunktiv och disjunktiv normalform Henrik Björklund Umeå universitet 15. september, 2014 CNF och DNF Konjunktiv normalform (CNF) Omskrivning av en formel
Sanningens paradoxer: om ändliga och oändliga lögnare
STEN LINDSTRÖM Sanningens paradoxer: om ändliga och oändliga lögnare 1. Inledning Lögnarparadoxen, i dess olika versioner, tycks ge vid handen att vår naiva förståelse av sanningspredikatet, uttryckt i
F. Drewes Datavetenskapens grunder, VT02. Lite logik
F Drewes 2002-05-23 Datavetenskapens grunder, VT02 Lite logik Den här texten är en sammanfattning av logikdelen i kursen Datavetenskapens grunder Den handlar om satslogik och predikatlogik, några av deras
Kommunikation. Språk och språkteknologier. Semiotik. Kommunikationsmodell. Saussures strukturalism. Finns betydelse? Teckenkod.
Kommunikation Språk och språkteknologier Rickard Domeij domeij@nada.kth.se Teckenkod ljud, skrift, gester, programkod... Verktyg kil, penna, tryckpress, dator... Medium lerplattor, böcker, radio, TV, internet...
Kompositionell semantik och λ-kalkyl
UPPALA UIVERITET http://stp.ling.uu.se/~matsd/uv/uv05/ads1/ Institutionen för lingvistik och filologi Mats Dahllöf mats.dahllof@lingfil.uu.se Algoritmer för datorlingvistisk semantik I, Föreläsningsanteckningar,
Logik I. Åsa Hirvonen Helsingfors universitet. Våren 2013
Logik I Åsa Hirvonen Helsingfors universitet Våren 2013 Inledning Logik är läran om härledning. Med hjälp av logiken kan vi säga när ett resonemang är korrekt och när det inte är det. För att kunna studera
DD1350 Logik för dataloger. Fö 7 Predikatlogikens semantik
DD1350 Logik för dataloger Fö 7 Predikatlogikens semantik 1 Kryssprodukt av mängder Om A och B är två mängder så är deras kryssprodukt A B mängden av alla par (a,b), där a A och b B. Ex: A={1,2}, B={3,4},
Kap. 7 Logik och boolesk algebra
Ka. 7 Logik och boolesk algebra Satslogik Fem logiska konnektiv: ej, och, eller, om-så, omm Begre: sats, sanningsvärde, sanningsvärdestabell tautologi, kontradiktion Egenskaer: Räkneregler för satslogik
DD1350 Logik för dataloger
DD1350 Logik för dataloger Fö 8 Axiomatiseringar 1 Modeller och bevisbarhet Sedan tidigare vet vi att: Om en formel Φ är valid (sann i alla modeller) så finns det ett bevis för Φ i naturlig deduktion.
Cristina Eriksson oktober 2001
Maskinöversättning Cristina Eriksson 660719-4005 d98-cer@nada.kth.se 15 oktober 2001 1 Sammanfattning Att låta en maskin översätta från ett språk till ett annat är ett forskningsområde som man lägger ner
Ontologier. Cassandra Svensson 2014-01-09
Ontologier Cassandra Svensson 2014-01-09 Sammanfattning Jag har läst Annika Flycht-Ericssons avhandling Design and Use of Ontoligies in information-providing Dialogue Systems. Med Annikas text som utgångspunkt
Föreläsning 8. Innehåll. Satisfierbarhet hos en formel. Logik med tillämpningar
Föreläsning 8 Logik med tillämpningar 000413 Innehåll Lite mer om värderingar och tolkningar Semantiska tablåer i predikatlogiken Kapitel 3.5 Satisfierbarhet hos en formel En formel A är satisfierbar om
DD1361 Programmeringsparadigm HT17
DD1361 Programmeringsparadigm HT17 Logikprogrammering 1 Dilian Gurov, KTH Delkursinnehåll Logisk versus procedurell läsning Kontrollflöde: Unifiering, Backtracking, Snitt Induktiva datatyper och rekursion
Något om logik och logisk semantik
UPPSALA UNIVERSITET Semantik och pragmatik (HT 08) Institutionen för lingvistik och filologi Mats Dahllöf http://stp.ling.uu.se/ matsd/uv/uv08/sempht/ Något om logik och logisk semantik 1 Språk och sanning
MATEMATIKENS SPRÅK. Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, lära oss
Explorativ övning 1 LMA100 vt 2003 MATEMATIKENS SPRÅK Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, lära oss förstå språket. Vi skall försöka utveckla vårt
Filosofisk logik Kapitel 15. Robin Stenwall Lunds universitet
Filosofisk logik Kapitel 15 Robin Stenwall Lunds universitet Dagens upplägg Första ordningens mängdlära Naiv mängdlära Abstraktionsaxiomet (eg. comprehension) Extensionalitetsaxiomet Små mängder Ordnade
Logik och kontrollstrukturer
Logik och kontrollstrukturer Flödet av instruktioner i ett programmeringsspråk bygger vi upp med hjälp av dess kontrollstrukturer. I C har vi exemplen if, if else, while, do while. Dessutom finns switch
MATEMATIKENS SPRÅK. Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt,
Explorativ övning 1 MATEMATIKENS SPRÅK Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, lära oss förstå språket. Vi skall försöka utveckla vårt matematiska språk,
Filosofisk Logik (FTEA21:4) föreläsningsanteckningar v , den 24/
Filosofisk Logik (FTEA21:4) föreläsningsanteckningar v. 2.1.1, den 24/11 2014 Om detta kompendium: Filosofiska institutionen, Lunds Universitet staffan.angere@fil.lu.se Förberedande Det här kompendiet
MA2047 Algebra och diskret matematik
MA2047 Algebra och diskret matematik Något om logik och mängdlära Mikael Hindgren 5 september 2018 Utsagor Utsaga = Påstående som har sanningsvärde Utsagan kan vara sann (S) eller falsk (F) öppen eller
Logik och bevisteknik lite extra teori
Logik och bevisteknik lite extra teori Inger Sigstam 2011-04-26 1 Satslogik (eng: propositional logic) 1.1 Språket Alfabetet består av följande symboler: satssymbolerna p 0, p 1, p 2,.... konnektiverna,,,,.
The microtheories and language of CYC KB. Anna Svedberg Artificiell Intelligens II Linköpings Universitet Ht 2010 (Kompletterad ht 2012)
The microtheories and language of CYC KB 890919 Artificiell Intelligens II Linköpings Universitet Ht 2010 (Kompletterad ht 2012) Innehållsförteckning 1 Inledning... 1 2 Uppbyggnad av CYC... 2 2.1 Kunskapsbasen...
729G09 Språkvetenskaplig databehandling
729G09 Språkvetenskaplig databehandling Modellering av frasstruktur Lars Ahrenberg 2015-05-04 Plan Formell grammatik språkets oändlighet regler Frasstrukturgrammatik Kontextfri grammatik 2 Generativ grammatik
Satssemantik. Semantik: Föreläsning 4 Lingvistik: 729G08 HT 2012 IKK, Linköpings universitet
Satssemantik Semantik: Föreläsning 4 Lingvistik: 729G08 HT 2012 IKK, Linköpings universitet 1 Dagens föreläsning Saeed 2009, kap.5-6 (Flera av exemplen här är anpassade från Saeed) Betydelse inom satser
Grundläggande logik och modellteori
Grundläggande logik och modellteori Kapitel 6: Binära beslutsdiagram (BDD) Henrik Björklund Umeå universitet 22. september, 2014 Binära beslutsdiagram Binära beslutsdiagram (Binary decision diagrams, BDDs)
FTEA21:3 Spr akfilosofi F orel asning III Martin J onsson
FTEA21:3 Språkfilosofi Föreläsning III Martin Jönsson En metodologisk poäng Frågan om vad x är och vad som bestämmer x är två olika frågor. Det är frågorna i fetstilt som är i fokus på den här kursen:
Inledande exempel. Levinson och informationsstruktur. Vad är informationsstruktur? Informationsstruktur och pragmatik
Pragmatik VT06 Informationsstruktur Informativitet och koherens i dialog och diskurs Inledande exempel 1. Vad gör du? Jag tittar ut genom fönstret 2. Tittar du in eller ut genom fönstret? Jag tittar ut
Grundläggande logik och modellteori
Grundläggande logik och modellteori Kapitel 7: SAT-lösare Henrik Björklund Umeå universitet 29. september, 2014 SAT En instans av SAT är en mängd av mängder av literaler. Exempel: {{p, q, r}, {p, q, s},
En introduktion till logik
rasmus.blanck@gu.se FT1200, LC1510 och LGFI52 VT2017 Först: Tack till Martin Kaså, som gett mig tillstånd att använda och bearbeta dessa ljusbilder. Vad är logik? Slogan: Logik undersöker vilka argument
Frasstrukturgrammatik
729G09 Språkvetenskaplig databehandling (2016) Frasstrukturgrammatik Marco Kuhlmann Institutionen för datavetenskap Korpusdata 1 Folkpensionen folkpension NOUN 2 dobj 2 får få VERB 0 root 3 man man PRON
10. Mängder och språk
Objektorienterad modellering och diskreta strukturer 10. Mängder och språk Sven Gestegård Robertz Institutionen för datavetenskap, LTH 2013 Rekaputilation Vi har talat om satslogik, predikatlogik och härledning
FL 6: Definite Clause Grammars (kap. 7)
FL 6: Definite Clause Grammars (kap. 7) Teori Introducerar kontextfria grammatikor och några besläktade begrepp Introducerar definite clause - grammatikor, Prologs sätt att jobba med kontextfria grammatikor
Logik. Dr. Johan Hagelbäck.
Logik Dr. Johan Hagelbäck johan.hagelback@lnu.se http://aiguy.org Vad är logik? Logik handlar om korrekta och inkorrekta sätt att resonera Logik är ett sätt att skilja mellan korrekt och inkorrekt tankesätt