DD1350 Logik för dataloger. Fö 7 Predikatlogikens semantik
|
|
- Cecilia Lindberg
- för 7 år sedan
- Visningar:
Transkript
1 DD1350 Logik för dataloger Fö 7 Predikatlogikens semantik 1
2 Kryssprodukt av mängder Om A och B är två mängder så är deras kryssprodukt A B mängden av alla par (a,b), där a A och b B. Ex: A={1,2}, B={3,4}, A B = { (1,3), (1,4), (2,3), (2,4) } Ex: N N är mängden av alla par av naturliga tal.
3 Binära relationer En binär relation över A är en delmängd av A A. Ex: < (mindre än) är en binär relation över N: < = { (0,1), (0,2), (1,2), (0,3), (1,3), (2,3),... } Ex: Grafen nedan kan ses som relationen {(a,b), (b,a)} a b
4 n-ställiga relationer En binär relation består av par. Allmänt kan en mängd n-tupler, där alla komponenter är hämtade ur samma mängd A, ses som en relation över A n. Ex: plus = { (x,y,z) N 3 x+y = z } = = { (0,0,0), (0,1,1), (1,0,1), (1,1,2), (0,2,2),... }
5 Funktioner En funktion kan ses som en specialfall av en relation. Om F är en binär relation över A, där för varje a A finns det max ett b A sådant att (a,b) F, så är F en funktion. Oftast skriver man då F(a)=b (som ni är vana vid). Mer generellt kan varje funktion f : A n A beskrivas som en (n+1)-ställig relation över A. Ex: plus på föregående bild.
6 Unära relationer Unära (1-ställiga) relationer kallas ibland för egenskaper. I stället för att skriva { (a), (b), (c),... } så skriver vi helt enkelt { a, b, c,... }
7 Dagens ämne Vi har utökat naturlig deduktion till att även gälla predikatlogik (fö 5). Vi vill nu definiera en semantik (modellteori) till predikatlogiken. För satslogik kunde vi definiera en semantik med hjälp av sanningsvärdestabeller (fö 3). Naturlig deduktion för satslogik är sund och fullständig gentemot denna semantik. Kan vi göra något liknande för predikatlogik?
8 Inledande exempel Är följande formel sann? x y( x+y = y+x ) Svar ja om vi tänker oss addition över heltal. Svar nej om vi tänker oss konkatenering av strängar. (Symbolen + används i Java i bägge betydelserna.) dvs en formel kan vara sann i en modell och falsk i en annan.
9 Modeller En modell till en predikatlogiska formel Φ specificerar: en mängd A (universum, alla objekt vi talar om) ett element i A för varje konstant i Φ en funktion f : A n A för varje funktionssymbol (med n argument) i Φ en n-ställig relation över A för varje predikatsymbol (med n argument) i Φ
10 Modeller, exempel T.ex. Φ = x y ( U(x) U(y) U(x+y) ) Låt M vara följande modell: A = N = { 0, 1, 2, } + = addition U(x) = udda = {1, 3, 5,... } Då är Φ sann i M, eftersom summan av två udda tal är jämn (icke udda). Detta skrivs M = Φ
11 Modeller, exempel T.ex. Φ = x y ( U(x) U(y) U(x+y) ) Låt M 2 vara följande modell: A = { strängar över {a,b} } + = konkatenering av strängar U(x) = strängen x har udda längd = {a, b, aaa, aab,... } Då är Φ sann i M 2, eftersom om man lägger två strängar av udda längd efter varandra får man en sträng av jämn längd. Alltså: M 2 = Φ
12 Modeller, exempel T.ex. Φ = x y ( U(x) U(y) U(x+y) ) Låt M 3 vara följande modell: A = N = { 0, 1, 2, } + = addition U(x) = x har ett udda antal siffror = {0, 1,...,9, 100, 101,... } Då är Φ falsk i M 3, eftersom t.ex. 1 och 2 har udda antal siffror, men 1+2=3 också har ett udda antal siffror. Detta skrivs M 3 = Φ
13 En ändlig modell T.ex. Φ = x y ( U(x) U(y) U(x+y) ) Låt M 4 vara följande modell: A = { 0, 1 } + = (addition modulo 2, xor ) U(x) = udda = {1} Då är Φ sann i M 4, eftersom 1 1=0, och 0 är jämnt (icke udda). Alltså: M 4 = Φ
14 Rekursiv evaluering (def 2.18) För att evaluera om en formel är sann eller ej i en viss modell kan man rekursivt evaluera alla dess delformler. T.ex. för att avgöra om M = Φ 1 Φ 2 ska vi avgöra om M = Φ 1 och M = Φ 2. För detaljer, se def 2.18 i boken.
15 Jämför satslogik I satslogiken är en modell en valuering, dvs en rad i sanningstabellen, t.ex. { p:f, q:t }. (se fö 3). Om det finns n variabler i den satslogiska formeln ϕ, så finns det 2 n rader i sanningstabellen för ϕ. I predikatlogiken finns däremot oändligt många modeller till varje formel.
16 Slutna och öppna formler En sluten formel (= en sats, eng. sentence) är en formel utan fria variabler, t.ex. x (U(x)). Given en modell M, så är en sats sann eller falsk i M. En öppen formel innehåller fria variabler, t.ex. U(x). För att kunna veta om U(x) är sann eller falsk i M måste vi veta vad x är bundet till. Därför införs begreppet omgivning (def 2.17), vilket är en funktion från variabler till värden, t.ex. [x!a]. Detta är inte svårt men blir rätt tekniskt. I denna kurs kommer vi fokusera på slutna formler.
17 Logisk konsekvens Formeln ψ är en logisk konsekvens av φ 1, φ 2,, φ n om ψ är sann i alla modeller i vilka φ 1, φ 2,, φ n är sanna. Detta skrivs φ 1, φ 2,, φ n = ψ (Vi förutsätter att φ 1, φ 2,, φ n, ψ är slutna formler).
18 Sundhet och fullständighet Precis som för satslogik kan man visa: Naturlig deduktion är ett sunt och fullständigt bevissystem för predikatlogik dvs φ 1, φ 2,, φ n ψ omm φ 1, φ 2,, φ n = ψ Detta visades 1929 av den österrikiske logikern Kurt Gödel. Kurt Gödel ( )
19 Sundhet, följder Predikatlogikens sundhet har några intressanta följder: Om ψ inte är en logisk konsekvens av φ 1, φ 2,, φ n så finns det heller inget bevis för ψ utifrån premisserna φ 1, φ 2,, φ n. Dvs om vi kan hitta ett enda sätt att tolka symbolerna i formlerna så att φ 1, φ 2,, φ n blir sanna, men ψ falsk, så kan vi inte bevisa φ 1, φ 2,, φ n ψ. Ett (1) motexempel räcker!
20 Validitet och satisfierbarhet En formel är valid om den är sann i alla modeller. Exempel: x ( P(x) \/ P(x)) En formel är satisfierbar om den är sann i någon modell. Exempel: x ( P(x)) En formel är osatisfierbar om den är falsk i alla modeller. Exempel: x ( P(x) /\ P(x))
21 (1) Alla valida formler ψ ϕ (2) ϕ ψ (3) Alla osatisfierbara formler (1) + (2) + (3) = Alla predikatlogiska formler som finns (1) + (2) = Alla satisfierbara formler Om ϕ är valid så är ϕ osatisfierbar Om ψ är varken valid eller osatisfierbar, så gäller samma sak även för ψ
22 Oavgörbarhet Predikatlogiken är oavgörbar. Detta visades av Alan Turing dvs det finns inget datorprogram som alltid terminerar och svarar ja exakt när Φ är valid, och nej annars. Alan Turing ( ) Man kan visa detta genom att, givet ett program P, generera en formel Φ som är valid omm P terminerar. Eftersom termineringsproblemet är oavgörbart (se fö 6) så måste då även validitetsproblemet vara oavgörbart.
23 Men kan vi alltid hitta ett bevis? Om nu Φ är valid, kan vi alltid hitta ett bevis för Φ? I princip ja: mängden av predikatlogiska bevis är en rekursivt uppräkningsbar mängd (se fö 6). Vi kan helt enkelt (i teorin) generera (allt längre och längre) bevis. Till slut kommer vi hitta ett bevis för Φ. Om däremot = Φ så kommer bevissökningen att aldrig terminera.
24 Brist på bevis motbevis Om vi har försökt 1 timme (1 dag/1 år/...) att försöka hitta ett bevis men misslyckats, kan vi då fastslå att det inte finns något bevis? Svar nej: Vissa teorem kan ha extremt långa och/eller svårfunna bevis., t.ex. Fermats sista sats : n ( n>2 x y z(x n +y n =z n )) Formuleringen är kort men beviset är på 109 sidor matematisk text (motsvarar säkert miljontals sidor bevis i naturlig deduktion).
25 Brist på motexempel bevis Om vi har försökt 1 timme (1 dag/1 år/...) att försöka hitta ett motexempel men misslyckats, kan vi då fastslå att det finns ett bevis? Svar nej: t.ex. Eulers förmodan : x y z w (x 4 +y 4 +z 4 = w 4 ) vilket är felaktigt. Minsta motexemplet är dock stort: =
p /\ q r DD1350 Logik för dataloger Kort repetition Fö 3 Satslogikens semantik
DD1350 Logik för dataloger Fö 3 Satslogikens semantik 1 Kort repetition Satslogik formellt språk för att uttrycka påståenden med variabler och konnektiv /\, \/,, t.ex. p /\ q r 1 Kort repetition Naturlig
DD1350 Logik för dataloger
DD1350 Logik för dataloger Fö 8 Axiomatiseringar 1 Modeller och bevisbarhet Sedan tidigare vet vi att: Om en formel Φ är valid (sann i alla modeller) så finns det ett bevis för Φ i naturlig deduktion.
DD1350 Logik för dataloger
DD1350 Logik för dataloger Fö 4 Predikatlogik 1 Kort repetition Satslogik Naturlig deduktion är ett sunt och fullständigt bevissystem för satslogik Avgörbarhet Så vad saknas? Egenskaper Satslogiken är
En introduktion till predikatlogik
rasmus.blanck@gu.se FT1200, LC1510 och LGFI52 VT2017 (Premiss 1) (Premiss 2) (Slutsats) Alla människor är dödliga Sokrates är en människa Sokrates är dödlig Detta argument är intuitivt giltigt: Det finns
Tommy Färnqvist, IDA, Linköpings universitet. 2 Strukturer 2 2.1 Domäner... 2 2.2 Tolkningar... 3
Föreläsning 2 Semantik 729G06 Logikdelen Föreläsningsanteckningar i Programmering och logik 27 januari 2014 Tommy Färnqvist, IDA, Linköpings universitet 2.1 Innehåll Innehåll 1 Lite mer syntax 1 2 Strukturer
Logik och bevisteknik lite extra teori
Logik och bevisteknik lite extra teori Inger Sigstam 2011-04-26 1 Satslogik (eng: propositional logic) 1.1 Språket Alfabetet består av följande symboler: satssymbolerna p 0, p 1, p 2,.... konnektiverna,,,,.
FÖRELÄSNING 3 ANDERS MÄRAK LEFFLER IDA/HCS
729G06 Logik FÖRELÄSNING 3 ANDERS MÄRAK LEFFLER IDA/HCS 160208 Idag C-regeln, informell (och formell) inledning till predikatlogik (Bevis kommer senare.) 2 3 Vår (Snöfritt Cykla) (Vår Snöfritt) Cykla Lätt
Grundläggande logik och modellteori
Grundläggande logik och modellteori Kapitel 8: Predikatlogik Henrik Björklund Umeå universitet 2. oktober, 2014 Första ordningens predikatlogik Signaturer och termer Första ordningens predikatlogik Formler
Föreläsning 5. Deduktion
Föreläsning 5 Deduktion Hur ett deduktivt system fungerar Komponenter - Vokabulär Ett deduktivt system använder ett visst slags språk som kan kallas för systemets vokabulär. I mindre formella fall är kanske
Filosofisk Logik (FTEA21:4) föreläsningsanteckningar/kompendium. v. 2.0, den 29/ III. Metalogik 17-19
Filosofisk Logik (FTEA21:4) föreläsningsanteckningar/kompendium IV v. 2.0, den 29/4 2013 III. Metalogik 17-19 Modeller för satslogiken 18.1 Vi har tidigare sagt att en modell är en tolkning av en teori
Grundläggande logik och modellteori
Modeller och uttrycksfullhet hos predikatlogik Department of mathematics Umeå university Föreläsning 10 Dagens föreläsning 1 Innehåll på resten av kursen 2 Varför verifikation? Formella metoder för verifikation
13. CHURCH S OCH GÖDELS SATSER. KORT ORIENTERING OM BERÄKNINGSBARHET, EFFEKTIV UPPRÄKNELIGHET OCH AVGÖRBARHET.
81 13 CHURCH S OCH GÖDELS SATSER KORT ORIENTERING OM BERÄKNINGSBARHET, EFFEKTIV UPPRÄKNELIGHET OCH AVGÖRBARHET Våra beräkningar skall utföras på symbolsträngar, där symbolerna tas från ett givet alfabet
Grundläggande logik och modellteori (5DV102)
Tentamen 2013-10-31 Grundläggande logik och modellteori (5DV102) M. Berglund och K. Markström Totalt antal uppgifter 11 Maximalt antal poäng 30 Krav för 3 i betyg 14 poäng Krav för 4 i betyg 19 poäng,
Lite om bevis i matematiken
Matematik, KTH Bengt Ek februari 2013 Material till kursen SF1662, Diskret matematik för CL1: Lite om bevis i matematiken Inledning Bevis är centrala i all matematik Utan (exakta definitioner och) bevis
FÖRELÄSNING 8 ANDERS MÄRAK LEFFLER IDA/HCS
729G06 Logik FÖRELÄSNING 8 ANDERS MÄRAK LEFFLER IDA/HCS 160309 Idag Sammanfattning*/uppsamling 2 Mer problemöversikt (och lite definitioner) Inte ersättning för andra föreläsningar! 3 Vad är enlogik? Syntax
Grundläggande logik och modellteori (5DV102)
Tentamen 2014-01-10 Grundläggande logik och modellteori (5DV102) M. Berglund och K. Markström Totalt antal uppgifter 10 Maximalt antal poäng 30 Krav för 3 i betyg 1 Krav för 4 i betyg 19 poäng, vara minst
Filosofisk logik Kapitel 19. Robin Stenwall Lunds universitet
Filosofisk logik Kapitel 19 Robin Stenwall Lunds universitet Dagens upplägg Gödels fullständighetsteorem Sundhet och fullständighet Fullständighetsbeviset Vittneskonstanter Henkinteorin Eliminationsteoremet
DD1350 Logik för dataloger. Fö 2 Satslogik och Naturlig deduktion
DD1350 Logik för dataloger Fö 2 Satslogik och Naturlig deduktion 1 Satslogik En sats(eller utsaga)är ett påstående som kan vara sant eller falskt. I satslogik(eng. propositionallogic) representeras sådana
Sanningsvärdet av ett sammansatt påstående (sats, utsaga) beror av bindeord och sanningsvärden för ingående påståenden.
MATEMATISK LOGIK Matematisk logik formaliserar korrekta resonemang och definierar formellt bindeord (konnektiv) mellan påståenden (utsagor, satser) I matematisk logik betraktar vi påståenden som antingen
Primitivt rekursiva funktioner och den aritmetiska hierarkin
Primitivt rekursiva funktioner och den aritmetiska hierarkin Rasmus Blanck 0 Inledning En rad frågor inom logiken, matematiken och datavetenskapen relaterar till begreppet beräkningsbarhet. En del i kursen
Avslutning. Vad? Hur? Anmärkningar inför tentan 2. Vad ska kunnas?
Avslutning Anmärkningar inför tentan Vad ska kunnas? Avslutning 1 Vad? Anmärkningar inför tentan 1 Att ha en bra förståelse för det som behandlades på föreläsningarna och gruppövningarna räcker i princip.
Logik för datavetare DVK:Log Tisdagen 28 oktober 2014. Institutionen för dataoch systemvetenskap David Sundgren
Institutionen för dataoch systemvetenskap David Sundgren Logik för datavetare DVK:Log Tisdagen 28 oktober 2014 Skrivtid: 9 00-13 00. Inga hjälpmedel utom formelsamlingen på nästa sida är tillåtna. För
*UXSS YQLQJ±/RJLNPHGWLOOlPSQLQJDUYW
*USS YQLQJ±/RJLNPHGWLOOlPSQLQJDUYW 8SSJLIW Här kommer några teoretiska frågor, skriv svaren med egna ord, dvs skriv inte av ohbilderna: a. Vad är en beslutsprocedur? En algoritm som terminerar och som
Innehåll. Föreläsning 7. Satslogiken är för grov. Samma sak i predikatlogik: Första ordningens predikatlogik. Logik med tillämpningar
Innehåll Föreläsning 7 Logik med tillämpningar 99-03-01 Första ordningens predikatlogik Objekt, predikat, kvantifierare Funktioner, termer, wffs Bindning och räckvidd Tolkningar och värderingar Satisfiering,
Normalisering av meningar inför resolution 3. Steg 1: Eliminera alla och. Steg 2: Flytta alla negationer framför atomära formler
Normalisering av meningar inför resolution På samma sätt som i satslogiken är resolution i predikatlogiken en process vars syfte är att vederlägga att en klausulmängd är satisfierbar. Det förutsätter dock
Föreläsning 8. Innehåll. Satisfierbarhet hos en formel. Logik med tillämpningar
Föreläsning 8 Logik med tillämpningar 000413 Innehåll Lite mer om värderingar och tolkningar Semantiska tablåer i predikatlogiken Kapitel 3.5 Satisfierbarhet hos en formel En formel A är satisfierbar om
K2 Något om modeller, kompakthetssatsen
KTH Matematik Bengt Ek Maj 2005 Kompletteringsmaterial till kursen 5B1928 Logik för D1: K2 Något om modeller, kompakthetssatsen Vi skall presentera ett enkelt (om man känner till sundhets- och fullständighetssatsen
Avslutning. Vad? Hur? Anmärkningar inför tentan 2. Vad ska ni kunna?
Avslutning Anmärkningar inför tentan Vad ska ni kunna? Avslutning 1 Vad? Anmärkningar inför tentan 1 Att ha en bra förståelse för det som behandlades på föreläsningarna, inlämningsuppgifterna och gruppövningarna
Kompletteringsmaterial. K2 Något om modeller, kompakthetssatsen
KTH Matematik Bengt Ek Maj 2008 Kompletteringsmaterial till kursen SF1642, Logik för D1 och IT3: K2 Något om modeller, kompakthetssatsen Vi skall presentera ett enkelt (om man känner till sundhets- och
Grundläggande logik och modellteori
Grundläggande logik och modellteori Kapitel 6: Binära beslutsdiagram (BDD) Henrik Björklund Umeå universitet 22. september, 2014 Binära beslutsdiagram Binära beslutsdiagram (Binary decision diagrams, BDDs)
Bakgrund. Bakgrund. Bakgrund. Håkan Jonsson Institutionen för systemteknik Luleå tekniska universitet Luleå, Sverige
Är varje påstående som kan formuleras matematiskt*) alltid antingen sant eller falskt? *) Inom Institutionen för systemteknik Luleå tekniska universitet Luleå, Sverige Exempel: 12 = 13 nej, falskt n! >
K3 Om andra ordningens predikatlogik
KTH Matematik Bengt Ek Maj 2005 Kompletteringsmaterial till kursen 5B1928 Logik för D1: K3 Om andra ordningens predikatlogik Vi presenterar på dessa sidor kortfattat andra ordningens predikatlogik, vilket
Om semantisk följd och bevis
Matematik, KTH Bengt Ek december 2017 Material till kursen SF1679, Diskret matematik: Om semantisk följd och bevis Logik handlar bla om studiet av korrekta slutledningar, dvs frågan om när det är riktigt
DD1350 Logik för dataloger. Vad är logik?
DD1350 Logik för dataloger Fö 1 - Introduktion Vad är logik? Vetenskapen som studerar hur man bör resoneraoch dra slutsatser utifrån givna påståenden (=utsagor, satser). 1 Aristoteles (384-322 f.kr) Logik
Filosofisk logik Kapitel 15. Robin Stenwall Lunds universitet
Filosofisk logik Kapitel 15 Robin Stenwall Lunds universitet Dagens upplägg Första ordningens mängdlära Naiv mängdlära Abstraktionsaxiomet (eg. comprehension) Extensionalitetsaxiomet Små mängder Ordnade
Tommy Färnqvist, IDA, Linköpings universitet. 1 Kursadministration 1. 2 Introduktion 2 2.1 Varför logik?... 2 2.2 Satslogik... 2
Föreläsning 1 Syntax 729G06 Logikdelen Föreläsningsanteckningar i Programmering och logik 21 januari 2014 Tommy Färnqvist, IDA, Linköpings universitet 1.1 Innehåll Innehåll 1 Kursadministration 1 2 Introduktion
Om modeller och teorier
Matematik, KTH Bengt Ek december 2017 Material till kursen SF1679, Diskret matematik: Om modeller och teorier Hittills i kursen har vi studerat flera olika typer av matematiska strukturer, bl.a. (partial)ordnade
Satslogik grundläggande definitioner 3. Satslogik. Uppgift 1. Satslogikens syntax (välformade formler) Satslogikens semantik (tolkningar)
Satslogik grundläggande definitioner Satslogikens syntax (välformade formler) Satslogikens semantik (tolkningar) Modeller, logisk konsekvens och ekvivalens Några notationella förenklingar Kompletta mängder
7, Diskreta strukturer
Objektorienterad modellering och diskreta strukturer 7, Diskreta strukturer Sven Gestegård Robertz Datavetenskap, LTH 2015 Modeller Matematiska modeller Kontinuerliga modeller Kontinuerliga funktioner
Tentamen i logik 729G06 Programmering och logik
Tentamen i logik 729G06 Programmering och logik 2016-08-19 Poänggränser: På tentan kan du som mest få 25 poäng. Om du har fått 12 poäng är du garanterad åtminstone godkänt betyg, 19 väl godkänt. Tillåtna
Vad är det? Översikt. Innehåll. Vi behöver modeller!!! Kontinuerlig/diskret. Varför modeller??? Exempel. Statiska system
Vad är det? Översikt Discrete structure: A set of discrete elements on which certain operations are defined. Discrete implies non-continuous and therefore discrete sets include finite and countable sets
Sats. Om t är en rätvinklig triangel så är summan av kvadraterna på kateterna i t lika med kvadraten på hypotenusan.
Lunds tekniska högskola Datavetenskap Lennart Andersson Föreläsningsanteckningar EDAF10 3 Predikatlogik 3.1 Motivering I satslogiken är de minsta beståndsdelarna satslogiska variabler som kan anta värdena
Grundläggande logik och modellteori
Grundläggande logik och modellteori Kapitel 4: Konjunktiv och disjunktiv normalform Henrik Björklund Umeå universitet 15. september, 2014 CNF och DNF Konjunktiv normalform (CNF) Omskrivning av en formel
Logik och modaliteter
Modallogik Introduktionsföreläsning HT 2015 Formalia http://gul.gu.se/public/courseid/70391/lang-sv/publicpage.do Förkunskaper etc. Logik: vetenskapen som studerar argument med avseende på (formell) giltighet.
Grundläggande logik och modellteori
Grundläggande logik och modellteori Kapitel 3: Bevissystem, Hilbertsystem Henrik Björklund Umeå universitet 8. september, 2014 Bevissystem och Hilbertsystem Teorier och deduktionsproblemet Axiomscheman
Logik I. Åsa Hirvonen Helsingfors universitet. Våren 2013
Logik I Åsa Hirvonen Helsingfors universitet Våren 2013 Inledning Logik är läran om härledning. Med hjälp av logiken kan vi säga när ett resonemang är korrekt och när det inte är det. För att kunna studera
Föreläsning 9: Turingmaskiner och oavgörbarhet. Turingmaskinen. Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen.
Föreläsning 9: Turingmaskiner och oavgörbarhet Turingmaskinen Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen. Data är ett oändligt långt band där nollor och ettor står
Predikatlogik: Normalformer. Klas Markström
1 Precis som i satslogik så är det bekvämt att kunna hitta en normalform för meningar. Om vi kan utgå från att alla meningar är på normalform så behöver vi t.e.x. inte bekymra oss om en massa specialfall
Diskret matematik: Övningstentamen 1
Diskret matematik: Övningstentamen 1 1. Bevisa att de reella talen är en icke-uppräknelig mängd.. För två mängder av positiva heltal A och B skriver vi A C B, om det är så att A innehåller ett heltal som
Övningshäfte 2: Induktion och rekursion
GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2017 INLEDANDE ALGEBRA Övningshäfte 2: Induktion och rekursion Övning D Syftet är att öva förmågan att utgående från enkla samband, aritmetiska och geometriska,
Induktion, mängder och bevis för Introduktionskursen på I
Induktion, mängder och bevis för Introduktionskursen på I J A S, ht 04 1 Induktion Detta avsnitt handlar om en speciell teknik för att försöka bevisa riktigheten av påståenden eller formler, för alla heltalsvärden
7, Diskreta strukturer
Objektorienterad modellering och diskreta strukturer 7, Diskreta strukturer Sven Gestegård Robertz Datavetenskap, LTH 2013 1 Inledning 2 Satslogik Inledning Satslogiska uttryck Resonemang och härledningar
9. Predikatlogik och mängdlära
Objektorienterad modellering och diskreta strukturer 9. Predikatlogik och mängdlära Sven Gestegård Robertz Datavetenskap, LTH 2014 Rekaputilation Vi har talat om satslogik naturlig härledning predikatlogik
Formell logik Kapitel 1 och 2. Robin Stenwall Lunds universitet
Formell logik Kapitel 1 och 2 Robin Stenwall Lunds universitet Kapitel 1: Atomära satser Drömmen om ett perfekt språk fritt från vardagsspråkets mångtydighet och vaghet (jmf Leibniz, Russell, Wittgenstein,
Hur man skriver matematik
Hur man skriver matematik Niels Chr. Overgaard 2018-10-01 N. Chr. Overgaard Skriva matematik 2018-10-01 1 / 12 Information: Opposition och kompisgranskning En del av inlämningsuppgift går ut på att man
Semantik och pragmatik
Semantik och pragmatik OH-serie 5 http://stp.lingfil.uu.se/~matsd/uv/uv12/semp/ Mats Dahllöf Institutionen för lingvistik och filologi Januari 2012 Så här långt Konjunktion (p q): att två enklare satser
Varför är logik viktig för datavetare?
Varför är logik viktig för datavetare? 1. Datavetenskap handlar ofta om att automatisera processer som tidigare styrts av människor. Intuition, intelligens och mänskliga resonemang ersätts av beräkningar.
Försättsblad till skriftlig tentamen vid Linköpings universitet TER1
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2016-12-09 Sal (1) TER1 Tid 14-18 Kurskod 729G06 Provkod TEN1 Kursnamn/benämning Provnamn/benämning Institution Antal
Lektion 8: Konstruktion av semantiska tablåer för PTL-formler
Lektion 8: Konstruktion av semantiska tablåer för PTL-formler Till denna lektion hör uppgift 2, 6 och 0 i lärobokens avsnitt.6 (sid. 255). Lös uppgift 2 genom att konstruera en semantisk tablå. Följande
Objektorienterad modellering och diskreta strukturer. 13. Problem. Sven Gestegård Robertz. Datavetenskap, LTH
Objektorienterad modellering och diskreta strukturer 13. Problem Sven Gestegård Robertz Datavetenskap, LTH 2014 Rekaputilation Vi har talat om satslogik och härledning predikatlogik och substitution mängder
Föreläsningsanteckningar och övningar till logik mängdlära
Inledande matematisk analys tma970, 010, logik, mängdlära Föreläsningsanteckningar och övningar till logik mängdlära Dessa öreläsningsanteckningar kompletterar mycket kortattat kap 0 och appendix B i Persson/Böiers,
Föreläsning 9: NP-fullständighet
Föreläsning 9: NP-fullständighet Olika typer av problem: 1. Beslutsproblem: A(x) =Ja. 2. Optimeringsproblem: A(x) =m Vanligen max/min. 3. Konstruktionsproblem: A(x) =En struktur. Vanligen lösningen till
En introduktion till logik
rasmus.blanck@gu.se FT1200, LC1510 och LGFI52 VT2017 Först: Tack till Martin Kaså, som gett mig tillstånd att använda och bearbeta dessa ljusbilder. Vad är logik? Slogan: Logik undersöker vilka argument
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 12 Anton Grensjö grensjo@csc.kth.se 10 december 2015 Anton Grensjö ADK Övning 12 10 december 2015 1 / 19 Idag Idag Komplexitetsklasser Blandade uppgifter
, S(6, 2). = = = =
1 Matematiska Institutionen KTH Lösningar till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF161 och SF160, den 17 april 2010 kl 09.00-14.00. Examinator: Olof Heden. DEL I 1.
Semantik och pragmatik
Semantik och pragmatik OH-serie 4 http://stp.lingfil.uu.se/~matsd/uv/uv12/semp/ Mats Dahllöf Institutionen för lingvistik och filologi Januari 2012 Om barnet har svårt att andas eller har ont i bröstet
Logik: sanning, konsekvens, bevis
Logik: sanning, konsekvens, bevis ft1100 samt lc1510 HT 2016 Giltiga argument (Premiss 1) (Premiss 2) (Slutsats) Professorn är på kontoret eller i lunchrummet Hon är inte på kontoret Professorn är i lunchrummet
Viktiga frågor att ställa när ett argument ska analyseras och sedan värderas:
FTEA12:2 Föreläsning 2 Grundläggande argumentationsanalys II Repetition: Vid förra tillfället började vi se närmre på vad som utmärker filosofisk argumentationsanalys. Vi tittade närmre på ett arguments
Filosofisk Logik. föreläsningsanteckningar/kompendium (FTEA21:4) v. 2.0, den 5/ Kompakthet och Löwenheim-skolemsatsen
Filosofisk Logik (FTEA21:4) föreläsningsanteckningar/kompendium VI v. 2.0, den 5/5 2014 Kompakthet och Löwenheim-skolemsatsen 19.6-19.7 Närhelst vi har en mängd satser i FOL som inte är självmotsägande
INDUKTION OCH DEDUKTION
AVSNITT 3 INDUKTION OCH DEDUKTION Med induktion menar man vanligen en mycket vanlig resonemangsmetod: man gör flera observationer, upptäcker ett mönster (eller något som man tror är ett mönster) och därefter
Övningshäfte 1: Logik och matematikens språk
GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2014 INLEDANDE ALGEBRA Övningshäfte 1: Logik och matematikens språk Övning A Målet är att genom att lösa och diskutera några inledande uppgifter få erfarenheter
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 6 Anton Grensjö grensjo@csc.kth.se 4 oktober 2017 1 Idag Algoritmkonstruktion (lite blandat) Redovisning och inlämning av labbteori 3 2 Uppgifter Uppgift
Logisk semantik I. 1 Lite om satslogik. 1.1 Konjunktioner i grammatisk bemärkelse. 1.2 Sant och falskt. 1.3 Satssymboler. 1.
UPPSALA UNIVERSITET Datorlingvistisk grammatik I Institutionen för lingvistik och filologi Oktober 2007 Mats Dahllöf http://stp.ling.uu.se/ matsd/uv/uv07/dg1/ Logisk semantik I 1 Lite om satslogik 1.1
Föreläsning 7+8: NP-problem. Begreppet effektiv algoritm är alltså synonymt med går i polynomisk tid i den här kursen. Är detta en rimlig uppdelning?
Formalisering av rimlig tid Föreläsning 7+8: NP-problem En algoritm som har körtid O(n k ) för någon konstant k är rimligt snabb. En algoritm som har körtid Ω(c n ) för någon konstant c>1 är för långsam.
F. Drewes Datavetenskapens grunder, VT02. Lite logik
F Drewes 2002-05-23 Datavetenskapens grunder, VT02 Lite logik Den här texten är en sammanfattning av logikdelen i kursen Datavetenskapens grunder Den handlar om satslogik och predikatlogik, några av deras
MA 11. Hur starkt de binder. 2 Reella tal 3 Slutledning 4 Logik 5 Mängdlära 6-7 Talteori 8 Diofantiska ekvationer 9 Fördjupning och kryptografi
MA 11 Talteori och logik 2 Reella tal 3 Slutledning 4 Logik 5 Mängdlära 6-7 Talteori 8 Diofantiska ekvationer 9 Fördjupning och kryptografi propositionssymboler: bokstäver konnektiv Paranteser konnektiv
Kap. 7 Logik och boolesk algebra
Ka. 7 Logik och boolesk algebra Satslogik Fem logiska konnektiv: ej, och, eller, om-så, omm Begre: sats, sanningsvärde, sanningsvärdestabell tautologi, kontradiktion Egenskaer: Räkneregler för satslogik
Material till kursen SF1679, Diskret matematik: Om urvalsaxiomet mm. Axiom som är ekvivalenta med urvalsaxiomet
Matematik, KTH Bengt Ek december 2017 Material till kursen SF1679, Diskret matematik: Om urvalsaxiomet mm Vi har tidigare nämnt Zermelo-Fraenkels axiom för mängdläran, de upprepas på sista sidan av dessa
Begreppen "mängd" och "element" är grundläggande begrepp i matematiken.
MÄNGDER Grundläggande begrepp och beteckningar Begreppen "mängd" och "element" är grundläggande begrepp i matematiken. Vi kan beskriva (ange, definiera) en mängd som innehåller ändligt många element genom
PCP-satsen på kombinatoriskt manér
austrin@kth.se Teorigruppen Skolan för Datavetenskap och Kommunikation 2005-10-24 Agenda 1 Vad är ett bevis? Vad är ett PCP? PCP-satsen 2 Vad, hur och varför? Lite definitioner Huvudresultatet 3 Ännu mer
Semantik och pragmatik (Serie 4)
Semantik och pragmatik (Serie 4) Satser och logik. Mats Dahllöf Institutionen för lingvistik och filologi April 2015 1 / 30 Så här långt (satslogik) Konjunktion (p q): att två enklare satser båda är uppfyllda.
Filosofisk logik Kapitel 15 (forts.) Robin Stenwall Lunds universitet
Filosofisk logik Kapitel 15 (forts.) Robin Stenwall Lunds universitet Dagens upplägg Antalet element i en mängd Kardinalitet Humes princip Cantors teorem Den universella mängden Några mängdteoretiska paradoxer
Föreläsning 8+9: NP-problem. Begreppet effektiv algoritm är alltså synonymt med går i polynomisk tid i den här kursen. Är detta en rimlig uppdelning?
Formalisering av rimlig tid Föreläsning 8+9: NP-problem En algoritm som har körtid O(n k ) för någon konstant k är rimligt snabb. En algoritm som har körtid Ω(c n ) för någon konstant c>1 är för långsam.
10. Mängder och språk
Objektorienterad modellering och diskreta strukturer 10. Mängder och språk Sven Gestegård Robertz Institutionen för datavetenskap, LTH 2013 Rekaputilation Vi har talat om satslogik, predikatlogik och härledning
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 6 Anton Grensjö grensjo@csc.kth.se 9 oktober 2015 Anton Grensjö ADK Övning 6 9 oktober 2015 1 / 23 Översikt Kursplanering Ö5: Grafalgoritmer och undre
(N) och mängden av heltal (Z); objekten i en mängd behöver dock inte vara tal. De objekt som ingår i en mängd kallas för mängdens element.
Grunder i matematik och logik (2017) Mängdlära Marco Kuhlmann 1 Grundläggande begrepp Mängder och element 2.01 En mängd är en samling objekt. Två standardexempel är mängden av naturliga tal (N) och mängden
LMA033/LMA515. Fredrik Lindgren. 4 september 2013
LMA033/LMA515 Fredrik Lindgren Matematiska vetenskaper Chalmers tekniska högskola och Göteborgs universitet 4 september 2013 F. Lindgren (Chalmers&GU) Matematik 4 september 2013 1 / 25 Outline 1 Föreläsning
MS-A0409 Grundkurs i diskret matematik I
MS-A0409 Grundkurs i diskret matematik I G. Gripenberg Aalto-universitetet oktober 014 G. Gripenberg (Aalto-universitetet) MS-A0409 Grundkurs i diskret matematik I oktober 014 1 / 44 Mängder (naiv, inte
Formell logik Föreläsning 1. Robin Stenwall
Formell logik Föreläsning 1 Robin Stenwall Betygskriterier Mål Godkänt Väl godkänt Redogöra för grundprinciperna för härledning och översättning i sats- och predikatlogik. Utföra grundläggande översättningar
Lösningar för tenta i TMV200 Diskret matematik kl. 14:00 18:00
Lösningar för tenta i TMV200 Diskret matematik 2018-08-31 kl 1:00 18:00 1 Om argumentet inte är giltigt går det att hitta ett motexempel, dvs en uppsättning sanningsvärden för vilka alla hypoteserna är
MS-A0409 Grundkurs i diskret matematik I
MS-A0409 Grundkurs i diskret matematik I G. Gripenberg Aalto-universitetet oktober 04 G. Gripenberg (Aalto-universitetet) MS-A0409 Grundkurs i diskret matematik I oktober 04 / 45 Mängder och logik Relationer
Induktion och rekursion
Matematik, KTH Bengt Ek november 2017 Material till kursen SF1679, Diskret matematik för F: Induktion och rekursion 1. Om välgrundade binära relationer Låt R vara en binär relation på en mängd D. Vi skriver
Föreläsning 8: Intro till Komplexitetsteori
Föreläsning 8: Intro till Komplexitetsteori Formalisering av rimlig tid En algoritm som har körtid O(n k ) för någon konstant k är rimligt snabb. En algoritm som har körtid Ω(c n ) för någon konstant c>1
Datorprogram, algoritmer och Turing-maskiner
Datorprogram, algoritmer och Turing-maskiner Uppsala universitet Turing-året 2012 Inledning Det är bekvämt om en maskin, till exempel en dator, kan utföra en uppgift, särskilt om den kan göra det avsevärt
Formell logik Kapitel 9. Robin Stenwall Lunds universitet
Formell logik Kapitel 9 Robin Stenwall Lunds universitet Kapitel 9: Introduktion till kvantifiering Vi har hittills betraktat logiska resonemang vars giltighet enbart beror på meningen hos konnektiv som
Induktion och rekursion
Matematik, KTH Bengt Ek november 2016 Material till kursen SF1679, Diskret matematik för F: Induktion och rekursion 1. Om välgrundade binära relationer Låt R vara en binär relation på en mängd D. Vi skriver
inte följa någon enkel eller fiffig princip, vad man nu skulle mena med det. All right, men
MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Christian Gottlieb Gymnasieskolans matematik med akademiska ögon Induktion Dag 2. Explicita formler och rekursionsformler. Dag mötte vi flera talföljder,
Filosofisk Logik (FTEA21:4) föreläsningsanteckningar I. v. 2.0, den 24/4 2013
Filosofisk Logik (FTEA21:4) föreläsningsanteckningar I v. 2.0, den 24/4 2013 Om detta kompendium: Filosofiska institutionen, Lunds Universitet staffan.angere@fil.lu.se Förberedande Det här kompendiet är
2 Matematisk grammatik
MATEMATISK GRAMMATIK Matematisk grammatik.1 Skriva matematik Matematisk grammatik, minst lika kul som det låter, och hur man skriver matematik är nästan lika viktigt som vad man skriver. En grammatisk
Tentamen TMV210 Inledande Diskret Matematik, D1/DI2
Tentamen TMV20 Inledande Diskret Matematik, D/DI2 208-0-27 kl. 4.00 8.00 Examinator: Peter Hegarty, Matematiska vetenskaper, Chalmers Telefonvakt: Anton Johansson, telefon: 5325 (alt. Peter Hegarty 070-5705475)