7, Diskreta strukturer
|
|
- Pernilla Ek
- för 8 år sedan
- Visningar:
Transkript
1 Objektorienterad modellering och diskreta strukturer 7, Diskreta strukturer Sven Gestegård Robertz Datavetenskap, LTH 2013
2 1 Inledning 2 Satslogik Inledning Satslogiska uttryck Resonemang och härledningar Inledning 7, Diskreta strukturer 3/38
3 Modeller Matematiska modeller Kontinuerliga modeller Kontinuerliga funktioner Derivator, integraler Dierentialekvationer Diskreta modeller Program-modeller Mängder, relationer, funktioner Träd, grafer Språk, automater Logik Datastrukturer Objektorienterade modeller Inledning 7, Diskreta strukturer 4/38
4 Diskret matematik på några D-program Åk KTH CTH LiTH LTH 1 L 6 hp DM+L 7,5 hp DM 6 hp 2 DM 8 hp DM 3 hp L 6 hp DM+L 3 hp DM L diskret matematik logik Högskoleingenjörsprogrammet i Helsingborg har 4 poäng diskret matematik och logik. Inledning 7, Diskreta strukturer 5/38
5 Diskreta strukturer Logik logiska uttryck och resonemang Mängder, funktioner och relationer Formella språk, reguljära uttryck och grammatiker Turingmaskiner och frågan om P = NP Inledning 7, Diskreta strukturer 6/38
6 Symbolen = π = f(x) = x + 1 x 2 = = = 3 x = x + 1 Inledning 7, Diskreta strukturer 7/38
7 Symbolen f(x) x + 1 f x x + 1 f λx. x + 1 Inledning 7, Diskreta strukturer 8/38
8 1 Inledning 2 Satslogik Inledning Satslogiska uttryck Resonemang och härledningar Satslogik 7, Diskreta strukturer 9/38
9 Mål Efter att ha studerat detta kapitel och arbetat med övningar och programmeringsuppgifter skall du kunna 1 översätta påståenden i naturligt språk till satslogisk notation. 2 konstruera enkla bevis med naturlig härledning 3 avgöra om ett komplicerat bevis är korrekt konstruerat 4 analysera ett uttryck när regler för precedens och associativitet är givna. Satslogik : Inledning 7, Diskreta strukturer 10/38
10 Exempel: EM i fotboll 2008 Om Sverige vinner över eller spelar oavgjort mot Ryssland så går Sverige till kvartsnal. Detta är en sammansättning av tre stycken påståenden. Det blir tydligare med formuleringen Om Sverige vinner över Ryssland eller om Sverige spelar oavgjort mot Ryssland så går Sverige till kvartsnal. p q r Sverige vinner över Ryssland Sverige spelar oavgjort mot Ryssland Sverige går till kvartsnal Om p eller q, så r. Detta kan skrivas som (p q) r Satslogik : Inledning 7, Diskreta strukturer 11/38
11 Satslogik p, q,... variabler och eller inte, om... så, implicerar ekvivalent Satslogik : Satslogiska uttryck 7, Diskreta strukturer 12/38
12 Satslogiska uttryck P, Q,... står för godtyckliga satslogiska uttryck. p, q,... variabler (P Q) och, konjunktion (P Q) eller, disjunktion P inte, negation (P Q) om... så, implikation (P Q) ekvivalens Satslogik : Satslogiska uttryck 7, Diskreta strukturer 13/38
13 Elektriska kretsar Seriekoppling: Paralellkoppling: Satslogik : Satslogiska uttryck 7, Diskreta strukturer 14/38
14 ... och mängdlära B B B A A A A B A B B A Satslogik : Satslogiska uttryck 7, Diskreta strukturer 15/38
15 Aktivitet Om Sverige vinner mot Ryssland så får Sverige möta Holland i kvartsnalen och om Sverige förlorar så får Ryssland möta Holland. p q r s Sverige vinner över Ryssland Sverige förlorar mot Ryssland Sverige möter Holland i kvartsnalen Ryssland möter Holland i kvartsnalen (p r) (q s) Satslogik : Satslogiska uttryck 7, Diskreta strukturer 16/38
16 Grundläggande begrepp satslogik premisser slutsatser satslogiska uttryck satsvariabler sanningsvärden, 1, 0, (T, F ), (, ) sanning, falskhet operatorer (konnektiv),,,,, Satslogik : Satslogiska uttryck 7, Diskreta strukturer 17/38
17 Exempel på uttryck p q p (p q) (p q) (p q) (p q) ( p p) (p q) p (p (p q)) ( p (p q)) Satslogik : Satslogiska uttryck 7, Diskreta strukturer 18/38
18 Sanningstabeller P P P Q P Q P Q P Q P Q Satslogik : Satslogiska uttryck 7, Diskreta strukturer 19/38
19 En primtalssats Två tal är primtalstvillingar om båda är primtal och skillnaden mellan dem är 2. Låt P det nns oändligt många primtalstvillingar Q det nns oändligt många primtal Sats P Q Är P sann? Det vet ingen. P skulle kunna vara falsk. Är Q sann? Ja, det bevisade Euklides för 2300 år sedan. Är satsen sann, dvs är det en sats? Ja, det skall vi strax bevisa. Satslogik : Resonemang och härledningar 7, Diskreta strukturer 20/38
20 En primtalssats Direkt bevis Låt P det nns oändligt många primtalstvillingar Q det nns oändligt många primtal Sats P Q Bevis Antag att det nns oändligt många primtalstvillingar. Alla par har olika första komponent. Alla förstakomponenter är primtal. Alltså nns det oändligt många primtal. Satslogik : Resonemang och härledningar 7, Diskreta strukturer 21/38
21 Det nns oändligt många primtal Motsägelsebevis (Indirekt bevis, reductio ad absurdum). Jag har lånat och översatt Euklides bild från hans presentation på en vetenskaplig konferens i Alexandria 280 f. Kr. Sats Det nns oändligt många primtal. Bevis 1 Antag att det ej nns oändligt många primtal. 2 Då nns det ett största primtal. Kalla det p. 3 Låt q vara produkten av de första p talen, q p!. 4 Då är q + 1 inte delbart med något av dem. 5 Alltså är q + 1 också ett primtal och större än p. 6 Men (5) motsäger (2). Alltså måste (1) vara falskt. Satslogik : Resonemang och härledningar 7, Diskreta strukturer 22/38
22 En primtalssats till P det nns ändligt många primtalstvillingar Q det nns ett största primtalstvillingpar Sats P Q Är P sann? Förmodligen inte Är Q sann? Om inte P så inte Q Är satsen sann, dvs är det en sats? Ja: en ändlig mängd har ett största element. Det är alltså så at både premiss och slutsats kan vara falska i en sats som vi kan bevisa. Satslogik : Resonemang och härledningar 7, Diskreta strukturer 23/38
23 När är P Q sann? När är P Q sann? P är sann och Q är sann P är falsk och Q är sann P är falsk och Q är falsk Det är bara fallet P är sann och Q är falsk som inte kan förekomma. Detta motiverar Denition P Q P Q Satslogik : Resonemang och härledningar 7, Diskreta strukturer 24/38
24 ,, eller När man använder i matematiken, P Q, så nns det alltid en orsaksrelation mellan P och Q. I satslogiken skriver vi P Q och det behöver inte nnas någon relation alls mellan P och Q. P och Q innehåller variabler som kan anta sanningsvärden, men vi bortser helt från vad variablerna står för. I satslogiska härledningar använder vi för logisk konsekvens (eller sekvent). När en mängd premisser P 1, P 2,..., P n leder till slutsatsen Q skrivs det {P 1, P 2,..., P n } Q. Tecknet kan utläsas alltså. Satslogik : Resonemang och härledningar 7, Diskreta strukturer 25/38
25 Aktivitet Skriv om med alla parenteser: p q r s t u = ((((p q) r) ( s t)) u) p q r s = (( p q) (r s)) Tag bort alla onödiga parenteser: (p ( q ((r s) (t u)))) = p q (r s t u) Satslogik : Resonemang och härledningar 7, Diskreta strukturer 26/38
26 Aktivitet Det är inte uppenbart att R ( p q) (( p q) p) är en tautologi, men en sanningstabell verierar att så är fallet. p q p q p q p q ( p q) p R Satslogik : Resonemang och härledningar 7, Diskreta strukturer 27/38
27 Sats (Kommutativitet) P Q Q P P Q Q P Sats (Associativitet) (P Q) R P (Q R) (P Q) R P (Q R) Sats (Dubbel negation) P P Satslogik : Resonemang och härledningar 7, Diskreta strukturer 28/38
28 Aktivitet Visa att p p q och q p p inte är ekvivalenta. P Q P Q P P Q Q P P Satslogik : Resonemang och härledningar 7, Diskreta strukturer 29/38
29 Sats (Distributivitet) P (Q R) P (Q R) (P Q) (P R) (P Q) (P R) Sats (de Morgans lagar) (P Q) (P Q) P Q P Q Satslogik : Resonemang och härledningar 7, Diskreta strukturer 30/38
30 Aktivitet Vilka uttryck är tautologier? p (q r) (p q) (p r) Ja (p q) r (p r) (q r) Nej Om inte, ge motexempel. p = 0, q = 1, r = 0 (p q) r (p r) (q r) Samt de två fallen då p = 1 och q = 0 Satslogik : Resonemang och härledningar 7, Diskreta strukturer 31/38
31 Aktivitet När gäller det att (p q) r och p (q r) är olika? För p = q = r = 0 och p = 0, q = 1, r = 0 Satslogik : Resonemang och härledningar 7, Diskreta strukturer 32/38
32 Inferensregler för P P Q [ E (modus ponens, MP )] Q P Q Q [modus tollens (MT )] P Satslogik : Resonemang och härledningar 7, Diskreta strukturer 33/38
33 Instanser av inferensregler för p p q [ E ] q (p q) (p q) p [ E ] p Satslogik : Resonemang och härledningar 7, Diskreta strukturer 34/38
34 Inferensregler för P Q [ E1 ] P P Q [ E2 ] Q P Q [ I ] P Q Satslogik : Resonemang och härledningar 7, Diskreta strukturer 35/38
35 Härledningar med p q [ E2 ] q q p p q [ E1 ] p [ I ] p q p q p q p q q p p q q p q p Satslogik : Resonemang och härledningar 7, Diskreta strukturer 36/38
36 Aktivitet Gör en härledning som visar att {(p q) r} p (q r). 1 (p q) r P 2 (p q) E, 1 3 p E, 2 4 q E, 2 5 r E, 1 6 (q r) I, 4, 5 7 p (q r) I, 3, 6 Satslogik : Resonemang och härledningar 7, Diskreta strukturer 37/38
37 Som bevisträd (p q) r [ E ] (p q) r p q (p q) r [ E ] [ E ] [ E ] p q q r [ E ] [ I ] p (q r) [ I ] p (q r) Satslogik : Resonemang och härledningar 7, Diskreta strukturer 38/38
7, Diskreta strukturer
Objektorienterad modellering och diskreta strukturer 7, Diskreta strukturer Sven Gestegård Robertz Datavetenskap, LTH 2015 Modeller Matematiska modeller Kontinuerliga modeller Kontinuerliga funktioner
Läs mer8. Naturlig härledning och predikatlogik
Objektorienterad modellering och diskreta strukturer 8. Naturlig härledning och predikatlogik Sven Gestegård Robertz Datavetenskap, LTH 2013 Outline 1 Inledning 2 Inferensregler 3 Predikatlogik 8. Naturlig
Läs merSanningsvärdet av ett sammansatt påstående (sats, utsaga) beror av bindeord och sanningsvärden för ingående påståenden.
MATEMATISK LOGIK Matematisk logik formaliserar korrekta resonemang och definierar formellt bindeord (konnektiv) mellan påståenden (utsagor, satser) I matematisk logik betraktar vi påståenden som antingen
Läs merUtsagor (Propositioner) sammansatta utsagor sanningstabeller logisk ekvivalens predikat (öppna utsagor) kvantifierare Section
Föreläsning 1 Utsagor (Propositioner) sammansatta utsagor sanningstabeller logisk ekvivalens predikat (öppna utsagor) kvantifierare Section 1.1-1.3 i kursboken Definition En utsaga (proposition) är ett
Läs mer9. Predikatlogik och mängdlära
Objektorienterad modellering och diskreta strukturer 9. Predikatlogik och mängdlära Sven Gestegård Robertz Datavetenskap, LTH 2014 Rekaputilation Vi har talat om satslogik naturlig härledning predikatlogik
Läs merMATEMATIKENS SPRÅK. Avsnitt 1
Avsnitt 1 MATEMATIKENS SPRÅK Varje vetenskap, liksom varje yrke, har sitt eget språk som ofta är en blandning av vardagliga ord och speciella termer. En instruktionshandbok för ett kylskåp eller för en
Läs merDD1350 Logik för dataloger. Fö 2 Satslogik och Naturlig deduktion
DD1350 Logik för dataloger Fö 2 Satslogik och Naturlig deduktion 1 Satslogik En sats(eller utsaga)är ett påstående som kan vara sant eller falskt. I satslogik(eng. propositionallogic) representeras sådana
Läs merp /\ q r DD1350 Logik för dataloger Kort repetition Fö 3 Satslogikens semantik
DD1350 Logik för dataloger Fö 3 Satslogikens semantik 1 Kort repetition Satslogik formellt språk för att uttrycka påståenden med variabler och konnektiv /\, \/,, t.ex. p /\ q r 1 Kort repetition Naturlig
Läs merLite om bevis i matematiken
Matematik, KTH Bengt Ek februari 2013 Material till kursen SF1662, Diskret matematik för CL1: Lite om bevis i matematiken Inledning Bevis är centrala i all matematik Utan (exakta definitioner och) bevis
Läs merMA2047 Algebra och diskret matematik
MA2047 Algebra och diskret matematik Något om logik och mängdlära Mikael Hindgren 5 september 2018 Utsagor Utsaga = Påstående som har sanningsvärde Utsagan kan vara sann (S) eller falsk (F) öppen eller
Läs merD. x 2 + y 2 ; E. Stockholm ligger i Sverige; F. Månen är en gul ost; G. 3 2 = 6; H. x 2 + y 2 = r 2.
Logik Vid alla matematiskt resonemang måste man vara säker på att man verkligen menar det man skriver ner på sitt papper. Därför måste man besinna hur man egentligen tänker. Den vetenskap, som sysslar
Läs merDiskreta strukturer. 1 Introduktion. 1.1 Konventioner
Lunds tekniska högskola Datavetenskap Lennart Andersson Föreläsningsanteckningar EDAF10 2012-10-16 Diskreta strukturer 1 Introduktion När vetenskapsmän och ingenjörer gör modeller av verkligheten använder
Läs merSemantik och pragmatik (Serie 3)
Semantik och pragmatik (Serie 3) Satser och logik. Mats Dahllöf Institutionen för lingvistik och filologi April 2015 1 / 37 Logik: språk tanke (Saeed kapitel 4.) Satser uttrycker (ofta) tankar. Uttrycksrikedom
Läs merVad är det? Översikt. Innehåll. Vi behöver modeller!!! Kontinuerlig/diskret. Varför modeller??? Exempel. Statiska system
Vad är det? Översikt Discrete structure: A set of discrete elements on which certain operations are defined. Discrete implies non-continuous and therefore discrete sets include finite and countable sets
Läs merMATEMATIKENS SPRÅK. Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, lära oss
Explorativ övning 1 LMA100 vt 2003 MATEMATIKENS SPRÅK Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, lära oss förstå språket. Vi skall försöka utveckla vårt
Läs merFormell logik Kapitel 3 och 4. Robin Stenwall Lunds universitet
Formell logik Kapitel 3 och 4 Robin Stenwall Lunds universitet Kapitel 3: De Booleska konnektiven Vi sade att predikaten och namnen kan variera mellan olika FOL Vi ska nu titta på några språkliga element
Läs merSemantik och pragmatik
Semantik och pragmatik OH-serie 4 http://stp.lingfil.uu.se/~matsd/uv/uv12/semp/ Mats Dahllöf Institutionen för lingvistik och filologi Januari 2012 Om barnet har svårt att andas eller har ont i bröstet
Läs merÖvningshäfte 1: Logik och matematikens språk
GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2014 INLEDANDE ALGEBRA Övningshäfte 1: Logik och matematikens språk Övning A Målet är att genom att lösa och diskutera några inledande uppgifter få erfarenheter
Läs merSatslogik grundläggande definitioner 3. Satslogik. Uppgift 1. Satslogikens syntax (välformade formler) Satslogikens semantik (tolkningar)
Satslogik grundläggande definitioner Satslogikens syntax (välformade formler) Satslogikens semantik (tolkningar) Modeller, logisk konsekvens och ekvivalens Några notationella förenklingar Kompletta mängder
Läs merFormell logik Kapitel 5 och 6. Robin Stenwall Lunds universitet
Formell logik Kapitel 5 och 6 Robin Stenwall Lunds universitet Kapitel 5 Bevismetoder för boolesk logik Visa att en sats är en tautologisk konsekvens av en mängd premisser! Lösning: sanningstabellmetoden
Läs mer10. Mängder och språk
Objektorienterad modellering och diskreta strukturer 10. Mängder och språk Sven Gestegård Robertz Institutionen för datavetenskap, LTH 2013 Rekaputilation Vi har talat om satslogik, predikatlogik och härledning
Läs merMATEMATIKENS SPRÅK. Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt,
Explorativ övning 1 MATEMATIKENS SPRÅK Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, lära oss förstå språket. Vi skall försöka utveckla vårt matematiska språk,
Läs merFormell logik Kapitel 7 och 8. Robin Stenwall Lunds universitet
Formell logik Kapitel 7 och 8 Robin Stenwall Lunds universitet Kapitel 7: Konditionalsatser Kapitlet handlar om konditionalsatser (om-så-satser) och deras logik Idag: bevismetoder för konditionalsatser,
Läs merFöreläsningsanteckningar och övningar till logik mängdlära
Inledande matematisk analys tma970, 010, logik, mängdlära Föreläsningsanteckningar och övningar till logik mängdlära Dessa öreläsningsanteckningar kompletterar mycket kortattat kap 0 och appendix B i Persson/Böiers,
Läs merTommy Färnqvist, IDA, Linköpings universitet. 2 Strukturer 2 2.1 Domäner... 2 2.2 Tolkningar... 3
Föreläsning 2 Semantik 729G06 Logikdelen Föreläsningsanteckningar i Programmering och logik 27 januari 2014 Tommy Färnqvist, IDA, Linköpings universitet 2.1 Innehåll Innehåll 1 Lite mer syntax 1 2 Strukturer
Läs merSats. Om t är en rätvinklig triangel så är summan av kvadraterna på kateterna i t lika med kvadraten på hypotenusan.
Lunds tekniska högskola Datavetenskap Lennart Andersson Föreläsningsanteckningar EDAF10 3 Predikatlogik 3.1 Motivering I satslogiken är de minsta beståndsdelarna satslogiska variabler som kan anta värdena
Läs mer2 Matematisk grammatik
MATEMATISK GRAMMATIK Matematisk grammatik.1 Skriva matematik Matematisk grammatik, minst lika kul som det låter, och hur man skriver matematik är nästan lika viktigt som vad man skriver. En grammatisk
Läs merANDREAS REJBRAND NV3ANV Matematik Matematiskt språk
ANDREAS REJBRAND NV3ANV 2006-02-14 Matematik http://www.rejbrand.se Matematiskt språk Innehållsförteckning MATEMATISKT SPRÅK... 1 INNEHÅLLSFÖRTECKNING... 2 INLEDNING... 3 MÄNGDER... 4 Att uttrycka en mängd...
Läs merGrundläggande logik och modellteori
Grundläggande logik och modellteori Kapitel 3: Bevissystem, Hilbertsystem Henrik Björklund Umeå universitet 8. september, 2014 Bevissystem och Hilbertsystem Teorier och deduktionsproblemet Axiomscheman
Läs merViktiga frågor att ställa när ett argument ska analyseras och sedan värderas:
FTEA12:2 Föreläsning 2 Grundläggande argumentationsanalys II Repetition: Vid förra tillfället började vi se närmre på vad som utmärker filosofisk argumentationsanalys. Vi tittade närmre på ett arguments
Läs merFilosofisk Logik (FTEA21:4) föreläsningsanteckningar/kompendium. v. 2.0, den 29/ III. Metalogik 17-19
Filosofisk Logik (FTEA21:4) föreläsningsanteckningar/kompendium IV v. 2.0, den 29/4 2013 III. Metalogik 17-19 Modeller för satslogiken 18.1 Vi har tidigare sagt att en modell är en tolkning av en teori
Läs merSemantik och pragmatik (Serie 4)
Semantik och pragmatik (Serie 4) Satser och logik. Mats Dahllöf Institutionen för lingvistik och filologi April 2015 1 / 30 Så här långt (satslogik) Konjunktion (p q): att två enklare satser båda är uppfyllda.
Läs merA B A B A B S S S S S F F S F S F S F F F F
Uppsala Universitet Matematiska institutionen Isac Hedén isac distans@math.uu.se Algebra I, 5 hp Vecka 17. Logik När man utför matematiska resonemang så har man alltid vissa logiska spelregler att förhålla
Läs merLogik och kontrollstrukturer
Logik och kontrollstrukturer Flödet av instruktioner i ett programmeringsspråk bygger vi upp med hjälp av dess kontrollstrukturer. I C har vi exemplen if, if else, while, do while. Dessutom finns switch
Läs merVarför är logik viktig för datavetare?
Varför är logik viktig för datavetare? 1. Datavetenskap handlar ofta om att automatisera processer som tidigare styrts av människor. Intuition, intelligens och mänskliga resonemang ersätts av beräkningar.
Läs merTommy Färnqvist, IDA, Linköpings universitet. 1 Kursadministration 1. 2 Introduktion 2 2.1 Varför logik?... 2 2.2 Satslogik... 2
Föreläsning 1 Syntax 729G06 Logikdelen Föreläsningsanteckningar i Programmering och logik 21 januari 2014 Tommy Färnqvist, IDA, Linköpings universitet 1.1 Innehåll Innehåll 1 Kursadministration 1 2 Introduktion
Läs merGrundläggande logik och modellteori
Grundläggande logik och modellteori Kapitel 4: Konjunktiv och disjunktiv normalform Henrik Björklund Umeå universitet 15. september, 2014 CNF och DNF Konjunktiv normalform (CNF) Omskrivning av en formel
Läs merFöreläsning 5. Deduktion
Föreläsning 5 Deduktion Hur ett deduktivt system fungerar Komponenter - Vokabulär Ett deduktivt system använder ett visst slags språk som kan kallas för systemets vokabulär. I mindre formella fall är kanske
Läs merObjektorienterad modellering och diskreta strukturer. 13. Problem. Sven Gestegård Robertz. Datavetenskap, LTH
Objektorienterad modellering och diskreta strukturer 13. Problem Sven Gestegård Robertz Datavetenskap, LTH 2014 Rekaputilation Vi har talat om satslogik och härledning predikatlogik och substitution mängder
Läs merEn introduktion till logik
rasmus.blanck@gu.se FT1200, LC1510 och LGFI52 VT2017 Först: Tack till Martin Kaså, som gett mig tillstånd att använda och bearbeta dessa ljusbilder. Vad är logik? Slogan: Logik undersöker vilka argument
Läs merGrundläggande logik och modellteori (5DV102)
Tentamen 2013-10-31 Grundläggande logik och modellteori (5DV102) M. Berglund och K. Markström Totalt antal uppgifter 11 Maximalt antal poäng 30 Krav för 3 i betyg 14 poäng Krav för 4 i betyg 19 poäng,
Läs merFöreläsning 6. pseudokod problemlösning logik algoritmer
Föreläsning 6 pseudokod problemlösning logik algoritmer Inledning Logik är läran om korrekt resonemang att kunna dra korrekta slutledningar utifrån det man vet. Vi gör detta ständigt utan att tänka på
Läs merGrundläggande logik och modellteori
Grundläggande logik och modellteori Kapitel 6: Binära beslutsdiagram (BDD) Henrik Björklund Umeå universitet 22. september, 2014 Binära beslutsdiagram Binära beslutsdiagram (Binary decision diagrams, BDDs)
Läs merLogisk semantik I. 1 Lite om satslogik. 1.1 Konjunktioner i grammatisk bemärkelse. 1.2 Sant och falskt. 1.3 Satssymboler. 1.
UPPSALA UNIVERSITET Datorlingvistisk grammatik I Institutionen för lingvistik och filologi Oktober 2007 Mats Dahllöf http://stp.ling.uu.se/ matsd/uv/uv07/dg1/ Logisk semantik I 1 Lite om satslogik 1.1
Läs merINDUKTION OCH DEDUKTION
AVSNITT 3 INDUKTION OCH DEDUKTION Med induktion menar man vanligen en mycket vanlig resonemangsmetod: man gör flera observationer, upptäcker ett mönster (eller något som man tror är ett mönster) och därefter
Läs merKap. 7 Logik och boolesk algebra
Ka. 7 Logik och boolesk algebra Satslogik Fem logiska konnektiv: ej, och, eller, om-så, omm Begre: sats, sanningsvärde, sanningsvärdestabell tautologi, kontradiktion Egenskaer: Räkneregler för satslogik
Läs merMA 11. Hur starkt de binder. 2 Reella tal 3 Slutledning 4 Logik 5 Mängdlära 6-7 Talteori 8 Diofantiska ekvationer 9 Fördjupning och kryptografi
MA 11 Talteori och logik 2 Reella tal 3 Slutledning 4 Logik 5 Mängdlära 6-7 Talteori 8 Diofantiska ekvationer 9 Fördjupning och kryptografi propositionssymboler: bokstäver konnektiv Paranteser konnektiv
Läs merInduktion, mängder och bevis för Introduktionskursen på I
Induktion, mängder och bevis för Introduktionskursen på I J A S, ht 04 1 Induktion Detta avsnitt handlar om en speciell teknik för att försöka bevisa riktigheten av påståenden eller formler, för alla heltalsvärden
Läs merLogik. Dr. Johan Hagelbäck.
Logik Dr. Johan Hagelbäck johan.hagelback@lnu.se http://aiguy.org Vad är logik? Logik handlar om korrekta och inkorrekta sätt att resonera Logik är ett sätt att skilja mellan korrekt och inkorrekt tankesätt
Läs merGrundläggande logik och modellteori (5DV102)
Tentamen 2014-01-10 Grundläggande logik och modellteori (5DV102) M. Berglund och K. Markström Totalt antal uppgifter 10 Maximalt antal poäng 30 Krav för 3 i betyg 1 Krav för 4 i betyg 19 poäng, vara minst
Läs merOm semantisk följd och bevis
Matematik, KTH Bengt Ek december 2017 Material till kursen SF1679, Diskret matematik: Om semantisk följd och bevis Logik handlar bla om studiet av korrekta slutledningar, dvs frågan om när det är riktigt
Läs merLogik för datavetare DVK:Log Tisdagen 28 oktober 2014. Institutionen för dataoch systemvetenskap David Sundgren
Institutionen för dataoch systemvetenskap David Sundgren Logik för datavetare DVK:Log Tisdagen 28 oktober 2014 Skrivtid: 9 00-13 00. Inga hjälpmedel utom formelsamlingen på nästa sida är tillåtna. För
Läs merDD1350 Logik för dataloger. Vad är logik?
DD1350 Logik för dataloger Fö 1 - Introduktion Vad är logik? Vetenskapen som studerar hur man bör resoneraoch dra slutsatser utifrån givna påståenden (=utsagor, satser). 1 Aristoteles (384-322 f.kr) Logik
Läs merKimmo Eriksson 12 december 1995. Att losa uppgifter av karaktaren \Bevisa att..." uppfattas av manga studenter
Kimmo Eriksson 12 december 1995 Matematiska institutionen, SU Att genomfora och formulera ett bevis Att losa uppgifter av karaktaren \Bevisa att..." uppfattas av manga studenter som svart. Ofta ar det
Läs merFÖRELÄSNING 8 ANDERS MÄRAK LEFFLER IDA/HCS
729G06 Logik FÖRELÄSNING 8 ANDERS MÄRAK LEFFLER IDA/HCS 160309 Idag Sammanfattning*/uppsamling 2 Mer problemöversikt (och lite definitioner) Inte ersättning för andra föreläsningar! 3 Vad är enlogik? Syntax
Läs merLMA033/LMA515. Fredrik Lindgren. 4 september 2013
LMA033/LMA515 Fredrik Lindgren Matematiska vetenskaper Chalmers tekniska högskola och Göteborgs universitet 4 september 2013 F. Lindgren (Chalmers&GU) Matematik 4 september 2013 1 / 25 Outline 1 Föreläsning
Läs merKRITISKT TÄNKANDE I VÄRDEFRÅGOR. 8: Repetition
KRITISKT TÄNKANDE I VÄRDEFRÅGOR 8: Repetition TRE CENTRALA BEGREPP (i) Sanning: en egenskap som tillkommer utsagor, inte slutledningar. (ii) Logisk styrka: en egenskap som tillkommer slutledningar, inte
Läs merSvar till vissa uppgifter från första veckan.
Svar till vissa uppgifter från första veckan. Svar till kortuppgifter F:. Ja! Förhoppningsvis så ser man direkt att g fx) är ett polynom. Vidare så gäller det att g fα) = gfα)) = gβ) = 0. Använd faktorsatsen!
Läs merDatorlingvistisk grammatik I Institutionen för lingvistik och filologi Oktober 2007 Mats Dahllöf
UPPSALA UNIVERSITET Datorlingvistisk grammatik I Institutionen för lingvistik och filologi Oktober 2007 Mats Dahllöf http://stp.ling.uu.se/ matsd/uv/uv07/dg1/ Logisk semantik II 1 Predikatlogik, generella
Läs mer729G06 Logik FÖRELÄSNING 1 ANDERS MÄRAK LEFFLER IDA/HCS
729G06 Logik FÖRELÄSNING 1 ANDERS MÄRAK LEFFLER IDA/HCS 160127 Vad är logik? Som ämne, område... 2 Läran om korrekta resonemang Följer slutsatserna av ens antaganden? 3 Alla hundar är djur. Alla enhörningar
Läs merSemantik och pragmatik
Semantik och pragmatik OH-serie 5 http://stp.lingfil.uu.se/~matsd/uv/uv12/semp/ Mats Dahllöf Institutionen för lingvistik och filologi Januari 2012 Så här långt Konjunktion (p q): att två enklare satser
Läs merI kursen i endimensionell analys är mängden av reella tal (eng. real number), R, fundamental.
Lunds tekniska högskola Datavetenskap Lennart ndersson Föreläsningsanteckningar EDF10 4 Mängder 4.1 Motivering Mängden är den mest grundläggande diskreta strukturen. Nästan alla matematiska begrepp går
Läs merDD1350 Logik för dataloger. Fö 7 Predikatlogikens semantik
DD1350 Logik för dataloger Fö 7 Predikatlogikens semantik 1 Kryssprodukt av mängder Om A och B är två mängder så är deras kryssprodukt A B mängden av alla par (a,b), där a A och b B. Ex: A={1,2}, B={3,4},
Läs merLogik: sanning, konsekvens, bevis
Logik: sanning, konsekvens, bevis ft1100 samt lc1510 HT 2016 Giltiga argument (Premiss 1) (Premiss 2) (Slutsats) Professorn är på kontoret eller i lunchrummet Hon är inte på kontoret Professorn är i lunchrummet
Läs mer12. Relationer och funktioner
Objektorienterad modellering och diskreta strukturer 12. Relationer och funktioner Sven Gestegård Robertz Institutionen för datavetenskap, LTH 2013 Laboration 4 Syntaxanalys Grammatik för (vår delmängd
Läs merFÖRELÄSNING 3 ANDERS MÄRAK LEFFLER IDA/HCS
729G06 Logik FÖRELÄSNING 3 ANDERS MÄRAK LEFFLER IDA/HCS 160208 Idag C-regeln, informell (och formell) inledning till predikatlogik (Bevis kommer senare.) 2 3 Vår (Snöfritt Cykla) (Vår Snöfritt) Cykla Lätt
Läs merGrundläggande logik och modellteori
Grundläggande logik och modellteori Kapitel 8: Predikatlogik Henrik Björklund Umeå universitet 2. oktober, 2014 Första ordningens predikatlogik Signaturer och termer Första ordningens predikatlogik Formler
Läs merLösningar för tenta i TMV200 Diskret matematik kl. 14:00 18:00
Lösningar för tenta i TMV200 Diskret matematik 2018-08-31 kl 1:00 18:00 1 Om argumentet inte är giltigt går det att hitta ett motexempel, dvs en uppsättning sanningsvärden för vilka alla hypoteserna är
Läs merMängdlära. Kapitel Mängder
Kapitel 2 Mängdlära 2.1 Mängder Vi har redan stött på begreppet mängd. Med en mängd menar vi en väldefinierad samling av objekt eller element. Ordet väldefinierad syftar på att man för varje tänkbart objekt
Läs merKompletteringsmaterial. K2 Något om modeller, kompakthetssatsen
KTH Matematik Bengt Ek Maj 2008 Kompletteringsmaterial till kursen SF1642, Logik för D1 och IT3: K2 Något om modeller, kompakthetssatsen Vi skall presentera ett enkelt (om man känner till sundhets- och
Läs merFormell logik Kapitel 1 och 2. Robin Stenwall Lunds universitet
Formell logik Kapitel 1 och 2 Robin Stenwall Lunds universitet Kapitel 1: Atomära satser Drömmen om ett perfekt språk fritt från vardagsspråkets mångtydighet och vaghet (jmf Leibniz, Russell, Wittgenstein,
Läs merEDA Digital och Datorteknik 2009/2010
EDA45 - Digital och Datorteknik 29/2 EDA 45 - Digital och Datorteknik 29/2, lärobokens kapitel 3 Ur innehållet: Satslogik och Boolesk algebra Grindar Funktionstabell Binär evaluering Normal orm/förenklad
Läs merKRITISKT TÄNKANDE I VÄRDEFRÅGOR. 8: Repetition
KRITISKT TÄNKANDE I VÄRDEFRÅGOR 8: Repetition TRE CENTRALA BEGREPP (i) Sanning: en egenskap som tillkommer utsagor, inte slutledningar. (ii) Logisk styrka: en egenskap som tillkommer slutledningar, inte
Läs mer1 Suddig logik och gitter
UPPSALA UNIVERSITET Matematiska institutionen Erik Palmgren Kompletterande material Algebra DV2 ht-2000 1 Suddig logik och gitter Suddig logik (engelska: fuzzy logic) är en utvidgning av vanlig boolesk
Läs merFormell logik Kapitel 9. Robin Stenwall Lunds universitet
Formell logik Kapitel 9 Robin Stenwall Lunds universitet Kapitel 9: Introduktion till kvantifiering Vi har hittills betraktat logiska resonemang vars giltighet enbart beror på meningen hos konnektiv som
Läs merK2 Något om modeller, kompakthetssatsen
KTH Matematik Bengt Ek Maj 2005 Kompletteringsmaterial till kursen 5B1928 Logik för D1: K2 Något om modeller, kompakthetssatsen Vi skall presentera ett enkelt (om man känner till sundhets- och fullständighetssatsen
Läs merFöreläsningsanteckningar och övningar till logik mängdlära Boolesk algebra
Föreläsningsantekningar oh övningar till logik mängdlära Boolesk algebra I kursen matematiska metoder, del A (TMA04 behandlar vi i lv logik, mängdlära oh Boolesk algebra I satslogik oh mängdalgebra, två
Läs mer. Om man började diskutera alla dessa tänkbara tolkningar innan man införde funktionsbegreppet så skulle det nog balbla Ett av huvudsyftena är att
Förord Föreliggande text är resultatet av alltmer bearbetade föreläsningsanteckningar till en fördjupningskurs vid Göteborgs universitet som jag har hållit ett antal (otal) gånger de senaste tio åren.
Läs merAnteckningar i. Inledande Matematik
Anteckningar i Inledande Matematik Anders Logg Chalmers tekniska högskola (Utkast, version 3 oktober 2016) Copyright 2016 Anders Logg Förord och läsanvisningar Dessa anteckningar är avsedda att användas
Läs merLogik. Boolesk algebra. Logik. Operationer. Boolesk algebra
Logik F4 Logik Boolesk algebra EDAA05 Roger Henriksson Jonas Wisbrant Konsten att, och vetenskapen om, att resonera och dra slutsatser. Vad behövs för att man ska kunna dra en slutsats? Hur kan man dra
Läs merF. Drewes Datavetenskapens grunder, VT02. Lite logik
F Drewes 2002-05-23 Datavetenskapens grunder, VT02 Lite logik Den här texten är en sammanfattning av logikdelen i kursen Datavetenskapens grunder Den handlar om satslogik och predikatlogik, några av deras
Läs merJesper Carlström 2008 (reviderad 2009)
Jesper Carlström 2008 (reviderad 2009) Jesper Carlström Matematiska institutionen Stockholms universitet 106 91 Stockholm http://www.math.su.se/ jesper/logikbok/ c 2009 Jesper Carlström Typsatt av L A
Läs merLogik och modaliteter
Modallogik Introduktionsföreläsning HT 2015 Formalia http://gul.gu.se/public/courseid/70391/lang-sv/publicpage.do Förkunskaper etc. Logik: vetenskapen som studerar argument med avseende på (formell) giltighet.
Läs merLogik I. Åsa Hirvonen Helsingfors universitet. Våren 2013
Logik I Åsa Hirvonen Helsingfors universitet Våren 2013 Inledning Logik är läran om härledning. Med hjälp av logiken kan vi säga när ett resonemang är korrekt och när det inte är det. För att kunna studera
Läs merFTEA12:2 Filosofisk Metod. Grundläggande argumentationsanalys II
TEA12:2 ilosofisk Metod Grundläggande argumentationsanalys II Dagens upplägg 1. Kort repetition. 2. Logisk styrka: några intressanta specialfall. 3. ormalisering: översättning från naturligt språk till
Läs merAvslutning. Vad? Hur? Anmärkningar inför tentan 2. Vad ska kunnas?
Avslutning Anmärkningar inför tentan Vad ska kunnas? Avslutning 1 Vad? Anmärkningar inför tentan 1 Att ha en bra förståelse för det som behandlades på föreläsningarna och gruppövningarna räcker i princip.
Läs merAvslutning. Vad? Hur? Anmärkningar inför tentan 2. Vad ska ni kunna?
Avslutning Anmärkningar inför tentan Vad ska ni kunna? Avslutning 1 Vad? Anmärkningar inför tentan 1 Att ha en bra förståelse för det som behandlades på föreläsningarna, inlämningsuppgifterna och gruppövningarna
Läs merEDA Digital och Datorteknik 2010/2011
EDA45 - Digital och Datorteknik 2/2 EDA 45 - Digital och Datorteknik 2/2, lärobokens kapitel 3 Ur innehållet: Satslogik och Boolesk algebra Grindar Funktionstabell Binär evaluering Normal orm/förenklad
Läs merLösningar till udda övningsuppgifter
Lösningar till udda övningsuppgifter Övning 1.1. (i) {, } (ii) {0, 1,, 3, 4} (iii) {0,, 4, 6, 8} Övning 1.3. Påståendena är (i), (iii) och (v), varav (iii) och (v) är sanna. Övning 1.5. andra. (i) Nej.
Läs mer12. Relationer och funktioner
Objektorienterad modellering och diskreta strukturer 12. Relationer och funktioner Sven Gestegård Robertz Datavetenskap, LTH 2014 Laboration 4 Syntaxanalys Grammatik för (vår delmängd av) satslogiska uttryck
Läs merAlgoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 12 Anton Grensjö grensjo@csc.kth.se 10 december 2015 Anton Grensjö ADK Övning 12 10 december 2015 1 / 19 Idag Idag Komplexitetsklasser Blandade uppgifter
Läs mer7. FORMELL SATSLOGIK (SL)
7. FORMELL SATSLOGIK (SL) 7.1 VEM BEHÖVER FORMELL LOGIK? Ingen använder formell logik i det dagliga livet. Den logik vi använder, den naturliga eller intuitiva logiken, är, som vi sett, varierande och
Läs merNär du läser en definition bör du kontrollera att den är vettig, och försöka få en idé om vad den egentligen betyder. Betrakta följande exempel.
Logik och bevis II 3. föring Detta avsnitt handlar om olika metoder för att bevisa påståenden, och hur man kan konstruera ett bevis. I varje avsnitt finns en allmän beskrivning av metoden, varför den fungerar
Läs merFöreläsning 1, Differentialkalkyl M0029M, Lp
Föreläsning 1, Differentialkalkyl M0029M, Lp 1 2017 Staffan Lundberg Luleå Tekniska Universitet, Inst för teknikvetenskap och matematik Staffan Lundberg M0029M H17 1/ 50 Allmän information Föreläsningar:
Läs merDD1350 Logik för dataloger
DD1350 Logik för dataloger Fö 8 Axiomatiseringar 1 Modeller och bevisbarhet Sedan tidigare vet vi att: Om en formel Φ är valid (sann i alla modeller) så finns det ett bevis för Φ i naturlig deduktion.
Läs merLogik och bevisteknik lite extra teori
Logik och bevisteknik lite extra teori Inger Sigstam 2011-04-26 1 Satslogik (eng: propositional logic) 1.1 Språket Alfabetet består av följande symboler: satssymbolerna p 0, p 1, p 2,.... konnektiverna,,,,.
Läs merTentamen i TDDC75 Diskreta strukturer , lösningsförslag
Tentamen i TDDC75 Diskreta strukturer 2018-10-23, lösningsförslag 1 1. (a) Sanningstabell för uttrycken p q r p q p r r q r p q 0 0 0 1 0 1 1 1 0 0 1 1 1 0 1 1 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 0 1
Läs merSemantik och pragmatik
Semantik och pragmatik OH-serie 6 http://stp.lingfil.uu.se/~matsd/uv/uv13/semp/ Mats Dahllöf Institutionen för lingvistik och filologi Februari 2013 Tillämpningar av semantik allmänt Analys av grammatik:
Läs merFilosofisk logik Kapitel 19. Robin Stenwall Lunds universitet
Filosofisk logik Kapitel 19 Robin Stenwall Lunds universitet Dagens upplägg Gödels fullständighetsteorem Sundhet och fullständighet Fullständighetsbeviset Vittneskonstanter Henkinteorin Eliminationsteoremet
Läs merSvar och lösningar, Modul 1.
Svar och lösningar, Modul. A Använd t.ex. följande lexikon: H : han hör vad som sägs, D : han är döv, O : han är ouppmärksam, M : han kommer att missa mötet. Vi får svar: H ((D O) & M) B Vi har Att E bara
Läs mer