Filosofisk Logik (FTEA21:4) föreläsningsanteckningar/kompendium. v. 2.0, den 29/ III. Metalogik 17-19

Storlek: px
Starta visningen från sidan:

Download "Filosofisk Logik (FTEA21:4) föreläsningsanteckningar/kompendium. v. 2.0, den 29/ III. Metalogik 17-19"

Transkript

1 Filosofisk Logik (FTEA21:4) föreläsningsanteckningar/kompendium IV v. 2.0, den 29/ III. Metalogik Modeller för satslogiken 18.1 Vi har tidigare sagt att en modell är en tolkning av en teori i en annan. Att tolka satslogiken innebär att ge en översättning från ett satslogiskt språk till ett annat språk. Det vanligaste språk vi gör en sådan tolkning i är mängdlära, då mängdläran innehåller många användbara bevismetoder som vi kan använda för att visa teorem om satslogiken. För satslogiken är det enda som har betydelse sanningsvärdena S, F; detta är det vi använder då vi gör sanningsvärdestabeller. Proceduren för att göra en rad i en sanningsvärdestabell kan sägas gå till såhär: 1. Vi sätter ut ett av värdena s, f på varje atomär sats. 2. För varje komplex sats räknar vi ut ett nytt sanningsvärde med hjälp av tabellerna för konnektiven. Detta betyder att en tolkning kan ses som en funktion från det satslogiska språket till mängden {S, F}. För att fånga betydelsen hos konnektiven behöver vi begränsa de värden en sådan funktion kan anta. Detta görs genom följande induktiva definition: En sanningsvärdestilldelning är en funktion h från satserna i ett satslogiskt språk till mängden {S, F} sådan att 1. Varje atomär sats tilldelas S eller F. 2. För komplexa satser håller följande: 2.1. Om h(p) = S och h(q) = S så håller h( P) = F, h( Q) = F, h(p Q) = S, h(p Q) = S, h(p Q) = S och h(p Q) = S Om h(p) = S och h(q) = F så håller h( P) = F, h( Q) = S, h(p Q) = F, h(p Q) = S, h(p Q) = F och f(p Q) = F Om h(p) = F och h(q) = S så håller h( P) = S, h( Q) = F, h(p Q) = F, h(p Q) = S, h(p Q) = S och h(p Q) = F. 1

2 2.4. Om h(p) = F och h(q) = F så håller h( P) = S, h( Q) = S, h(p Q) = F, h(p Q) = F, h(p Q) = S och h(p Q) = S. Ett exempel på en sanningsvärdestilldelning är en rad i en sanningsvärdestabell. En uppsättning modeller för en logik kan kallas en semantik för den logiken. UPPGIFTER: 17.2 Sundhet och fullständighet En viktig användning av modeller är för att formalisera logisk konsekvens. Detta görs enligt följande definition: Q är en logisk konsekvens av mängden av premisser T omm Q är sann i varje modell där alla satser i p är sanna. Vi har också följande specialiseringar av begreppet: Q är en kontradiktion omm det inte finns någon modell där Q är sann. Q är en tautologi omm Q är sann i alla modeller. För satslogiken innebär att Q är sann i modellen f helt enkelt att f(q) = S, eftersom en modell bara är en sådan funktion. Så snart vi har ett sätt att göra modeller av en teori uppkommer frågan om hur väl dessa modeller kan representera teorin. För detta är det användbart att introducera lite terminologi: T H Q omm det finns en härledning från premisserna i T med Q som slutsats. T S Q omm Q är en logisk konsekvens av T. Här är S en semantik och H ett härledningssystem, d.v.s. en uppsättning regler som bestämmer vilka härledningar som är tillåtna. Vad betyder det finns en härledning? Att vi kan definiera en sekvens av satser S = S 1,, S m sådan att 1. S 1,, S n är medlemmarna av T och n m. 2. S k+1 kan erhållas från S 1,..., S k genom att tillämpa någon av härledningsreglerna på någon eller några av satserna S 1,..., S k, där n k < m. 3. S m är slutsatsen. Den grundläggande frågan - kanske den fundamentala metalogiska frågan för varje logik - är hur och är relaterade. Vi har två särskilt viktiga villkor här: Härledningssystemet H är sunt med avseende på semantiken S omm T H Q T S Q för varje mängd T av satser och alla satser Q. Härledningssystemet H är fullständigt med avseende på semantiken S omm T S Q T H Q för varje mängd T av satser och alla satser Q. 2

3 Sundhet är ofta förhållandevis enkelt men arbetsamt att bevisa; skriver man en lärobok i logik det är vanligt att lämna det som en övningsuppgift så att man inte själv behöver skriva ner allt. Det görs genom att alla härledningsregler gås igenom en och en, och att man bevisar att om en mängd av satser är sann i en viss modell, så är även resultatet av att tillämpa härledningsregeln sant i denna modell. Sundhetsteoremet följer sedan genom induktion. Bevis av fullständighets för satslogiken 17.2 Hur bevisar vi fullständighet? Ett första förslag: genom att ge en algoritm för att generera ett bevis av Q från T, som terminerar (d.v.s. når fram till ett resultat) om T S Q. För satslogiken går faktiskt detta att göra, men för FOL är det omöjligt. Vi kommer därför att gå till väga på ett annat sätt, som är tillämpbart på FOL också, och som dessutom är enklare (om än inte på något vis enkelt fullständighet är alltid någotsånär komplicerat att visa). Först behöver vi några lemman: Lemma: T H Q omm T { Q} H. Vi börjar med att skriva om T S Q T H Q som T S Q T H Q. Men enligt deduktionssatsen är detta ekvivalent med T { Q} S T { Q} H : om det inte finns någon härledning från T { Q} till så är T { Q} konsistent, d.v.s. T { Q} är sann i någon modell. Men att detta håller för alla T och alla Q följer av att det håller för alla mängder T av premisser. Alltså räcker det att bevisa: Teorem: om T är konsistent så har T en modell. Låt en formellt fullständig 1 mängd T av satser vara en mängd sådan att, för alla satser Q, så har vi antingen T H Q eller T H Q. Teoremet kan bevisas i två steg: 1. Visa att för varje formellt fullständig satsmängd T har en modell. 2. Visa att varje konsistent satsmängd T kan utvidgas till en formellt fullständig konsistent satsmängd T (d.v.s. att T T ). Steg 2 görs genom att gå igenom alla atomära satser P, och lägga till P om vare sig T H P eller T H P. Genom att göra en induktion på satserna i satslogiken kan vi sedan visa att det gäller för alla satser Q att T inte innehåller både Q och Q om inte T gjorde det. För steg 2 kan vi göra en modell på följande sätt: börja med att sätta f (P) = S omm P T, för alla atomära satser P. För komplexa satser fyller vi sedan i sanningsvärdena enligt semantiken ovan (d.v.s. sanningsvillkoren för konnektiven). Det följer från sundhetssatsen att en sådan tilldelning är entydigt bestämd, d.v.s. den ger ett unikt värde ur {S, F} för varje sats. UPPGIFTER: 17.5, Notera att detta begrepp inte har särskilt mycket gemensamt med fullständighetsbegreppet vi introducerade ovan. Det är vanlig fullständighet som Gödels fullständighetsteorem handlar om, och formell fullständighet som hans ofullständighetsteorem handlar om. 3

4 Modeller för första ordningens logik 18.1 För FOL behöver vi använda modeller med mer struktur än för satslogiken. En första ordningens modell M för ett första ordningens språk L är en funktion från predikaten, individkonstanterna, funktionssymbolerna och allkvantifikatorn i L till mängder, sådan att 1. M( ) = D för någon mängd D som vi kallar domänen för M. 2. M(c) D för alla individkonstanter c. 3. M(P), där P är ett n-ställigt predikat, är en mängd av ordnade n-tuplar av element i D, d.v.s. en relationsextension för P. 4. M(f), där f är en n-ställig funktionssymbol, är en mängd av ordnade n+1-tuplar x 1,, x n, y av element i D sådan att om x 1,, x n, y M(f) och x 1,, x n, y M(f) så har vi x 1 = x 1 x n = x n. D.v.s. en funktionsextension för f. Ett sätt att tolka detta är att den modell för L består av en domän D, tillsammans med en tilldelning av extensioner i denna domän till varje individkonstant, predikat och funktionssymbol i L. Vi kan ta detta som ett exempel på skillnaden mellan satslogiken och FOL: medan satslogiken bara handlar om sanningsvärden, handlar FOL om extensioner. UPPGIFTER: 18.4 Satisfiering och sanning 18.2 Vad menar vi med att en första ordningens modell är sann i en modell M? I satslogiken var detta enkelt, då vi tilldelade sanningsvärden direkt till satserna. I FOL går inte detta: för att bygga upp satser här behöver vi formler med fria variabler, och sanningsvärdena på dessa måste bero på vad variablerna tar för värden (d.v.s. refererar till). Säg att vi skulle tilldela sanningsvärde till t.ex. P(x). Hur skulle vi räkna ut sanningsvärdet på xp(x) eller xp(x) från detta? Den vanligaste lösningen på det här problemet använder sig av begreppet satisfiering. Vi säger att en variabeltilldelning i modellen M är en funktion v från variablerna i språket till element i M( ), d.v.s en tilldelning av element i M:s domän till variabler. En värdering i språket L baserad på tilldelningen v definierar vi som en funktion t v, där t är någon term (variabel, individkonstant eller funktionsyttryck) i L, till element i D, sådan att 1. x v = v(x) för alla variabler x. 2. c v = M(c) för alla individkonstanter c. 3. f(t 1,, t n ) v = M(f)( t 1 v,, t n v ) för alla n-ställiga funktionssymboler f. Detta är ett typexempel på en induktiv definition: värderingen av variabler bestäms av en variabeltilldelning, värderingen av individkonstanter av modellen, och värderingen av funktionsuttryck genom att tillämpa modellens tolkning av funktionssymbolerna på värderingen av de argument vi tillämpar funktionen på. För att fånga kvantifikatorerna behöver vi också införa en operation på tilldelningar. Vi skriver v[x / c] för den tilldelning som är precis som v, förutom att den tilldelar elementet c D till variabeln x istället för vad v tilldelar. Med hjälp av värderingar och denna operation kan vi nu ge en induktiv definition av vad satisfiering betyder. Vi skriver M v P för varabeltilldelningen v satisfierar P i modellen M, och definierar: 4

5 1. M v P(t 1,, t n ) omm t 1 v,, t n v M(P) för atomära formler P. 2. M v Q R omm M v Q och M v R. 3. M v Q R omm M v Q eller M v R. 4. M v Q R omm M v Q eller M v R. 5. M v Q R omm antingen M v Q och M v R eller M v Q och M v R. 6. M v xq omm M v[x / c] Q för alla c D. 7. M v xq omm M v[x / c] Q för något c D. Eftersom satser inte har några fria variabler alls kan vi visa att dessa antingen satisfieras av alla tilldelningar, eller av inga. I det första fallet kallar vi satsen sann och i det andra falsk. UPPGIFTER: 18.7,

Filosofisk logik Kapitel 19. Robin Stenwall Lunds universitet

Filosofisk logik Kapitel 19. Robin Stenwall Lunds universitet Filosofisk logik Kapitel 19 Robin Stenwall Lunds universitet Dagens upplägg Gödels fullständighetsteorem Sundhet och fullständighet Fullständighetsbeviset Vittneskonstanter Henkinteorin Eliminationsteoremet

Läs mer

Filosofisk Logik (FTEA21:4) föreläsningsanteckningar v , den 2/

Filosofisk Logik (FTEA21:4) föreläsningsanteckningar v , den 2/ Filosofisk Logik (FTEA21:4) föreläsningsanteckningar v. 2.1.1, den 2/12 2014 Filosofiska institutionen, Lunds Universitet staffan.angere@fil.lu.se C. Metalogik Kap. 17-19 Modeller för satslogiken 18.1

Läs mer

Logik och modaliteter

Logik och modaliteter Modallogik Introduktionsföreläsning HT 2015 Formalia http://gul.gu.se/public/courseid/70391/lang-sv/publicpage.do Förkunskaper etc. Logik: vetenskapen som studerar argument med avseende på (formell) giltighet.

Läs mer

Filosofisk Logik (FTEA21:4) föreläsningsanteckningar v. 2.2, den 20/4 2015

Filosofisk Logik (FTEA21:4) föreläsningsanteckningar v. 2.2, den 20/4 2015 Filosofisk Logik (FTEA21:4) föreläsningsanteckningar v. 2.2, den 20/4 2015 Om detta kompendium Filosofiska institutionen, Lunds Universitet staffan.angere@fil.lu.se Förberedande Det här kompendiet är ett

Läs mer

Sanningsvärdet av ett sammansatt påstående (sats, utsaga) beror av bindeord och sanningsvärden för ingående påståenden.

Sanningsvärdet av ett sammansatt påstående (sats, utsaga) beror av bindeord och sanningsvärden för ingående påståenden. MATEMATISK LOGIK Matematisk logik formaliserar korrekta resonemang och definierar formellt bindeord (konnektiv) mellan påståenden (utsagor, satser) I matematisk logik betraktar vi påståenden som antingen

Läs mer

Filosofisk Logik. föreläsningsanteckningar/kompendium (FTEA21:4) v. 2.0, den 5/ Kompakthet och Löwenheim-skolemsatsen

Filosofisk Logik. föreläsningsanteckningar/kompendium (FTEA21:4) v. 2.0, den 5/ Kompakthet och Löwenheim-skolemsatsen Filosofisk Logik (FTEA21:4) föreläsningsanteckningar/kompendium VI v. 2.0, den 5/5 2014 Kompakthet och Löwenheim-skolemsatsen 19.6-19.7 Närhelst vi har en mängd satser i FOL som inte är självmotsägande

Läs mer

Kompendium i Filosofisk Logik. Angere, Staffan. Link to publication. Citation for published version (APA): Angere, S. Kompendium i Filosofisk Logik

Kompendium i Filosofisk Logik. Angere, Staffan. Link to publication. Citation for published version (APA): Angere, S. Kompendium i Filosofisk Logik Kompendium i Filosofisk Logik Angere, Staffan 2014 Link to publication Citation for published version (APA): Angere, S. Kompendium i Filosofisk Logik General rights Copyright and moral rights for the publications

Läs mer

Kompendium i Filosofisk Logik. Angere, Staffan. Link to publication

Kompendium i Filosofisk Logik. Angere, Staffan. Link to publication Kompendium i Filosofisk Logik Angere, Staffan 2014 Link to publication Citation for published version (APA): Angere, S. (2014). Kompendium i Filosofisk Logik. General rights Copyright and moral rights

Läs mer

Filosofisk logik Kapitel 18. Robin Stenwall Lunds universitet

Filosofisk logik Kapitel 18. Robin Stenwall Lunds universitet Filosofisk logik Kapitel 18 Robin Stenwall Lunds universitet Dagens upplägg Modeller för FOL Sanning i FOL Tarskis idé Satisfiering Definitionen på sanning i en modell Definitionen på FO-konsekvens Definitionen

Läs mer

Kompendium i Filosofisk Logik Angere, Staffan

Kompendium i Filosofisk Logik Angere, Staffan Kompendium i Filosofisk Logik Angere, Staffan Publicerad: 2014-01-01 Link to publication Citation for published version (APA): Angere, S. Kompendium i Filosofisk Logik General rights Copyright and moral

Läs mer

Logik och bevisteknik lite extra teori

Logik och bevisteknik lite extra teori Logik och bevisteknik lite extra teori Inger Sigstam 2011-04-26 1 Satslogik (eng: propositional logic) 1.1 Språket Alfabetet består av följande symboler: satssymbolerna p 0, p 1, p 2,.... konnektiverna,,,,.

Läs mer

En introduktion till predikatlogik

En introduktion till predikatlogik rasmus.blanck@gu.se FT1200, LC1510 och LGFI52 VT2017 (Premiss 1) (Premiss 2) (Slutsats) Alla människor är dödliga Sokrates är en människa Sokrates är dödlig Detta argument är intuitivt giltigt: Det finns

Läs mer

p /\ q r DD1350 Logik för dataloger Kort repetition Fö 3 Satslogikens semantik

p /\ q r DD1350 Logik för dataloger Kort repetition Fö 3 Satslogikens semantik DD1350 Logik för dataloger Fö 3 Satslogikens semantik 1 Kort repetition Satslogik formellt språk för att uttrycka påståenden med variabler och konnektiv /\, \/,, t.ex. p /\ q r 1 Kort repetition Naturlig

Läs mer

Tommy Färnqvist, IDA, Linköpings universitet. 2 Strukturer 2 2.1 Domäner... 2 2.2 Tolkningar... 3

Tommy Färnqvist, IDA, Linköpings universitet. 2 Strukturer 2 2.1 Domäner... 2 2.2 Tolkningar... 3 Föreläsning 2 Semantik 729G06 Logikdelen Föreläsningsanteckningar i Programmering och logik 27 januari 2014 Tommy Färnqvist, IDA, Linköpings universitet 2.1 Innehåll Innehåll 1 Lite mer syntax 1 2 Strukturer

Läs mer

Robin Stenwall Lunds universitet

Robin Stenwall Lunds universitet Robin Stenwall Lunds universitet Vik$gt a) tänka på Innehållet i kursen formell logik förutsätts vara inhämtat (repetera om du är osäker). I allmänhet gäller att kursinnehållet, som ska instuderas på relativt

Läs mer

Viktiga frågor att ställa när ett argument ska analyseras och sedan värderas:

Viktiga frågor att ställa när ett argument ska analyseras och sedan värderas: FTEA12:2 Föreläsning 2 Grundläggande argumentationsanalys II Repetition: Vid förra tillfället började vi se närmre på vad som utmärker filosofisk argumentationsanalys. Vi tittade närmre på ett arguments

Läs mer

Lite om bevis i matematiken

Lite om bevis i matematiken Matematik, KTH Bengt Ek februari 2013 Material till kursen SF1662, Diskret matematik för CL1: Lite om bevis i matematiken Inledning Bevis är centrala i all matematik Utan (exakta definitioner och) bevis

Läs mer

Filosofisk logik Kapitel 15. Robin Stenwall Lunds universitet

Filosofisk logik Kapitel 15. Robin Stenwall Lunds universitet Filosofisk logik Kapitel 15 Robin Stenwall Lunds universitet Dagens upplägg Första ordningens mängdlära Naiv mängdlära Abstraktionsaxiomet (eg. comprehension) Extensionalitetsaxiomet Små mängder Ordnade

Läs mer

Formell logik Kapitel 9. Robin Stenwall Lunds universitet

Formell logik Kapitel 9. Robin Stenwall Lunds universitet Formell logik Kapitel 9 Robin Stenwall Lunds universitet Kapitel 9: Introduktion till kvantifiering Vi har hittills betraktat logiska resonemang vars giltighet enbart beror på meningen hos konnektiv som

Läs mer

Logisk semantik I. 1 Lite om satslogik. 1.1 Konjunktioner i grammatisk bemärkelse. 1.2 Sant och falskt. 1.3 Satssymboler. 1.

Logisk semantik I. 1 Lite om satslogik. 1.1 Konjunktioner i grammatisk bemärkelse. 1.2 Sant och falskt. 1.3 Satssymboler. 1. UPPSALA UNIVERSITET Datorlingvistisk grammatik I Institutionen för lingvistik och filologi Oktober 2007 Mats Dahllöf http://stp.ling.uu.se/ matsd/uv/uv07/dg1/ Logisk semantik I 1 Lite om satslogik 1.1

Läs mer

FÖRELÄSNING 3 ANDERS MÄRAK LEFFLER IDA/HCS

FÖRELÄSNING 3 ANDERS MÄRAK LEFFLER IDA/HCS 729G06 Logik FÖRELÄSNING 3 ANDERS MÄRAK LEFFLER IDA/HCS 160208 Idag C-regeln, informell (och formell) inledning till predikatlogik (Bevis kommer senare.) 2 3 Vår (Snöfritt Cykla) (Vår Snöfritt) Cykla Lätt

Läs mer

DD1350 Logik för dataloger. Fö 7 Predikatlogikens semantik

DD1350 Logik för dataloger. Fö 7 Predikatlogikens semantik DD1350 Logik för dataloger Fö 7 Predikatlogikens semantik 1 Kryssprodukt av mängder Om A och B är två mängder så är deras kryssprodukt A B mängden av alla par (a,b), där a A och b B. Ex: A={1,2}, B={3,4},

Läs mer

Logik: sanning, konsekvens, bevis

Logik: sanning, konsekvens, bevis Logik: sanning, konsekvens, bevis ft1100 samt lc1510 HT 2016 Giltiga argument (Premiss 1) (Premiss 2) (Slutsats) Professorn är på kontoret eller i lunchrummet Hon är inte på kontoret Professorn är i lunchrummet

Läs mer

Robin Stenwall Lunds universitet

Robin Stenwall Lunds universitet Robin Stenwall Lunds universitet Vik$gt a) tänka på Innehållet i kursen formell logik förutsätts vara inhämtat (repetera om du är osäker). I allmänhet gäller att kursinnehållet, som ska instuderas på relativt

Läs mer

FÖRELÄSNING 8 ANDERS MÄRAK LEFFLER IDA/HCS

FÖRELÄSNING 8 ANDERS MÄRAK LEFFLER IDA/HCS 729G06 Logik FÖRELÄSNING 8 ANDERS MÄRAK LEFFLER IDA/HCS 160309 Idag Sammanfattning*/uppsamling 2 Mer problemöversikt (och lite definitioner) Inte ersättning för andra föreläsningar! 3 Vad är enlogik? Syntax

Läs mer

Innehåll. Föreläsning 7. Satslogiken är för grov. Samma sak i predikatlogik: Första ordningens predikatlogik. Logik med tillämpningar

Innehåll. Föreläsning 7. Satslogiken är för grov. Samma sak i predikatlogik: Första ordningens predikatlogik. Logik med tillämpningar Innehåll Föreläsning 7 Logik med tillämpningar 99-03-01 Första ordningens predikatlogik Objekt, predikat, kvantifierare Funktioner, termer, wffs Bindning och räckvidd Tolkningar och värderingar Satisfiering,

Läs mer

Grundläggande logik och modellteori

Grundläggande logik och modellteori Grundläggande logik och modellteori Kapitel 8: Predikatlogik Henrik Björklund Umeå universitet 2. oktober, 2014 Första ordningens predikatlogik Signaturer och termer Första ordningens predikatlogik Formler

Läs mer

Kap. 7 Logik och boolesk algebra

Kap. 7 Logik och boolesk algebra Ka. 7 Logik och boolesk algebra Satslogik Fem logiska konnektiv: ej, och, eller, om-så, omm Begre: sats, sanningsvärde, sanningsvärdestabell tautologi, kontradiktion Egenskaer: Räkneregler för satslogik

Läs mer

Föreläsning 5. Deduktion

Föreläsning 5. Deduktion Föreläsning 5 Deduktion Hur ett deduktivt system fungerar Komponenter - Vokabulär Ett deduktivt system använder ett visst slags språk som kan kallas för systemets vokabulär. I mindre formella fall är kanske

Läs mer

Primitivt rekursiva funktioner och den aritmetiska hierarkin

Primitivt rekursiva funktioner och den aritmetiska hierarkin Primitivt rekursiva funktioner och den aritmetiska hierarkin Rasmus Blanck 0 Inledning En rad frågor inom logiken, matematiken och datavetenskapen relaterar till begreppet beräkningsbarhet. En del i kursen

Läs mer

Formell logik Kapitel 10. Robin Stenwall Lunds universitet

Formell logik Kapitel 10. Robin Stenwall Lunds universitet Formell logik Kapitel 10 Robin Stenwall Lunds universitet Kapitel 10: Kvantifikatorernas logik Förra gången introducerade vi kvantifikatorer och variabler Vi har därmed infört samtliga symboler i FOL Brännande

Läs mer

Filosofisk Logik (FTEA21:4) föreläsningsanteckningar I. v. 2.0, den 24/4 2013

Filosofisk Logik (FTEA21:4) föreläsningsanteckningar I. v. 2.0, den 24/4 2013 Filosofisk Logik (FTEA21:4) föreläsningsanteckningar I v. 2.0, den 24/4 2013 Om detta kompendium: Filosofiska institutionen, Lunds Universitet staffan.angere@fil.lu.se Förberedande Det här kompendiet är

Läs mer

Om semantisk följd och bevis

Om semantisk följd och bevis Matematik, KTH Bengt Ek december 2017 Material till kursen SF1679, Diskret matematik: Om semantisk följd och bevis Logik handlar bla om studiet av korrekta slutledningar, dvs frågan om när det är riktigt

Läs mer

En introduktion till logik

En introduktion till logik rasmus.blanck@gu.se FT1200, LC1510 och LGFI52 VT2017 Först: Tack till Martin Kaså, som gett mig tillstånd att använda och bearbeta dessa ljusbilder. Vad är logik? Slogan: Logik undersöker vilka argument

Läs mer

Semantik och pragmatik (Serie 4)

Semantik och pragmatik (Serie 4) Semantik och pragmatik (Serie 4) Satser och logik. Mats Dahllöf Institutionen för lingvistik och filologi April 2015 1 / 30 Så här långt (satslogik) Konjunktion (p q): att två enklare satser båda är uppfyllda.

Läs mer

Semantik och pragmatik

Semantik och pragmatik Semantik och pragmatik OH-serie 5 http://stp.lingfil.uu.se/~matsd/uv/uv12/semp/ Mats Dahllöf Institutionen för lingvistik och filologi Januari 2012 Så här långt Konjunktion (p q): att två enklare satser

Läs mer

Avslutning. Vad? Hur? Anmärkningar inför tentan 2. Vad ska kunnas?

Avslutning. Vad? Hur? Anmärkningar inför tentan 2. Vad ska kunnas? Avslutning Anmärkningar inför tentan Vad ska kunnas? Avslutning 1 Vad? Anmärkningar inför tentan 1 Att ha en bra förståelse för det som behandlades på föreläsningarna och gruppövningarna räcker i princip.

Läs mer

Kompletteringsmaterial. K2 Något om modeller, kompakthetssatsen

Kompletteringsmaterial. K2 Något om modeller, kompakthetssatsen KTH Matematik Bengt Ek Maj 2008 Kompletteringsmaterial till kursen SF1642, Logik för D1 och IT3: K2 Något om modeller, kompakthetssatsen Vi skall presentera ett enkelt (om man känner till sundhets- och

Läs mer

Formell logik Kapitel 1 och 2. Robin Stenwall Lunds universitet

Formell logik Kapitel 1 och 2. Robin Stenwall Lunds universitet Formell logik Kapitel 1 och 2 Robin Stenwall Lunds universitet Kapitel 1: Atomära satser Drömmen om ett perfekt språk fritt från vardagsspråkets mångtydighet och vaghet (jmf Leibniz, Russell, Wittgenstein,

Läs mer

Logik I. Åsa Hirvonen Helsingfors universitet. Våren 2013

Logik I. Åsa Hirvonen Helsingfors universitet. Våren 2013 Logik I Åsa Hirvonen Helsingfors universitet Våren 2013 Inledning Logik är läran om härledning. Med hjälp av logiken kan vi säga när ett resonemang är korrekt och när det inte är det. För att kunna studera

Läs mer

Robin Stenwall Lunds universitet

Robin Stenwall Lunds universitet Robin Stenwall Lunds universitet Avsnitt 14.1 Numerisk kvantifikation Kvantifikatorerna i FOL är begränsade till och. Detta innebär att vi kan uttrycka satser som säger någonting om allting och någonting.

Läs mer

Satslogik grundläggande definitioner 3. Satslogik. Uppgift 1. Satslogikens syntax (välformade formler) Satslogikens semantik (tolkningar)

Satslogik grundläggande definitioner 3. Satslogik. Uppgift 1. Satslogikens syntax (välformade formler) Satslogikens semantik (tolkningar) Satslogik grundläggande definitioner Satslogikens syntax (välformade formler) Satslogikens semantik (tolkningar) Modeller, logisk konsekvens och ekvivalens Några notationella förenklingar Kompletta mängder

Läs mer

Vad är det? Översikt. Innehåll. Vi behöver modeller!!! Kontinuerlig/diskret. Varför modeller??? Exempel. Statiska system

Vad är det? Översikt. Innehåll. Vi behöver modeller!!! Kontinuerlig/diskret. Varför modeller??? Exempel. Statiska system Vad är det? Översikt Discrete structure: A set of discrete elements on which certain operations are defined. Discrete implies non-continuous and therefore discrete sets include finite and countable sets

Läs mer

7, Diskreta strukturer

7, Diskreta strukturer Objektorienterad modellering och diskreta strukturer 7, Diskreta strukturer Sven Gestegård Robertz Datavetenskap, LTH 2013 1 Inledning 2 Satslogik Inledning Satslogiska uttryck Resonemang och härledningar

Läs mer

MA2047 Algebra och diskret matematik

MA2047 Algebra och diskret matematik MA2047 Algebra och diskret matematik Något om logik och mängdlära Mikael Hindgren 5 september 2018 Utsagor Utsaga = Påstående som har sanningsvärde Utsagan kan vara sann (S) eller falsk (F) öppen eller

Läs mer

FTEA12:2 Filosofisk Metod. Grundläggande argumentationsanalys II

FTEA12:2 Filosofisk Metod. Grundläggande argumentationsanalys II TEA12:2 ilosofisk Metod Grundläggande argumentationsanalys II Dagens upplägg 1. Kort repetition. 2. Logisk styrka: några intressanta specialfall. 3. ormalisering: översättning från naturligt språk till

Läs mer

Logik för datavetare DVK:Log Tisdagen 28 oktober 2014. Institutionen för dataoch systemvetenskap David Sundgren

Logik för datavetare DVK:Log Tisdagen 28 oktober 2014. Institutionen för dataoch systemvetenskap David Sundgren Institutionen för dataoch systemvetenskap David Sundgren Logik för datavetare DVK:Log Tisdagen 28 oktober 2014 Skrivtid: 9 00-13 00. Inga hjälpmedel utom formelsamlingen på nästa sida är tillåtna. För

Läs mer

MATEMATIKENS SPRÅK. Avsnitt 1

MATEMATIKENS SPRÅK. Avsnitt 1 Avsnitt 1 MATEMATIKENS SPRÅK Varje vetenskap, liksom varje yrke, har sitt eget språk som ofta är en blandning av vardagliga ord och speciella termer. En instruktionshandbok för ett kylskåp eller för en

Läs mer

K2 Något om modeller, kompakthetssatsen

K2 Något om modeller, kompakthetssatsen KTH Matematik Bengt Ek Maj 2005 Kompletteringsmaterial till kursen 5B1928 Logik för D1: K2 Något om modeller, kompakthetssatsen Vi skall presentera ett enkelt (om man känner till sundhets- och fullständighetssatsen

Läs mer

Datorlingvistisk grammatik I Institutionen för lingvistik och filologi Oktober 2007 Mats Dahllöf

Datorlingvistisk grammatik I Institutionen för lingvistik och filologi Oktober 2007 Mats Dahllöf UPPSALA UNIVERSITET Datorlingvistisk grammatik I Institutionen för lingvistik och filologi Oktober 2007 Mats Dahllöf http://stp.ling.uu.se/ matsd/uv/uv07/dg1/ Logisk semantik II 1 Predikatlogik, generella

Läs mer

Grundläggande logik och modellteori (5DV102)

Grundläggande logik och modellteori (5DV102) Tentamen 2013-10-31 Grundläggande logik och modellteori (5DV102) M. Berglund och K. Markström Totalt antal uppgifter 11 Maximalt antal poäng 30 Krav för 3 i betyg 14 poäng Krav för 4 i betyg 19 poäng,

Läs mer

Tommy Färnqvist, IDA, Linköpings universitet. 1 Kursadministration 1. 2 Introduktion 2 2.1 Varför logik?... 2 2.2 Satslogik... 2

Tommy Färnqvist, IDA, Linköpings universitet. 1 Kursadministration 1. 2 Introduktion 2 2.1 Varför logik?... 2 2.2 Satslogik... 2 Föreläsning 1 Syntax 729G06 Logikdelen Föreläsningsanteckningar i Programmering och logik 21 januari 2014 Tommy Färnqvist, IDA, Linköpings universitet 1.1 Innehåll Innehåll 1 Kursadministration 1 2 Introduktion

Läs mer

Grundläggande logik och modellteori

Grundläggande logik och modellteori Grundläggande logik och modellteori Kapitel 6: Binära beslutsdiagram (BDD) Henrik Björklund Umeå universitet 22. september, 2014 Binära beslutsdiagram Binära beslutsdiagram (Binary decision diagrams, BDDs)

Läs mer

Sanning och lögnare. Rasmus Blanck VT2017. FT1200, LC1510 och LGFI52

Sanning och lögnare. Rasmus Blanck VT2017. FT1200, LC1510 och LGFI52 rasmus.blanck@gu.se FT1200, LC1510 och LGFI52 VT2017 Vad är sanning? Vi verkar använda begreppet utan större problem till vardags. Det kanske vore intressant att ha en definition: P är sann om och endast

Läs mer

Formell logik Kapitel 3 och 4. Robin Stenwall Lunds universitet

Formell logik Kapitel 3 och 4. Robin Stenwall Lunds universitet Formell logik Kapitel 3 och 4 Robin Stenwall Lunds universitet Kapitel 3: De Booleska konnektiven Vi sade att predikaten och namnen kan variera mellan olika FOL Vi ska nu titta på några språkliga element

Läs mer

9. Predikatlogik och mängdlära

9. Predikatlogik och mängdlära Objektorienterad modellering och diskreta strukturer 9. Predikatlogik och mängdlära Sven Gestegård Robertz Datavetenskap, LTH 2014 Rekaputilation Vi har talat om satslogik naturlig härledning predikatlogik

Läs mer

7, Diskreta strukturer

7, Diskreta strukturer Objektorienterad modellering och diskreta strukturer 7, Diskreta strukturer Sven Gestegård Robertz Datavetenskap, LTH 2015 Modeller Matematiska modeller Kontinuerliga modeller Kontinuerliga funktioner

Läs mer

Filosofisk Logik (FTEA21:4) föreläsningsanteckningar v , den 24/

Filosofisk Logik (FTEA21:4) föreläsningsanteckningar v , den 24/ Filosofisk Logik (FTEA21:4) föreläsningsanteckningar v. 2.1.1, den 24/11 2014 Om detta kompendium: Filosofiska institutionen, Lunds Universitet staffan.angere@fil.lu.se Förberedande Det här kompendiet

Läs mer

Semantik och pragmatik (Serie 3)

Semantik och pragmatik (Serie 3) Semantik och pragmatik (Serie 3) Satser och logik. Mats Dahllöf Institutionen för lingvistik och filologi April 2015 1 / 37 Logik: språk tanke (Saeed kapitel 4.) Satser uttrycker (ofta) tankar. Uttrycksrikedom

Läs mer

DD1350 Logik för dataloger

DD1350 Logik för dataloger DD1350 Logik för dataloger Fö 8 Axiomatiseringar 1 Modeller och bevisbarhet Sedan tidigare vet vi att: Om en formel Φ är valid (sann i alla modeller) så finns det ett bevis för Φ i naturlig deduktion.

Läs mer

Filosofisk logik Kapitel 15 (forts.) Robin Stenwall Lunds universitet

Filosofisk logik Kapitel 15 (forts.) Robin Stenwall Lunds universitet Filosofisk logik Kapitel 15 (forts.) Robin Stenwall Lunds universitet Dagens upplägg Antalet element i en mängd Kardinalitet Humes princip Cantors teorem Den universella mängden Några mängdteoretiska paradoxer

Läs mer

Normalisering av meningar inför resolution 3. Steg 1: Eliminera alla och. Steg 2: Flytta alla negationer framför atomära formler

Normalisering av meningar inför resolution 3. Steg 1: Eliminera alla och. Steg 2: Flytta alla negationer framför atomära formler Normalisering av meningar inför resolution På samma sätt som i satslogiken är resolution i predikatlogiken en process vars syfte är att vederlägga att en klausulmängd är satisfierbar. Det förutsätter dock

Läs mer

Semantik och pragmatik

Semantik och pragmatik Semantik och pragmatik OH-serie 4 http://stp.lingfil.uu.se/~matsd/uv/uv12/semp/ Mats Dahllöf Institutionen för lingvistik och filologi Januari 2012 Om barnet har svårt att andas eller har ont i bröstet

Läs mer

Grundläggande logik och modellteori

Grundläggande logik och modellteori Grundläggande logik och modellteori Kapitel 3: Bevissystem, Hilbertsystem Henrik Björklund Umeå universitet 8. september, 2014 Bevissystem och Hilbertsystem Teorier och deduktionsproblemet Axiomscheman

Läs mer

F. Drewes Datavetenskapens grunder, VT02. Lite logik

F. Drewes Datavetenskapens grunder, VT02. Lite logik F Drewes 2002-05-23 Datavetenskapens grunder, VT02 Lite logik Den här texten är en sammanfattning av logikdelen i kursen Datavetenskapens grunder Den handlar om satslogik och predikatlogik, några av deras

Läs mer

FTEA12:2 Filosofisk metod. Att värdera argumentation I

FTEA12:2 Filosofisk metod. Att värdera argumentation I FTEA12:2 Filosofisk metod Att värdera argumentation I Dagens upplägg 1. Några generella saker att tänka på vid utvärdering av argument. 2. Grundläggande språkfilosofi. 3. Specifika problem vid utvärdering:

Läs mer

Grundläggande logik och modellteori

Grundläggande logik och modellteori Modeller och uttrycksfullhet hos predikatlogik Department of mathematics Umeå university Föreläsning 10 Dagens föreläsning 1 Innehåll på resten av kursen 2 Varför verifikation? Formella metoder för verifikation

Läs mer

Sats. Om t är en rätvinklig triangel så är summan av kvadraterna på kateterna i t lika med kvadraten på hypotenusan.

Sats. Om t är en rätvinklig triangel så är summan av kvadraterna på kateterna i t lika med kvadraten på hypotenusan. Lunds tekniska högskola Datavetenskap Lennart Andersson Föreläsningsanteckningar EDAF10 3 Predikatlogik 3.1 Motivering I satslogiken är de minsta beståndsdelarna satslogiska variabler som kan anta värdena

Läs mer

K3 Om andra ordningens predikatlogik

K3 Om andra ordningens predikatlogik KTH Matematik Bengt Ek Maj 2005 Kompletteringsmaterial till kursen 5B1928 Logik för D1: K3 Om andra ordningens predikatlogik Vi presenterar på dessa sidor kortfattat andra ordningens predikatlogik, vilket

Läs mer

Formell logik Föreläsning 1. Robin Stenwall

Formell logik Föreläsning 1. Robin Stenwall Formell logik Föreläsning 1 Robin Stenwall Betygskriterier Mål Godkänt Väl godkänt Redogöra för grundprinciperna för härledning och översättning i sats- och predikatlogik. Utföra grundläggande översättningar

Läs mer

Övningshäfte 1: Logik och matematikens språk

Övningshäfte 1: Logik och matematikens språk GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2014 INLEDANDE ALGEBRA Övningshäfte 1: Logik och matematikens språk Övning A Målet är att genom att lösa och diskutera några inledande uppgifter få erfarenheter

Läs mer

Induktion och rekursion

Induktion och rekursion Matematik, KTH Bengt Ek november 2016 Material till kursen SF1679, Diskret matematik för F: Induktion och rekursion 1. Om välgrundade binära relationer Låt R vara en binär relation på en mängd D. Vi skriver

Läs mer

Formell logik Kapitel 7 och 8. Robin Stenwall Lunds universitet

Formell logik Kapitel 7 och 8. Robin Stenwall Lunds universitet Formell logik Kapitel 7 och 8 Robin Stenwall Lunds universitet Kapitel 7: Konditionalsatser Kapitlet handlar om konditionalsatser (om-så-satser) och deras logik Idag: bevismetoder för konditionalsatser,

Läs mer

Avslutning. Vad? Hur? Anmärkningar inför tentan 2. Vad ska ni kunna?

Avslutning. Vad? Hur? Anmärkningar inför tentan 2. Vad ska ni kunna? Avslutning Anmärkningar inför tentan Vad ska ni kunna? Avslutning 1 Vad? Anmärkningar inför tentan 1 Att ha en bra förståelse för det som behandlades på föreläsningarna, inlämningsuppgifterna och gruppövningarna

Läs mer

Grundläggande logik och modellteori (5DV102)

Grundläggande logik och modellteori (5DV102) Tentamen 2014-01-10 Grundläggande logik och modellteori (5DV102) M. Berglund och K. Markström Totalt antal uppgifter 10 Maximalt antal poäng 30 Krav för 3 i betyg 1 Krav för 4 i betyg 19 poäng, vara minst

Läs mer

Robin Stenwall Lunds universitet

Robin Stenwall Lunds universitet Robin Stenwall Lunds universitet Avsnitt 10.3 Några nyttiga ekvivalenser Två sätt att använda tautologa ekvivalenser i första-ordningens logik (1) Satser vars sanningsfuntionella former är tautologt ekvivalenta

Läs mer

Logik en introduktion. Christian Bennet Björn Haglund Dag Westerståhl

Logik en introduktion. Christian Bennet Björn Haglund Dag Westerståhl Logik en introduktion Christian Bennet Björn Haglund Dag Westerståhl 1980 Innehåll I Satslogik 3 1 Inledning till satslogiken 4 A Satser...................................... 4 B Satsoperationer.................................

Läs mer

Varför är logik viktig för datavetare?

Varför är logik viktig för datavetare? Varför är logik viktig för datavetare? 1. Datavetenskap handlar ofta om att automatisera processer som tidigare styrts av människor. Intuition, intelligens och mänskliga resonemang ersätts av beräkningar.

Läs mer

Formell logik Kapitel 5 och 6. Robin Stenwall Lunds universitet

Formell logik Kapitel 5 och 6. Robin Stenwall Lunds universitet Formell logik Kapitel 5 och 6 Robin Stenwall Lunds universitet Kapitel 5 Bevismetoder för boolesk logik Visa att en sats är en tautologisk konsekvens av en mängd premisser! Lösning: sanningstabellmetoden

Läs mer

DD1350 Logik för dataloger

DD1350 Logik för dataloger DD1350 Logik för dataloger Fö 4 Predikatlogik 1 Kort repetition Satslogik Naturlig deduktion är ett sunt och fullständigt bevissystem för satslogik Avgörbarhet Så vad saknas? Egenskaper Satslogiken är

Läs mer

Om modeller och teorier

Om modeller och teorier Matematik, KTH Bengt Ek december 2017 Material till kursen SF1679, Diskret matematik: Om modeller och teorier Hittills i kursen har vi studerat flera olika typer av matematiska strukturer, bl.a. (partial)ordnade

Läs mer

8. Naturlig härledning och predikatlogik

8. Naturlig härledning och predikatlogik Objektorienterad modellering och diskreta strukturer 8. Naturlig härledning och predikatlogik Sven Gestegård Robertz Datavetenskap, LTH 2013 Outline 1 Inledning 2 Inferensregler 3 Predikatlogik 8. Naturlig

Läs mer

FTEA21:3 Spr akfilosofi F orel asning I Martin J onsson

FTEA21:3 Spr akfilosofi F orel asning I Martin J onsson FTEA21:3 Språkfilosofi Föreläsning I Martin Jönsson Att lära Varför Frege varken tror att ett ords mening är dess referens eller något mentalt. Freges egen teori om mening Tre semantiska principer Kompositionalitetsprincipen,

Läs mer

Något om logik och logisk semantik

Något om logik och logisk semantik UPPSALA UNIVERSITET Semantik och pragmatik (HT 08) Institutionen för lingvistik och filologi Mats Dahllöf http://stp.ling.uu.se/ matsd/uv/uv08/sempht/ Något om logik och logisk semantik 1 Språk och sanning

Läs mer

Utsagor (Propositioner) sammansatta utsagor sanningstabeller logisk ekvivalens predikat (öppna utsagor) kvantifierare Section

Utsagor (Propositioner) sammansatta utsagor sanningstabeller logisk ekvivalens predikat (öppna utsagor) kvantifierare Section Föreläsning 1 Utsagor (Propositioner) sammansatta utsagor sanningstabeller logisk ekvivalens predikat (öppna utsagor) kvantifierare Section 1.1-1.3 i kursboken Definition En utsaga (proposition) är ett

Läs mer

Formell logik Föreläsning 1. Robin Stenwall

Formell logik Föreläsning 1. Robin Stenwall Formell logik Föreläsning 1 Robin Stenwall Vad ingår i kursen? Kapitel 1-14 i kursboken (Barwise och Etchemendy) De avsnitt i kapitel 1-14 som är markerade med optional läses dock kursivt och kommer inte

Läs mer

Robin Stenwall Lunds universitet

Robin Stenwall Lunds universitet Robin Stenwall Lunds universitet Dagens föreläsning Informella bevismetoder för kvantifikatorer Universell elimination Existentiell introduktion Existentiell elimination Universell introduktion General

Läs mer

Generellt kan vi säga att för att vi ska värdera ett argument som bra bör det uppfylla åtminstone följande kriterier:

Generellt kan vi säga att för att vi ska värdera ett argument som bra bör det uppfylla åtminstone följande kriterier: FTEA12:2 Föreläsning 3 Att värdera en argumentation I: Vad vi hittills har gjort: beaktat argumentet ur ett mer formellt perspektiv. Vi har funnit att ett argument kan vara deduktivt eller induktivt, att

Läs mer

FTEA21:3 Spr akfilosofi F orel asning V Martin J onsson

FTEA21:3 Spr akfilosofi F orel asning V Martin J onsson FTEA21:3 Språkfilosofi Föreläsning V Martin Jönsson Att lära Hur Davidson s teori ser ut, varför han förespråkar den och vad det finns för problem med den. M. Jönsson (Lund University) Språkfilosofi 1

Läs mer

Robin Stenwall Lunds universitet

Robin Stenwall Lunds universitet Robin Stenwall Lunds universitet Dagens föreläsning Informella bevismetoder för kvantifikatorer Universell elimination Existentiell introduktion Existentiell elimination Universell introduktion General

Läs mer

Svar och lösningar, Modul 1.

Svar och lösningar, Modul 1. Svar och lösningar, Modul. A Använd t.ex. följande lexikon: H : han hör vad som sägs, D : han är döv, O : han är ouppmärksam, M : han kommer att missa mötet. Vi får svar: H ((D O) & M) B Vi har Att E bara

Läs mer

7. FORMELL SATSLOGIK (SL)

7. FORMELL SATSLOGIK (SL) 7. FORMELL SATSLOGIK (SL) 7.1 VEM BEHÖVER FORMELL LOGIK? Ingen använder formell logik i det dagliga livet. Den logik vi använder, den naturliga eller intuitiva logiken, är, som vi sett, varierande och

Läs mer

Första ordningens logik

Första ordningens logik Första ordningens logik Christian Bennet Christian Bennet, februari 2013 Detta verk är licensierat under en Creative Commons Erkännande- Ickekommersiell-IngaBearbetningar 3.0 Unported license. För att

Läs mer

Introduktion till formella metoder Programmeringsmetodik 1. Inledning

Introduktion till formella metoder Programmeringsmetodik 1. Inledning Introduktion till formella metoder Programmeringsmetodik 1. Inledning Fokus på imperativa program (ex. C, Java) program betyder härefter ett imperativt program Program bestäms i en abstrakt mening av hur

Läs mer

Tal till Solomon Feferman

Tal till Solomon Feferman Ur: Filosofisk tidskrift, 2004, nr 1. Dag Westerståhl Tal till Solomon Feferman (Nedanstående text utgör det tal som Dag Westerståhl höll på Musikaliska Akademien i oktober 2003, i samband med att Feferman

Läs mer

MS-A0409 Grundkurs i diskret matematik I

MS-A0409 Grundkurs i diskret matematik I MS-A0409 Grundkurs i diskret matematik I G. Gripenberg Aalto-universitetet oktober 014 G. Gripenberg (Aalto-universitetet) MS-A0409 Grundkurs i diskret matematik I oktober 014 1 / 44 Mängder (naiv, inte

Läs mer

MS-A0409 Grundkurs i diskret matematik I

MS-A0409 Grundkurs i diskret matematik I MS-A0409 Grundkurs i diskret matematik I G. Gripenberg Aalto-universitetet oktober 04 G. Gripenberg (Aalto-universitetet) MS-A0409 Grundkurs i diskret matematik I oktober 04 / 45 Mängder och logik Relationer

Läs mer

Introduktion till predikatlogik. Jörgen Sjögren

Introduktion till predikatlogik. Jörgen Sjögren Introduktion till predikatlogik Jörgen Sjögren Högskolan i Skövde Institutionen för naturvetenskap 2002 - 1 - Förord Det som följer på dessa dryga hundra sidor är ett av otaliga försök som gjorts att presentera

Läs mer

DD1350 Logik för dataloger. Fö 2 Satslogik och Naturlig deduktion

DD1350 Logik för dataloger. Fö 2 Satslogik och Naturlig deduktion DD1350 Logik för dataloger Fö 2 Satslogik och Naturlig deduktion 1 Satslogik En sats(eller utsaga)är ett påstående som kan vara sant eller falskt. I satslogik(eng. propositionallogic) representeras sådana

Läs mer

Induktion och rekursion

Induktion och rekursion Matematik, KTH Bengt Ek november 2017 Material till kursen SF1679, Diskret matematik för F: Induktion och rekursion 1. Om välgrundade binära relationer Låt R vara en binär relation på en mängd D. Vi skriver

Läs mer