BER AKNINGSBARHET F OR DATALOGER. Kent Petersson. Institutionen for Datavetenskap Goteborgs Universitet / Chalmers Goteborg, Sweden

Storlek: px
Starta visningen från sidan:

Download "BER AKNINGSBARHET F OR DATALOGER. Kent Petersson. Institutionen for Datavetenskap Goteborgs Universitet / Chalmers Goteborg, Sweden"

Transkript

1 BER AKNINGSBARHET F OR DATALOGER Fran till P Kent Petersson Institutionen for Datavetenskap Goteborgs Universitet / Chalmers Goteborg, Sweden

2 ii Kent Petersson Department of Computer Science Goteborgs Universitet / Chalmers Goteborg ( kentp@cs.chalmers.se) Copyright c 1987 Kent Petersson

3 iii Forord Denna bok har vaxt fram ur forelasningsanteckningar som jag skrivit for kursen Teoretisk Datalogi som ingar i Matematikerlinjens tredje arskurs vid Goteborgs Universitet. Forelasningsanteckningarna har sin tur vaxt fram under de fyra ar som jag varit ansvarig for kursen. Anledningen till att jag borjade skriva egna anteckningar var att jag tyckte att de bocker som fanns tillgangliga inte tog upp amnet berakningsbarhet ur en datalogisk synvinkel. Det kandes inte meningsfullt att agna en stor del av kursen till att deniera syntax och semantik for en berakningsmodell (Turing-maskiner) som var sa olik de berakningsmodeller som studenterna var vana vid. I synnerhet inte nar problemen med att beskriva syntax och semantik for vanliga programmeringssprak ar sa centrala inom datalogi. Genom att valja en berakningsmodell som liknar ett vanligt programmeringssprak far man, som jag ser det, tva fordelar: Dels ser studenterna sambandet med sin ovriga verksamhet, och dels kan man inom kursens ram ta upp manga datalogiska problem som har med programmeringssprak att gora. Eftersom jag introducerar ett mycket enkelt programmeringssprak som berakningsmodell, kan jag till och med formellt deniera bade syntax och semantik for detta sprak. Jag hoppas att denna utgangspunkt gor att sambandet mellan de problem som tas upp i kursen och vanliga datalogiska problem blir mer framtradande. Jag ar mycket tacksam for de synpunkter pa tidigare versioner av forelasningsanteckningarna som jag fatt bade fran elever och fran olika medlemmar i Programmeringsmetodikgruppen. Diskussionerna i Programmeringsmetodikgruppen om funktionella sprak och typteori har dessutom i mycket stor utstrackning paverkat min installning till datalogiska problem i allmannhet. Jag ar medveten om att boken fortfarande innehaller felaktigheter, en del orsakade av min tankloshet, andra av texthanteringssystemets fantastiska formaga att hela tiden gora som jag skriver och inte som jag vill!!! Synpunkter och papekanden om innehall och tryckfel mottages darfor med stor tacksamhet. Goteborg i december '87 K P

4 iv

5 Innehall 1 INTRODUKTION 1 2 M ANGDL ARA Naturliga tal : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Sanningsvarden : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Tecken : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Heltal : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Sekvenser eller listor : : : : : : : : : : : : : : : : : : : : : : : : : : : Cartesiska produkter : : : : : : : : : : : : : : : : : : : : : : : : : : : Disjunkta unioner : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Andra mangdbildningsoperationer : : : : : : : : : : : : : : : : : : : : Matematiska funktioner : : : : : : : : : : : : : : : : : : : : : : : : : Partiella och totala funktioner : : : : : : : : : : : : : : : : : : Injektiva, surjektiva och bijektiva funktioner : : : : : : : : : : Komposition av funktioner : : : : : : : : : : : : : : : : : : : : Funktioner fran naturliga tal : : : : : : : : : : : : : : : : : : : Funktioner fran Bool : : : : : : : : : : : : : : : : : : : : : : : Funktioner fran listor : : : : : : : : : : : : : : : : : : : : : : : 26 3 BER AKNINGSBARA FUNKTIONER Upprakningsbara mangder : : : : : : : : : : : : : : : : : : : : : : : : En berakningsmodell programspraket P : : : : : : : : : : : : : : : Denition av programsprak syntax : : : : : : : : : : : : : : : : : : Grammatiker : : : : : : : : : : : : : : : : : : : : : : : : : : : Chomsky hierarkin : : : : : : : : : : : : : : : : : : : : : : : : BNF : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Formella sprak : : : : : : : : : : : : : : : : : : : : : : : : : : P:s syntax : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Abstrakt syntax : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Denition av programsprak semantik : : : : : : : : : : : : : : : : P:s semantik : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Forkortningar : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Satsforkortningar : : : : : : : : : : : : : : : : : : : : : : : : : Uttrycksforkortningar : : : : : : : : : : : : : : : : : : : : : : : Testforkortningar : : : : : : : : : : : : : : : : : : : : : : : : : 80 v

6 vi INNEHALL 3.9 Berakningar med andra dataobjekt : : : : : : : : : : : : : : : : : : : P-program som dataobjekt : : : : : : : : : : : : : : : : : : : : : : : : En interpretator for P-program skriven i P : : : : : : : : : : : : : : : Nagra icke-berakningsbara funktioner : : : : : : : : : : : : : : : : : : Rekursion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : BER AKNINGSBARA M ANGDER Rekursivt enumerabla mangder : : : : : : : : : : : : : : : : : : : : : Avgorbara mangder : : : : : : : : : : : : : : : : : : : : : : : : : : : : Predikatlogik ar oavgorbar : : : : : : : : : : : : : : : : : : : : : : : : KALKYL Inledning : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : notation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Abstraktion : : : : : : : : : : : : : : : : : : : : : : : : : : : : Applikation : : : : : : : : : : : : : : : : : : : : : : : : : : : : kalkyl : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Berakningsregler : : : : : : : : : : : : : : : : : : : : : : : : : Likhetsregler : : : : : : : : : : : : : : : : : : : : : : : : : : : Kombinatorer : : : : : : : : : : : : : : : : : : : : : : : : : : : Representation av naturliga tal och andra data Rekursion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : kalkyl och berakningsbarhet : : : : : : : : : : : : : : : : : : : : : : Oversattning fran P-program till -termer : : : : : : : : : : : En interpretator for -termer skriven i P : : : : : : : : : : : : BER AKNINGSMODELLER Andliga tillstandsmaskiner : : : : : : : : : : : : : : : : : : : : : : : : Turing maskiner : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Rekursiva funktioner : : : : : : : : : : : : : : : : : : : : : : : : : : : LITTERATURH ANVISNINGAR BETECKNINGAR SATSER OCH DEFINITIONER 229 A NAGRA BEVISMETODER 239 B NAGRA SATSER UTAN BEVIS 243

BERÄKNINGSBARHET FÖR DATALOGER

BERÄKNINGSBARHET FÖR DATALOGER BERÄKNINGSBARHET FÖR DATALOGER Från λ till P Kent Petersson Institutionen för Datavetenskap Göteborgs Universitet / Chalmers 412 96 Göteborg, Sweden ii Kent Petersson (epost 2011: Kent.Petersson(AT)gmail.com)

Läs mer

Tentamen i kurserna Beräkningsmodeller (TDA181/INN110) och Grundläggande Datalogi (TDA180)

Tentamen i kurserna Beräkningsmodeller (TDA181/INN110) och Grundläggande Datalogi (TDA180) Göteborgs Universitet och Chalmers Tekniska Högskola 25 oktober 2005 Datavetenskap TDA180/TDA181/INN110 Tentamen i kurserna Beräkningsmodeller (TDA181/INN110) och Grundläggande Datalogi (TDA180) Onsdagen

Läs mer

Tentamen i kurserna Beräkningsmodeller (TDA181/INN110) och Grundläggande Datalogi (TDA180)

Tentamen i kurserna Beräkningsmodeller (TDA181/INN110) och Grundläggande Datalogi (TDA180) Göteborgs Universitet och Chalmers Tekniska Högskola 19 januari 2005 Datavetenskap TDA180/TDA181/INN110 Tentamen i kurserna Beräkningsmodeller (TDA181/INN110) och Grundläggande Datalogi (TDA180) Onsdagen

Läs mer

Tentamen i kurserna Beräkningsmodeller (TDA181/INN110) och Grundläggande Datalogi (TDA180)

Tentamen i kurserna Beräkningsmodeller (TDA181/INN110) och Grundläggande Datalogi (TDA180) Göteborgs Universitet och Chalmers Tekniska Högskola 16 januari 2007 Datavetenskap TDA180/TDA181/INN110 Tentamen i kurserna Beräkningsmodeller (TDA181/INN110) och Grundläggande Datalogi (TDA180) Onsdagen

Läs mer

En bijektion mellan två mängder A och B som har ändligt antal element kan endast finnas om mängderna har samma antal element.

En bijektion mellan två mängder A och B som har ändligt antal element kan endast finnas om mängderna har samma antal element. BIJEKTION, INJEKTION, SURJEKTION NUMRERBARA (eller UPPRÄKNELIGA) MÄNGDER Allmän terminologi. I samband med variabelbyte vid beräkning av integraler har vi en avbildning mellan två mängder A och B, dvs

Läs mer

Grundläggande logik och modellteori

Grundläggande logik och modellteori Modeller och uttrycksfullhet hos predikatlogik Department of mathematics Umeå university Föreläsning 10 Dagens föreläsning 1 Innehåll på resten av kursen 2 Varför verifikation? Formella metoder för verifikation

Läs mer

Sista delen av kursen

Sista delen av kursen Sista delen av kursen handlar om hur program, delprogram och datatyper deklareras och vad det man åstadkommit egentligen betyder. Innehåll Syntaktisk (hur ser det ut) och semantisk (vad betyder det) beskrivning

Läs mer

Lars-Henrik Eriksson

Lars-Henrik Eriksson Välkomna till Programmeringsmetodik DV1 Programkonstruktion I+II http://www.csd.uu.se/kurs/pm1/ht02/www/ Lars-Henrik Eriksson lhe@csd.uu.se, http://user.it.uu.se/~lhe Undervisningstillfällen Föreläsningar:

Läs mer

Föreläsning 5. Deduktion

Föreläsning 5. Deduktion Föreläsning 5 Deduktion Hur ett deduktivt system fungerar Komponenter - Vokabulär Ett deduktivt system använder ett visst slags språk som kan kallas för systemets vokabulär. I mindre formella fall är kanske

Läs mer

Föreläsning 8 i kursen Ma III, #IX1305, HT 07. (Fjärde föreläsningen av Bo Åhlander)

Föreläsning 8 i kursen Ma III, #IX1305, HT 07. (Fjärde föreläsningen av Bo Åhlander) Föreläsning 8 i kursen Ma III, #IX1305, HT 07. (Fjärde föreläsningen av Bo Åhlander) Böiers 5.3 Relationer. Vi har definierat en funktion f: A B som en regel som kopplar ihop ett element a A, med ett element

Läs mer

Avslutning. Vad? Hur? Anmärkningar inför tentan 2. Vad ska kunnas?

Avslutning. Vad? Hur? Anmärkningar inför tentan 2. Vad ska kunnas? Avslutning Anmärkningar inför tentan Vad ska kunnas? Avslutning 1 Vad? Anmärkningar inför tentan 1 Att ha en bra förståelse för det som behandlades på föreläsningarna och gruppövningarna räcker i princip.

Läs mer

Anhållan om ändrad ersättning för vissa HST

Anhållan om ändrad ersättning för vissa HST INSTITUTIONEN FÖR FILOSOFI, LINGVISTIK OCH VETENSKAPSTEORI Institutionen för filosofi, lingvistik och vetenskapsteori Martin Jacobsson Viceprefekt för utbildning på grundnivå och avancerad nivå 031-786

Läs mer

Sista delen av kursen

Sista delen av kursen Sista delen av kursen handlar om hur program, delprogram och datatyper deklareras och vad det man åstadkommit egentligen betyder. Innehåll Syntaktisk (hur ser det ut) och semantisk (vad betyder det) beskrivning

Läs mer

Programspråkslingvistik. Sista delen av kursen. Ett programspråk

Programspråkslingvistik. Sista delen av kursen. Ett programspråk Sista delen av kursen Programspråkslingvistik handlar om hur program, delprogram och datatyper deklareras och vad det man åstadkommit egentligen betyder. Innehåll Syntaktisk (hur ser det ut) och semantisk

Läs mer

10. Mängder och språk

10. Mängder och språk Objektorienterad modellering och diskreta strukturer 10. Mängder och språk Sven Gestegård Robertz Institutionen för datavetenskap, LTH 2013 Rekaputilation Vi har talat om satslogik, predikatlogik och härledning

Läs mer

ÄNDLIGT OCH OÄNDLIGT AVSNITT 4

ÄNDLIGT OCH OÄNDLIGT AVSNITT 4 VSNITT ÄNDLIGT OCH OÄNDLIGT Är det möjligt att jämföra storleken av olika talmängder? Har det någon mening om man säger att det finns fler irrationella tal än rationella? Är det överhuvudtaget möjligt

Läs mer

Universitetet i Linköping Institutionen för datavetenskap Anders Haraldsson

Universitetet i Linköping Institutionen för datavetenskap Anders Haraldsson 1 2 TDDC66 Datorsystem och programmering TDDC67 Funktionell programmering Programmering i Lisp, examinator TDDC67 föreläsare i Lisp Peter Dalenius examinator TDDC66 kursassistent i Lisp + ett stort antal

Läs mer

Introduktion till formella metoder Programmeringsmetodik 1. Inledning

Introduktion till formella metoder Programmeringsmetodik 1. Inledning Introduktion till formella metoder Programmeringsmetodik 1. Inledning Fokus på imperativa program (ex. C, Java) program betyder härefter ett imperativt program Program bestäms i en abstrakt mening av hur

Läs mer

Studieplan för utbildning på forskarnivå i datalogi

Studieplan för utbildning på forskarnivå i datalogi Studieplan för utbildning på forskarnivå i datalogi Skolan för datavetenskap och kommunikation, KTH Reviderad version, 28 februari 2008. Gemensamma föreskrifter för utbildningen på forskarnivå vid KTH

Läs mer

Turingmaskiner och oavgörbarhet. Turingmaskinen. Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen.

Turingmaskiner och oavgörbarhet. Turingmaskinen. Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen. Turingmaskiner och oavgörbarhet Turingmaskinen Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen. Data är ett oändligt långt band där nollor och ettor står skrivna: Oändligt

Läs mer

9. Predikatlogik och mängdlära

9. Predikatlogik och mängdlära Objektorienterad modellering och diskreta strukturer 9. Predikatlogik och mängdlära Sven Gestegård Robertz Datavetenskap, LTH 2014 Rekaputilation Vi har talat om satslogik naturlig härledning predikatlogik

Läs mer

MATEMATIKENS SPRÅK. Avsnitt 1

MATEMATIKENS SPRÅK. Avsnitt 1 Avsnitt 1 MATEMATIKENS SPRÅK Varje vetenskap, liksom varje yrke, har sitt eget språk som ofta är en blandning av vardagliga ord och speciella termer. En instruktionshandbok för ett kylskåp eller för en

Läs mer

Grundläggande logik och modellteori

Grundläggande logik och modellteori Grundläggande logik och modellteori Kapitel 8: Predikatlogik Henrik Björklund Umeå universitet 2. oktober, 2014 Första ordningens predikatlogik Signaturer och termer Första ordningens predikatlogik Formler

Läs mer

Övningshäfte 2: Induktion och rekursion

Övningshäfte 2: Induktion och rekursion GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2017 INLEDANDE ALGEBRA Övningshäfte 2: Induktion och rekursion Övning D Syftet är att öva förmågan att utgående från enkla samband, aritmetiska och geometriska,

Läs mer

Datavetenskapligt program, 180 högskolepoäng

Datavetenskapligt program, 180 högskolepoäng GÖTEBORGS UNIVERSITET UTBILDNINGSPLAN IT-fakultetsstyrelsen 2013-02-14 Datavetenskapligt program, 180 högskolepoäng (Computer Science, Bachelor s Programme, 180 credits) Grundnivå/First level 1. Fastställande

Läs mer

TDDC74 Programmering, abstraktion och modellering. Tentamen

TDDC74 Programmering, abstraktion och modellering. Tentamen AID-nummer: Datum: 2011-01-11 1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering Tentamen Tisdag 11 januari

Läs mer

7, Diskreta strukturer

7, Diskreta strukturer Objektorienterad modellering och diskreta strukturer 7, Diskreta strukturer Sven Gestegård Robertz Datavetenskap, LTH 2015 Modeller Matematiska modeller Kontinuerliga modeller Kontinuerliga funktioner

Läs mer

Föreläsning 9: Turingmaskiner och oavgörbarhet. Turingmaskinen. Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen.

Föreläsning 9: Turingmaskiner och oavgörbarhet. Turingmaskinen. Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen. Föreläsning 9: Turingmaskiner och oavgörbarhet Turingmaskinen Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen. Data är ett oändligt långt band där nollor och ettor står

Läs mer

Lite additioner till Föreläsningsanteckningarna. 1 Tillägg till kapitel 1.

Lite additioner till Föreläsningsanteckningarna. 1 Tillägg till kapitel 1. Lite additioner till Föreläsningsanteckningarna. Följande additioner har gjorts till anteckningarna men ligger ändå som ett separat dokument för er som redan har skrivit ut anteckningarna och inte vill

Läs mer

Introduktion till programmering D0009E. Föreläsning 1: Programmets väg

Introduktion till programmering D0009E. Föreläsning 1: Programmets väg Introduktion till programmering D0009E Föreläsning 1: Programmets väg 1 Vad är en dator? En maskin vars beteende styrs av de innehållet (bitmönster) som finns lagrade i datorns minne (inte helt olikt förra

Läs mer

Exempel på typer av datorspråk EXCEL

Exempel på typer av datorspråk EXCEL 1 2 TDDB82 Perspektiv på Datateknik Breddgivande föreläsning Datorspråk Programmeringsparadigmer Programmeringsspråk Konstruktioner i programmeringsspråk Litteratur: Brookshear, Computer Science - an overview,

Läs mer

729G06 Logik FÖRELÄSNING 1 ANDERS MÄRAK LEFFLER IDA/HCS

729G06 Logik FÖRELÄSNING 1 ANDERS MÄRAK LEFFLER IDA/HCS 729G06 Logik FÖRELÄSNING 1 ANDERS MÄRAK LEFFLER IDA/HCS 160127 Vad är logik? Som ämne, område... 2 Läran om korrekta resonemang Följer slutsatserna av ens antaganden? 3 Alla hundar är djur. Alla enhörningar

Läs mer

Explorativ övning 4 ÄNDLIGT OCH OÄNDLIGT. Övning A

Explorativ övning 4 ÄNDLIGT OCH OÄNDLIGT. Övning A Explorativ övning 4 ÄNDLIGT OCH OÄNDLIGT Första delen av övningen handlar om begreppet funktion. Syftet är att bekanta sig med funktionsbegreppet som en parbildning. Vi koncentrerar oss på tre viktiga

Läs mer

Föreläsning 5 5DV086 - Programspråk

Föreläsning 5 5DV086 - Programspråk Föreläsning 5 5DV086 - Programspråk Petter Ericson (pettter@cs.umu.se) Umeå University 6 februari, 2015 Haskell-frågor? Haskell-tips do-syntax State-monaden Dagens plan Programspråksteori Varför? Vad?

Läs mer

Mängder och kardinalitet

Mängder och kardinalitet UPPSALA UNIVERSITET Matematiska institutionen Erik Melin Specialkursen HT07 28 september 2007 Mängder och kardinalitet Dessa blad utgör skissartade föreläsningsanteckningar kombinerat med övningar. Framställningen

Läs mer

Filosofisk Logik (FTEA21:4) föreläsningsanteckningar I. v. 2.0, den 24/4 2013

Filosofisk Logik (FTEA21:4) föreläsningsanteckningar I. v. 2.0, den 24/4 2013 Filosofisk Logik (FTEA21:4) föreläsningsanteckningar I v. 2.0, den 24/4 2013 Om detta kompendium: Filosofiska institutionen, Lunds Universitet staffan.angere@fil.lu.se Förberedande Det här kompendiet är

Läs mer

Grundläggande datalogi - Övning 9

Grundläggande datalogi - Övning 9 Grundläggande datalogi - Övning 9 Björn Terelius January 30, 2009 Ett formellt språk är en (oftast oändlig) mängd strängar. Språket definieras av en syntax som är en samling regler för hur man får bilda

Läs mer

Primitivt rekursiva funktioner och den aritmetiska hierarkin

Primitivt rekursiva funktioner och den aritmetiska hierarkin Primitivt rekursiva funktioner och den aritmetiska hierarkin Rasmus Blanck 0 Inledning En rad frågor inom logiken, matematiken och datavetenskapen relaterar till begreppet beräkningsbarhet. En del i kursen

Läs mer

Kursanalys för Programmeringsparadigm 2D1361, läsperiod 1 och 2 läsåret 2005/2006

Kursanalys för Programmeringsparadigm 2D1361, läsperiod 1 och 2 läsåret 2005/2006 Leif Kusoffsky 2005 - dec - 07 Nada KTH Kursanalys för Programmeringsparadigm 2D1361, läsperiod 1 och 2 läsåret 2005/2006 Kursdata Momentindelning Kursen genomförd Kursledare Kurslitteratur Antal studenter

Läs mer

DD1350 Logik för dataloger. Fö 7 Predikatlogikens semantik

DD1350 Logik för dataloger. Fö 7 Predikatlogikens semantik DD1350 Logik för dataloger Fö 7 Predikatlogikens semantik 1 Kryssprodukt av mängder Om A och B är två mängder så är deras kryssprodukt A B mängden av alla par (a,b), där a A och b B. Ex: A={1,2}, B={3,4},

Läs mer

PROGRAMMERING. Ämnets syfte. Kurser i ämnet

PROGRAMMERING. Ämnets syfte. Kurser i ämnet PROGRAMMERING Ämnet programmering behandlar programmeringens roll i informationstekniska sammanhang som datorsimulering, animerad grafik, praktisk datoriserad problemlösning och användaranpassad konfiguration

Läs mer

Kontextfria grammatiker

Kontextfria grammatiker Kontextfria grammatiker Kontextfria grammatiker 1 Kontextfria grammatiker En kontextfri grammatik består av produktioner (regler) på formen S asb S T T # Vänsterledet består av en icke-terminal (variabel)

Läs mer

Introduktion till programmering. Programspråk och paradigmer

Introduktion till programmering. Programspråk och paradigmer Introduktion till programmering Programspråk och paradigmer Vad är ett programspråk? Aprogramming languageis a formal constructedlanguagedesigned to communicate instructions to a machine, particularly

Läs mer

Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl

Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl 1 Matematiska Institutionen KTH Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl 14.00-19.00. Examinator: Olof Heden Hjälpmedel: Inga hjälpmedel är tillåtna

Läs mer

Grundläggande datavetenskap 4p

Grundläggande datavetenskap 4p Grundläggande datavetenskap 4p Stefan.Pettersson@mh.se http://www.itm.mh.se/~stepet Kursinformation Planering Läsanvisningar Föreläsningsbilder Övningsuppgifter Laborationer 2004-11-04 IT och Medier 1

Läs mer

Programmering II (ID1019)

Programmering II (ID1019) ID1019 Johan Montelius Instruktioner Betyg Programmering II (ID1019) 2019-03-08 Svaren skall lämnas på dessa sidor, använd det utrymme som nns under varje uppgift för att skriva ner ditt svar (inte på

Läs mer

Explorativ övning 9 RELATIONER OCH FUNKTIONER

Explorativ övning 9 RELATIONER OCH FUNKTIONER Explorativ övning 9 RELATIONER OCH FUNKTIONER Övningens syfte är att bekanta sig med begreppet relation på en mängd M. Begreppet relation i matematiska sammanhang anknyter till betydelsen av samma ord

Läs mer

Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000

Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000 2011-12-21 Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000 Kurs 1a och 2a i Gy 2011 jämfört med kurs A och B i Gy 2000 Poängomfattningen har ökat från 150 poäng

Läs mer

1 Föreläsning Implikationer, om och endast om

1 Föreläsning Implikationer, om och endast om 1 Föreläsning 1 Temat för dagen, och för dessa anteckningar, är att introducera lite matematisk terminologi och notation, vissa grundkoncept som kommer att vara genomgående i kursen. I grundskolan presenteras

Läs mer

Formell logik Kapitel 1 och 2. Robin Stenwall Lunds universitet

Formell logik Kapitel 1 och 2. Robin Stenwall Lunds universitet Formell logik Kapitel 1 och 2 Robin Stenwall Lunds universitet Kapitel 1: Atomära satser Drömmen om ett perfekt språk fritt från vardagsspråkets mångtydighet och vaghet (jmf Leibniz, Russell, Wittgenstein,

Läs mer

Sanningsvärdet av ett sammansatt påstående (sats, utsaga) beror av bindeord och sanningsvärden för ingående påståenden.

Sanningsvärdet av ett sammansatt påstående (sats, utsaga) beror av bindeord och sanningsvärden för ingående påståenden. MATEMATISK LOGIK Matematisk logik formaliserar korrekta resonemang och definierar formellt bindeord (konnektiv) mellan påståenden (utsagor, satser) I matematisk logik betraktar vi påståenden som antingen

Läs mer

Rekursiva algoritmer sortering sökning mönstermatchning

Rekursiva algoritmer sortering sökning mönstermatchning Anders Haraldsson 1 Anders Haraldsson 2 Dagens föreläsning Programmering i Lisp Fö 6-7 Rekursiva strukturer rekursiva definitioner rekursiva funktioner rekursiva bevis: induktion - rekursion strukturell

Läs mer

SKOLFS. beslutade den -- maj 2015.

SKOLFS. beslutade den -- maj 2015. SKOLFS Föreskrifter om ändring i Skolverkets föreskrifter (SKOLFS 2010:247) om ämnesplan för ämnet programmering i gymnasieskolan och inom kommunal vuxenutbildning på gymnasial nivå; beslutade den -- maj

Läs mer

SJÄLVSTÄNDIGA ARBETEN I MATEMATIK

SJÄLVSTÄNDIGA ARBETEN I MATEMATIK SJÄLVSTÄNDIGA ARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET Turings maskin, beräkningsbarhet och avgörbarhetsproblemet av Simon Wikander 2009 - No 9 MATEMATISKA INSTITUTIONEN, STOCKHOLMS

Läs mer

Matematikens grundvalar och programmering av datorer

Matematikens grundvalar och programmering av datorer Matematikens grundvalar och programmering av datorer Bengt Nordström Datavetenskap, Chalmers och Göteborgs Universitet, 14 februari, 2005 Datorerna föddes ur logiken 1870: Cantor: Det finns minst två slags

Läs mer

Programmering i C++ En manual för kursen Datavetenskaplig introduktionskurs 5p

Programmering i C++ En manual för kursen Datavetenskaplig introduktionskurs 5p Programmering i C++ En manual för kursen Datavetenskaplig introduktionskurs 5p Skriven av Michael Andersson Introduktion Programmering I högnivåspråk fokuserar på själv problemet (algoritmen) istället

Läs mer

Avslutning. Vad? Hur? Anmärkningar inför tentan 2. Vad ska ni kunna?

Avslutning. Vad? Hur? Anmärkningar inför tentan 2. Vad ska ni kunna? Avslutning Anmärkningar inför tentan Vad ska ni kunna? Avslutning 1 Vad? Anmärkningar inför tentan 1 Att ha en bra förståelse för det som behandlades på föreläsningarna, inlämningsuppgifterna och gruppövningarna

Läs mer

Grundläggande programmering med matematikdidaktisk inriktning för lärare som undervisar i gy eller komvux gy nivå, 7,5 hp

Grundläggande programmering med matematikdidaktisk inriktning för lärare som undervisar i gy eller komvux gy nivå, 7,5 hp Grundläggande programmering med matematikdidaktisk inriktning för lärare som undervisar i gy eller komvux gy nivå, 7,5 hp Dag Wedelin, bitr professor, och K V S Prasad, docent Institutionen för data- och

Läs mer

6 Rekursion. 6.1 Rekursionens fyra principer. 6.2 Några vanliga användningsområden för rekursion. Problem löses genom:

6 Rekursion. 6.1 Rekursionens fyra principer. 6.2 Några vanliga användningsområden för rekursion. Problem löses genom: 6 Rekursion 6.1 Rekursionens fyra principer Problem löses genom: 1. förenkling med hjälp av "sig själv". 2. att varje rekursionssteg löser ett identiskt men mindre problem. 3. att det finns ett speciellt

Läs mer

1.1. Fördjupning: Jämförelse av oändliga mängder

1.1. Fördjupning: Jämförelse av oändliga mängder Kapitel 1 Kardinalitet Den här texten är tagen från boken Diskret matematik av Asratian Björn Turesson (och delvis modifierad) Av den anledningen finns det visa hänvisningar på en del ställen som är ersatta

Läs mer

Datorlingvistisk grammatik

Datorlingvistisk grammatik Datorlingvistisk grammatik Kontextfri grammatik, m.m. http://stp.lingfil.uu.se/~matsd/uv/uv11/dg/ Mats Dahllöf Institutionen för lingvistik och filologi Februari 2011 Denna serie Formella grammatiker,

Läs mer

Tentamen i. TDDC67 Funktionell programmering och Lisp

Tentamen i. TDDC67 Funktionell programmering och Lisp 1 Linköpings tekniska högskola Institutionen för datavetenskap Anders Haraldsson Tentamen i TDDC67 Funktionell programmering och Lisp och äldre kurser TDDC57 Programmering, Lisp och funktionell programmering

Läs mer

Programmering, grundkurs

Programmering, grundkurs DNR LIU-2018-02499 1(5) Programmering, grundkurs Programkurs 8 hp Introduction to Computer Programming TDDE44 Gäller från: 2019 VT Fastställd av Programnämnden för elektroteknik, fysik och matematik, EF

Läs mer

En bijektion mellan två mängder A och B som har ändligt antal element kan finnas endast om mängderna har samma antal element.

En bijektion mellan två mängder A och B som har ändligt antal element kan finnas endast om mängderna har samma antal element. Inversa unktion BIJEKTION, INJEKTION, SURJEKTION Allmän terminologi I samband med variabelbyte vid beräkning av integraler har vi en avbildning mellan två mängder A och B, dvs en unktion : A B Vi har otast

Läs mer

Exempel på typer av datorspråk EXCEL

Exempel på typer av datorspråk EXCEL 1 2 TDDC10 Perspektiv på datateknik/datavetenskap TDDC79 Perspektiv på informationsteknologi TDP001 Handhavande av datormiljö (D, IT, C, IP) Breddgivande föreläsning Historik Datorspråk Programmeringsparadigmer

Läs mer

Definition. Mängden av reguljära uttryck på alfabetet Σ definieras av. om α och β är reguljära uttryck så är (α β) ett reguljärt uttryck

Definition. Mängden av reguljära uttryck på alfabetet Σ definieras av. om α och β är reguljära uttryck så är (α β) ett reguljärt uttryck Lunds tekniska högskola Datavetenskap Lennart Andersson Föreläsningsanteckningar EDAF10 6 Reguljära uttryck I unix-skal finns ange enkla mönster för filnamn med * och?. En del program, t ex emacs, egrep

Läs mer

Universitetet i Linköping Institutionen för datavetenskap Anders Haraldsson 2

Universitetet i Linköping Institutionen för datavetenskap Anders Haraldsson 2 Anders Haraldsson 1 Anders Haraldsson 2 Dagens föreläsning Programmering i Lisp Fö 5 - Funktioner - lambda-uttryck (avs 7.1) - funcall och function (avs 7.2) - Högre ordningens funktioner (avs 7.) - Iteratorer

Läs mer

Instruktioner - Datortentamen TDDE24 och TDDD73 Funktionell och imperativ programmering (i Python)

Instruktioner - Datortentamen TDDE24 och TDDD73 Funktionell och imperativ programmering (i Python) Instruktioner - Datortentamen TDDE24 och TDDD73 Funktionell och imperativ programmering (i Python) Hjälpmedel Följande hjälpmedel är tillåtna: Exakt en valfri bok, t.ex. den rekommenderade kursboken. Boken

Läs mer

Programmeringsteknik I

Programmeringsteknik I Programmeringsteknik I HT18 Lärare: Johan Öfverstedt (johan.ofverstedt@it.uu.se, rum 2144) och ett stort antal labbhandledare Föreläsning 1: Intro till kursen Registrering och avregistrering Undervisningsformer:

Läs mer

Dagens föreläsning Programmering i Lisp Fö 5

Dagens föreläsning Programmering i Lisp Fö 5 Anders Haraldsson 1 Dagens föreläsning Programmering i Lisp Fö 5 - Funktioner - lambda-uttryck (avs 7.1) - funcall och function (avs 7.2) - Högre ordningens funktioner (avs 7.3) - Iteratorer - Egenskaper

Läs mer

Presentation. Curriculum Vitae för Lars Kristiansson, 2004-10-28-1 -

Presentation. Curriculum Vitae för Lars Kristiansson, 2004-10-28-1 - Presentation Jag heter Lars Kristiansson. Jag är född 1963 och har studerat datavetenskap på Göteborgs Universitet. Jag har nu avslutat utbildningen, och är alltså filosofie kandidat i datalogi. Nyligen

Läs mer

I kursen i endimensionell analys är mängden av reella tal (eng. real number), R, fundamental.

I kursen i endimensionell analys är mängden av reella tal (eng. real number), R, fundamental. Lunds tekniska högskola Datavetenskap Lennart ndersson Föreläsningsanteckningar EDF10 4 Mängder 4.1 Motivering Mängden är den mest grundläggande diskreta strukturen. Nästan alla matematiska begrepp går

Läs mer

Sådana avbildningar kallar vi bijektioner mellan A och B (eller från A till B).

Sådana avbildningar kallar vi bijektioner mellan A och B (eller från A till B). BIJEKTION, INJEKTION, SURJEKTION Allmän terminologi. I samband med variabelbyte vid beräkning av integraler har vi en avbildning mellan två mängder A och B, dvs en funktion f : A B. Vi har oftast krav

Läs mer

SKOLFS. beslutade den XXX 2017.

SKOLFS. beslutade den XXX 2017. 1 (11) Föreskrifter om ändring i Skolverkets föreskrifter (SKOLFS 2010:247) om ämnesplan för ämnet programmering i gymnasieskolan, inom kommunal vuxenutbildning på gymnasial nivå och inom vidareutbildning

Läs mer

DD1361 Programmeringsparadigm. Carina Edlund

DD1361 Programmeringsparadigm. Carina Edlund DD1361 Programmeringsparadigm Carina Edlund carina@nada.kth.se Funktionell programmering Grundidéen med funktionell programmering är att härma matematiken och dess funktionsbegrepp. Matematiskt funktionsbegrepp

Läs mer

Kursinformation och schema för Lingvistik 6 hp 729G08 Ht 2011

Kursinformation och schema för Lingvistik 6 hp 729G08 Ht 2011 Institutionen för kultur och kommunikation Linköpings universitet Kursinformation och schema för Lingvistik 6 hp 729G08 Ht 2011 Kursansvarig lärare: Richard Hirsch (281856) Richard.Hirsch@liu.se Vecka

Läs mer

Filosofisk Logik (FTEA21:4) föreläsningsanteckningar v , den 24/

Filosofisk Logik (FTEA21:4) föreläsningsanteckningar v , den 24/ Filosofisk Logik (FTEA21:4) föreläsningsanteckningar v. 2.1.1, den 24/11 2014 Om detta kompendium: Filosofiska institutionen, Lunds Universitet staffan.angere@fil.lu.se Förberedande Det här kompendiet

Läs mer

Filosofisk Logik (FTEA21:4) föreläsningsanteckningar/kompendium. v. 2.0, den 29/ III. Metalogik 17-19

Filosofisk Logik (FTEA21:4) föreläsningsanteckningar/kompendium. v. 2.0, den 29/ III. Metalogik 17-19 Filosofisk Logik (FTEA21:4) föreläsningsanteckningar/kompendium IV v. 2.0, den 29/4 2013 III. Metalogik 17-19 Modeller för satslogiken 18.1 Vi har tidigare sagt att en modell är en tolkning av en teori

Läs mer

Dataabstraktion. TDDD73 Funktionell och impterativ programmering i Python Föreläsning 12. Peter Dalenius Institutionen för datavetenskap

Dataabstraktion. TDDD73 Funktionell och impterativ programmering i Python Föreläsning 12. Peter Dalenius Institutionen för datavetenskap Dataabstraktion TDDD73 Funktionell och impterativ programmering i Python Föreläsning 12 Peter Dalenius Institutionen för datavetenskap 2013-11-12 Översikt Vad är abstraktion? Vad är en abstrakt datatyp?

Läs mer

Tommy Färnqvist, IDA, Linköpings universitet. 1 Kursadministration 1. 2 Introduktion 2 2.1 Varför logik?... 2 2.2 Satslogik... 2

Tommy Färnqvist, IDA, Linköpings universitet. 1 Kursadministration 1. 2 Introduktion 2 2.1 Varför logik?... 2 2.2 Satslogik... 2 Föreläsning 1 Syntax 729G06 Logikdelen Föreläsningsanteckningar i Programmering och logik 21 januari 2014 Tommy Färnqvist, IDA, Linköpings universitet 1.1 Innehåll Innehåll 1 Kursadministration 1 2 Introduktion

Läs mer

Datastrukturer och algoritmer

Datastrukturer och algoritmer Datastrukturer och algoritmer Föreläsning 5 Algoritmer & Analys av Algoritmer Algoritmer Vad är det? Innehåll Mer formellt om algoritmer beräkningsbarhet Att beskriva algoritmer Analysera algoritmer Exekveringstid,

Läs mer

Programmering för alla!

Programmering för alla! Programmering för alla! Inspirationsseminarium för lärare i grundskola och gymnasium Björn Regnell Professor Datavetenskap, LTH, Lunds universitet lth.se/programmera Video http://www.svt.se/nyheter/sverige/krav-pa-att-elever-lar-sig-programmera

Läs mer

Lite Kommentarer om Gränsvärden

Lite Kommentarer om Gränsvärden Lite Kommentarer om Gränsvärden På föreläsningen (Föreläsning 2 för att vara eakt) så introducerade vi denitionen Denition. Vi säger att f() går mot a då går mot oändligheten, uttryckt i symboler som f()

Läs mer

Formell Verifiering. Hur vet man att ett system fungerar korrekt? Lisa Kaati

Formell Verifiering. Hur vet man att ett system fungerar korrekt? Lisa Kaati Formell Verifiering Hur vet man att ett system fungerar korrekt? Lisa Kaati Innehåll Motivering Formell verifiering Modellkontroll (model checking) Verifiering av kod Forskning Dator system finns överallt

Läs mer

Övningshäfte 3: Funktioner och relationer

Övningshäfte 3: Funktioner och relationer GÖTEBORGS UNIVERSITET MATEMATIK 1, MAM100, HT2014 INLEDANDE ALGEBRA Övningshäfte 3: Funktioner och relationer Övning H Syftet är att utforska ett av matematikens viktigaste begrepp: funktionen. Du har

Läs mer

Lösningar till utvalda uppgifter i kapitel 4

Lösningar till utvalda uppgifter i kapitel 4 Lösningar till utvalda uppgifter i kapitel 4 4.7 Vi visar först att A 2n 3 2 n 2 med ett induktionsbevis. Basfall: n 0 Vi har att 3 2 0 2 A 0, och alltså gäller likheten för n 0. Induktionssteget: Antag

Läs mer

Bedömningsunderlag för Verksamhetsförlagd utbildning (VFU)

Bedömningsunderlag för Verksamhetsförlagd utbildning (VFU) Ht-16 Bedömningsunderlag för Verksamhetsförlagd utbildning (VFU) ÄMNES- OCH ÄMNESDIDAKTISKA STUDIER Kurs: Grundläggande engelska för grundlärare med inriktning mot arbete i grundskolans årskurs 4-6, I,

Läs mer

FÖRELÄSNING 2, TDDC74, VT2018 BEGREPP PROBLEMLÖSNING MED HJÄLP AV FALLANALYS PROBLEMLÖSNING MED HJÄLP AV REKURSION

FÖRELÄSNING 2, TDDC74, VT2018 BEGREPP PROBLEMLÖSNING MED HJÄLP AV FALLANALYS PROBLEMLÖSNING MED HJÄLP AV REKURSION FÖRELÄSNING 2, TDDC74, VT2018 Begrepp och definitioner (delvis från föreläsning 1) Fallanalys som problemlösningsmetod Rekursivt fallanalys Rekursiva beskrivningar och processer de kan skapa Rekursiva

Läs mer

Kursplan ENGELSKA. Ämnets syfte. Mål. Innehåll. Insikt med utsikt

Kursplan ENGELSKA. Ämnets syfte. Mål. Innehåll. Insikt med utsikt Kursplan ENGELSKA Ämnets syfte Undervisningen i ämnet engelska ska syfta till att deltagarna utvecklar språk- och omvärldskunskaper så att de kan, vill och vågar använda engelska i olika situationer och

Läs mer

Kursinformation och schema för Lingvistik 6 hp 729G08 Ht 2009

Kursinformation och schema för Lingvistik 6 hp 729G08 Ht 2009 Institutionen för kultur och kommunikation Linköpings universitet Kursinformation och schema för Lingvistik 6 hp 729G08 Ht 2009 Kursansvarig lärare: Richard Hirsch (281856) Richard.Hirsch@liu.se Vecka

Läs mer

MA2047 Algebra och diskret matematik

MA2047 Algebra och diskret matematik MA2047 Algebra och diskret matematik Något om funktioner och relationer Mikael Hindgren 1 oktober 2018 Funktionsbegreppet Exempel 1 f (x) = x 2 + 1, g(x) = x 3 och y = sin x är funktioner. Exempel 2 Kan

Läs mer

DD1350 Logik för dataloger. Vad är logik?

DD1350 Logik för dataloger. Vad är logik? DD1350 Logik för dataloger Fö 1 - Introduktion Vad är logik? Vetenskapen som studerar hur man bör resoneraoch dra slutsatser utifrån givna påståenden (=utsagor, satser). 1 Aristoteles (384-322 f.kr) Logik

Läs mer

7, Diskreta strukturer

7, Diskreta strukturer Objektorienterad modellering och diskreta strukturer 7, Diskreta strukturer Sven Gestegård Robertz Datavetenskap, LTH 2013 1 Inledning 2 Satslogik Inledning Satslogiska uttryck Resonemang och härledningar

Läs mer

Bakgrund och motivation. Definition av algoritmer Beskrivningssätt Algoritmanalys. Algoritmer. Lars Larsson VT 2007. Lars Larsson Algoritmer 1

Bakgrund och motivation. Definition av algoritmer Beskrivningssätt Algoritmanalys. Algoritmer. Lars Larsson VT 2007. Lars Larsson Algoritmer 1 Algoritmer Lars Larsson VT 2007 Lars Larsson Algoritmer 1 1 2 3 4 5 Lars Larsson Algoritmer 2 Ni som går denna kurs är framtidens projektledare inom mjukvaruutveckling. Som ledare måste ni göra svåra beslut

Läs mer

Objektorienterad modellering och diskreta strukturer. 13. Problem. Sven Gestegård Robertz. Datavetenskap, LTH

Objektorienterad modellering och diskreta strukturer. 13. Problem. Sven Gestegård Robertz. Datavetenskap, LTH Objektorienterad modellering och diskreta strukturer 13. Problem Sven Gestegård Robertz Datavetenskap, LTH 2014 Rekaputilation Vi har talat om satslogik och härledning predikatlogik och substitution mängder

Läs mer

Mängder, funktioner och naturliga tal

Mängder, funktioner och naturliga tal Lådprincipen Följande sats framstår som en fullständig självklarhet: Sats (Lådprincipen (pigeon hole principle)). Låt n > m vara naturliga tal. Fördelar man n föremål i m lådor, så kommer åtminstone en

Läs mer

KURSUTVÄRDERING CD5560 FABER VT2003

KURSUTVÄRDERING CD5560 FABER VT2003 KURSUTVÄRDERING CD5560 FABER VT2003 Antal utvärderingar = 24 Datalogi = 20 Datateknik = 1 Övr. = 1 Blank = 2 Fråga 1 - Förkunskaper Ja = 23 Nej = 0 Blank = 1 inga Slutsats: Förkunskaper uppfattas som tillräckliga.

Läs mer

Sats. Om t är en rätvinklig triangel så är summan av kvadraterna på kateterna i t lika med kvadraten på hypotenusan.

Sats. Om t är en rätvinklig triangel så är summan av kvadraterna på kateterna i t lika med kvadraten på hypotenusan. Lunds tekniska högskola Datavetenskap Lennart Andersson Föreläsningsanteckningar EDAF10 3 Predikatlogik 3.1 Motivering I satslogiken är de minsta beståndsdelarna satslogiska variabler som kan anta värdena

Läs mer

Föreläsning 9 Exempel

Föreläsning 9 Exempel Föreläsning 9 Exempel Intervallhalveringsmetoden DA2001 (Föreläsning 9) Datalogi 1 Hösten 2013 1 / 24 Föreläsning 9 Exempel Intervallhalveringsmetoden Newton-Raphsons metod DA2001 (Föreläsning 9) Datalogi

Läs mer