Hornklausuler i satslogiken
|
|
- Britta Hansson
- för 8 år sedan
- Visningar:
Transkript
1 Hornklausuler i satslogiken Hornklausuler (efter logikern Alfred Horn) är ett viktigt specialfall som tillåter effektiva algoritmer och ligger till grund för regelbaserade expertsystem och logiska programspråk som Prolog a. Regelbaserade expertsystem Terminologi och exempel Minsta modeller Algoritmiska anmärkningar a Prolog använder sig av hornklausuler i första ordningens predikatlogik. Hornklausuler i satslogiken 1
2 Regelbaserade expertsystem Regelbaserade expertsystem som representerar kunskapen om ett område mha hornklausuler för att automatiskt kunna dra slutsatser utifrån givna fakta var mest populära på 70- och 80-talet. Två berömda exempel är MYCIN, som skulle stödja läkare vid diagnos och ordination i samband med infektiösa blodsjukdomar. MYCIN användes aldrig i praktiken men var det första riktiga regelbaserade expertsystemet och förebilden för alla som kom efter. R1, som skapades på slutet av 70-talet av DEC för att konfigurera VAX-datorsystem. R1 var en kommersiell framgång, delvis pga att användningsområdet var mindre stort och komplext men också mer tekniskt än MYCINS. Matchningsalgoritmen RETE som användes i R1 är en viktig metod för att öka effektiviteten. Moderna expertsystem kombinerar den regelbaserade metoden med andra. Hornklausuler i satslogiken 2
3 Exempel Ett expertsystem kan sägas bestå av tre komponenter; fakta, regler och restriktioner. I det här exemplet tittar vi på ett expertsystem resonerar om kubvärlden. Fakta: Vi vet att båda pyramiderna ligger på varsin kub. Vi vet att ena pyramiden inte ligger på bordet. Regler: Om den ena kuben ligger på den andra och ena pyramiden ligger på en kub, så ligger den andra pyramiden på bordet. Om ett objekt inte är en pyramid, så är det en kub. Om båda pyramiderna ligger på varsin kub, så ligger inte den första kuben på bordet. Restriktioner: Det är omöjligt att två pyramider ligger på samma kub. Det är omöjligt att ett objekt varken är en kub eller en pyramid. Hornklausuler i satslogiken 3
4 Exempel Expertsystemet utgår från den fakta den initialt har och bygger på med nya fakta genom att iterativt använda sina regler för att dra slutsatser. När till sist inga nya fakta kan härledas, kontrollerar man mängden man åstadkommit mot restriktionerna. Fakta 1: Vi vet att den ena kuben ligger på den andra. Vi vet att ena pyramiden ligger på en kub. Regler: Om den ena kuben ligger på den andra och ena pyramiden ligger på en kub, så ligger den andra pyramiden på bordet. Fakta 2: Vi vet att den ena kuben ligger på den andra. Vi vet att ena pyramiden ligger på en kub. Vi vet att den andra pyramiden ligger på bordet. Hornklausuler i satslogiken 4
5 Terminologi Definition En litteral är positiv om den är en atom och negativ om den är en negerad atom. En hornklausul är en klausul som maximalt innehåller en positiv litteral. Den har alltså formen A 1 A n B (där B = ifall klausulen inte innehåller någon positiv litteral alls), vilket alternativt kan skrivas (A 1 A n ) B. Ytterligare terminologi: Klausulen sägs vara ett faktum om den endast består av en positiv litteral B (dvs n = 0 och därmed A 1 A n ), en regel om den innehåller en positiv samt minst en negativ litteral och en sammansatt negation om den endast består av negativa litteraler. En speciell sammansatt negation är (som har ringa praktisk betydelse). Hornklausuler i satslogiken 5
6 Uppgift 1 Vilka av nedstående klausuler är hornklausuler? ϕ 1 = ( ) ϕ 2 = (A B) ϕ 3 = ( A B) ϕ 4 = ( A B) ϕ 5 = (A B C) ϕ 6 = (A) ϕ 7 = ( B) ϕ 8 = ( A B) Hornklausuler i satslogiken 6
7 Lösning 1 Av klausulerna på föregående oh-bild var alla utom ϕ 2, ϕ 4 och ϕ 8 hornklausuler. Hornklausuler i satslogiken 7
8 Exempel ur blockvärldarna Positiva litteraler som t.ex. Is cube(k 1 ) och Is pyramid(p 1 ) är fakta. (Intuition: I en databas som beskriver tillåtna världar skulle de representera fakta som alltid gäller.) Implikationen On(K 2, K 1 ) On(P 1, K 2 ) On table(p 2 ) är en regel. (Intuition: I databasen skulle den representera en regel som gör det möjligt att dra slutsatsen On table(p 2 ) om man redan vet att On(K 2, K 1 ) och On(P 1, K 2 ) gäller.) En sammansatt negation är t ex (On table(p 1 ) On(P 1, K 1 )) vilket är ekvivalent med (On table(p 1 ) On(P 1, K 1 )). (Intuition: I databasen skulle den användas för att beskriva en förbjuden situation.) Hornklausuler i satslogiken 8
9 Definition För en formelmängd Φ låt Minsta modell atcons(φ) = {A P Φ = A} = {A P v(a) = 1 för alla v Mod(Φ)} vara mängden av Φs atomära konsekvenser. Tolkningen v Φ definieras v (A) Φ 1 om A atcons(φ) = 0 annars. Observation: Om v Φ är en modell av Φ så är den dess minsta modell i den bemärkelsen att alla övriga modeller v uppfyller v(a) v Φ (A) för alla A P (och om v Φ inte är en modell av Φ så har Φ ingen minsta modell). Teorem Om en mängd Φ av hornklausuler har en modell, dvs om Φ inte är motsägelsefullt, så är v Φ en modell av Φ (och således dess minsta modell). Hornklausuler i satslogiken 9
10 Att beräkna den minsta modellen Låt Φ vara en mängd av hornklausuler. Att beräkna atcons(φ) och således v Φ är enkelt: Börja med Φ som databas. Så länge databasen innehåller en regel (A 1 A n ) B och fakta A 1,...,A n men inte B, lägg till B som ett nytt faktum. Mängden av alla fakta som till slut finns i databasen är lika med atcons(φ). Undantag: Om det finns en sammansatt negation (A 1 A n ) samt fakta A 1,...,A n i databasen så är atcons(φ) = och Φ motsägelsefullt. Exempel: Φ = {A 1, A 1 A 2, (A 1 A 2 ) A 3, (A 3 A 4 ) A 5 } ger atcons(φ) = {A 1, A 2, A 3 }. Om den sammansatta negationen (A 1 A 5 ) läggs till så ändras inget i exemplet ovan men (A 1 A 3 ) har till följd att Φ blir motsägelsefullt. Utifrån den minsta modellen kan man lätt beräkna alla modeller. (Hur?) Hornklausuler i satslogiken 10
11 Algoritmiska anmärkningar Enhetsresolution är fullständig för mängder Φ av hornklausuler: Om Φ är mängden av alla klausuler som kan fås mha upprepad enhetsresolution så gäller antingen Φ (Φ är motsägelsefullt) eller Φ P = atcons(φ). Som vi redan vet kan enhetsresolution implementeras på så sätt att regler som har används ersätts med resolutionsresultatet (som innehåller en litteral mindre). Det behövs alltså maximalt length(φ) resolutionssteg för att beräkna Φ. Hornklausuler i satslogiken 11
Varför är logik viktig för datavetare?
Varför är logik viktig för datavetare? 1. Datavetenskap handlar ofta om att automatisera processer som tidigare styrts av människor. Intuition, intelligens och mänskliga resonemang ersätts av beräkningar.
Satslogik grundläggande definitioner 3. Satslogik. Uppgift 1. Satslogikens syntax (välformade formler) Satslogikens semantik (tolkningar)
Satslogik grundläggande definitioner Satslogikens syntax (välformade formler) Satslogikens semantik (tolkningar) Modeller, logisk konsekvens och ekvivalens Några notationella förenklingar Kompletta mängder
Avslutning. Vad? Hur? Anmärkningar inför tentan 2. Vad ska kunnas?
Avslutning Anmärkningar inför tentan Vad ska kunnas? Avslutning 1 Vad? Anmärkningar inför tentan 1 Att ha en bra förståelse för det som behandlades på föreläsningarna och gruppövningarna räcker i princip.
Grundläggande logik och modellteori
Grundläggande logik och modellteori Kapitel 12: Logikprogrammering Henrik Björklund Umeå universitet 16. oktober, 2014 Prolog Prolog har två klasser av formler. Atomära formler: country(sweden, 9000000).
Grundläggande logik och modellteori
Grundläggande logik och modellteori Kapitel 7: SAT-lösare Henrik Björklund Umeå universitet 29. september, 2014 SAT En instans av SAT är en mängd av mängder av literaler. Exempel: {{p, q, r}, {p, q, s},
Avslutning. Vad? Hur? Anmärkningar inför tentan 2. Vad ska ni kunna?
Avslutning Anmärkningar inför tentan Vad ska ni kunna? Avslutning 1 Vad? Anmärkningar inför tentan 1 Att ha en bra förståelse för det som behandlades på föreläsningarna, inlämningsuppgifterna och gruppövningarna
Grundläggande logik och modellteori
Grundläggande logik och modellteori Kapitel 3: Bevissystem, Hilbertsystem Henrik Björklund Umeå universitet 8. september, 2014 Bevissystem och Hilbertsystem Teorier och deduktionsproblemet Axiomscheman
Grundläggande logik och modellteori
Grundläggande logik och modellteori Kapitel 4: Konjunktiv och disjunktiv normalform Henrik Björklund Umeå universitet 15. september, 2014 CNF och DNF Konjunktiv normalform (CNF) Omskrivning av en formel
Grundläggande logik och modellteori (5DV102)
Tentamen 2013-10-31 Grundläggande logik och modellteori (5DV102) M. Berglund och K. Markström Totalt antal uppgifter 11 Maximalt antal poäng 30 Krav för 3 i betyg 14 poäng Krav för 4 i betyg 19 poäng,
Normalisering av meningar inför resolution 3. Steg 1: Eliminera alla och. Steg 2: Flytta alla negationer framför atomära formler
Normalisering av meningar inför resolution På samma sätt som i satslogiken är resolution i predikatlogiken en process vars syfte är att vederlägga att en klausulmängd är satisfierbar. Det förutsätter dock
p /\ q r DD1350 Logik för dataloger Kort repetition Fö 3 Satslogikens semantik
DD1350 Logik för dataloger Fö 3 Satslogikens semantik 1 Kort repetition Satslogik formellt språk för att uttrycka påståenden med variabler och konnektiv /\, \/,, t.ex. p /\ q r 1 Kort repetition Naturlig
Grundläggande logik och modellteori
Grundläggande logik och modellteori Kapitel 8: Predikatlogik Henrik Björklund Umeå universitet 2. oktober, 2014 Första ordningens predikatlogik Signaturer och termer Första ordningens predikatlogik Formler
Lite om bevis i matematiken
Matematik, KTH Bengt Ek februari 2013 Material till kursen SF1662, Diskret matematik för CL1: Lite om bevis i matematiken Inledning Bevis är centrala i all matematik Utan (exakta definitioner och) bevis
Semantik och pragmatik
Semantik och pragmatik OH-serie 4 http://stp.lingfil.uu.se/~matsd/uv/uv12/semp/ Mats Dahllöf Institutionen för lingvistik och filologi Januari 2012 Om barnet har svårt att andas eller har ont i bröstet
Logisk semantik I. 1 Lite om satslogik. 1.1 Konjunktioner i grammatisk bemärkelse. 1.2 Sant och falskt. 1.3 Satssymboler. 1.
UPPSALA UNIVERSITET Datorlingvistisk grammatik I Institutionen för lingvistik och filologi Oktober 2007 Mats Dahllöf http://stp.ling.uu.se/ matsd/uv/uv07/dg1/ Logisk semantik I 1 Lite om satslogik 1.1
Grundläggande logik och modellteori (5DV102)
Tentamen 2014-01-10 Grundläggande logik och modellteori (5DV102) M. Berglund och K. Markström Totalt antal uppgifter 10 Maximalt antal poäng 30 Krav för 3 i betyg 1 Krav för 4 i betyg 19 poäng, vara minst
Sanningsvärdet av ett sammansatt påstående (sats, utsaga) beror av bindeord och sanningsvärden för ingående påståenden.
MATEMATISK LOGIK Matematisk logik formaliserar korrekta resonemang och definierar formellt bindeord (konnektiv) mellan påståenden (utsagor, satser) I matematisk logik betraktar vi påståenden som antingen
Föreläsning 5. Deduktion
Föreläsning 5 Deduktion Hur ett deduktivt system fungerar Komponenter - Vokabulär Ett deduktivt system använder ett visst slags språk som kan kallas för systemets vokabulär. I mindre formella fall är kanske
Predikatlogik: Normalformer. Klas Markström
1 Precis som i satslogik så är det bekvämt att kunna hitta en normalform för meningar. Om vi kan utgå från att alla meningar är på normalform så behöver vi t.e.x. inte bekymra oss om en massa specialfall
Om semantisk följd och bevis
Matematik, KTH Bengt Ek december 2017 Material till kursen SF1679, Diskret matematik: Om semantisk följd och bevis Logik handlar bla om studiet av korrekta slutledningar, dvs frågan om när det är riktigt
DD1361 Programmeringsparadigm HT15
DD1361 Programmeringsparadigm HT15 Logikprogrammering 1 Dilian Gurov, TCS Innehåll Logikprogrammering Kontrollflöde Unifiering Backtracking Negation Snitt Induktiva datatyper och rekursion Inbyggda datatyper:
FÖRELÄSNING 8 ANDERS MÄRAK LEFFLER IDA/HCS
729G06 Logik FÖRELÄSNING 8 ANDERS MÄRAK LEFFLER IDA/HCS 160309 Idag Sammanfattning*/uppsamling 2 Mer problemöversikt (och lite definitioner) Inte ersättning för andra föreläsningar! 3 Vad är enlogik? Syntax
DD1350 Logik för dataloger. Fö 2 Satslogik och Naturlig deduktion
DD1350 Logik för dataloger Fö 2 Satslogik och Naturlig deduktion 1 Satslogik En sats(eller utsaga)är ett påstående som kan vara sant eller falskt. I satslogik(eng. propositionallogic) representeras sådana
DD1361 Programmeringsparadigm HT16
DD1361 Programmeringsparadigm HT16 Logikprogrammering 1 Dilian Gurov, TCS Delkursinnehåll Logikprogrammering Logisk versus procedurell läsning Kontrollflöde Unifiering, Backtracking, Snitt Negation Induktiva
FTEA12:2 Filosofisk Metod. Grundläggande argumentationsanalys II
TEA12:2 ilosofisk Metod Grundläggande argumentationsanalys II Dagens upplägg 1. Kort repetition. 2. Logisk styrka: några intressanta specialfall. 3. ormalisering: översättning från naturligt språk till
DD1361 Programmeringsparadigm HT17
DD1361 Programmeringsparadigm HT17 Logikprogrammering 1 Dilian Gurov, KTH Delkursinnehåll Logisk versus procedurell läsning Kontrollflöde: Unifiering, Backtracking, Snitt Induktiva datatyper och rekursion
Semantik och pragmatik (Serie 3)
Semantik och pragmatik (Serie 3) Satser och logik. Mats Dahllöf Institutionen för lingvistik och filologi April 2015 1 / 37 Logik: språk tanke (Saeed kapitel 4.) Satser uttrycker (ofta) tankar. Uttrycksrikedom
Tentamen i logik 729G06 Programmering och logik
Tentamen i logik 729G06 Programmering och logik 2016-08-19 Poänggränser: På tentan kan du som mest få 25 poäng. Om du har fått 12 poäng är du garanterad åtminstone godkänt betyg, 19 väl godkänt. Tillåtna
DD1350 Logik för dataloger. Fö 7 Predikatlogikens semantik
DD1350 Logik för dataloger Fö 7 Predikatlogikens semantik 1 Kryssprodukt av mängder Om A och B är två mängder så är deras kryssprodukt A B mängden av alla par (a,b), där a A och b B. Ex: A={1,2}, B={3,4},
Filosofisk Logik (FTEA21:4) föreläsningsanteckningar/kompendium. v. 2.0, den 29/ III. Metalogik 17-19
Filosofisk Logik (FTEA21:4) föreläsningsanteckningar/kompendium IV v. 2.0, den 29/4 2013 III. Metalogik 17-19 Modeller för satslogiken 18.1 Vi har tidigare sagt att en modell är en tolkning av en teori
D. x 2 + y 2 ; E. Stockholm ligger i Sverige; F. Månen är en gul ost; G. 3 2 = 6; H. x 2 + y 2 = r 2.
Logik Vid alla matematiskt resonemang måste man vara säker på att man verkligen menar det man skriver ner på sitt papper. Därför måste man besinna hur man egentligen tänker. Den vetenskap, som sysslar
Viktiga frågor att ställa när ett argument ska analyseras och sedan värderas:
FTEA12:2 Föreläsning 2 Grundläggande argumentationsanalys II Repetition: Vid förra tillfället började vi se närmre på vad som utmärker filosofisk argumentationsanalys. Vi tittade närmre på ett arguments
Innehåll. Föreläsning 7. Satslogiken är för grov. Samma sak i predikatlogik: Första ordningens predikatlogik. Logik med tillämpningar
Innehåll Föreläsning 7 Logik med tillämpningar 99-03-01 Första ordningens predikatlogik Objekt, predikat, kvantifierare Funktioner, termer, wffs Bindning och räckvidd Tolkningar och värderingar Satisfiering,
Försättsblad till skriftlig tentamen vid Linköpings universitet TER1
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2016-12-09 Sal (1) TER1 Tid 14-18 Kurskod 729G06 Provkod TEN1 Kursnamn/benämning Provnamn/benämning Institution Antal
FÖRELÄSNING 3 ANDERS MÄRAK LEFFLER IDA/HCS
729G06 Logik FÖRELÄSNING 3 ANDERS MÄRAK LEFFLER IDA/HCS 160208 Idag C-regeln, informell (och formell) inledning till predikatlogik (Bevis kommer senare.) 2 3 Vår (Snöfritt Cykla) (Vår Snöfritt) Cykla Lätt
DD1350 Logik för dataloger. Vad är logik?
DD1350 Logik för dataloger Fö 1 - Introduktion Vad är logik? Vetenskapen som studerar hur man bör resoneraoch dra slutsatser utifrån givna påståenden (=utsagor, satser). 1 Aristoteles (384-322 f.kr) Logik
FUZZY LOGIC. Christopher Palm chrpa087
FUZZY LOGIC 900223-1554 Innehållsförteckning INLEDNING...2 HUR DET FUNGERAR...3 Crisp Sets och Fuzzy Sets...3 Operatorer...5 IF THEN regler...7 FUZZY INFERENCE...7 Fuzzification...8 Regelsättning...8
Föreläsning 9: NP-fullständighet
Föreläsning 9: NP-fullständighet Olika typer av problem: 1. Beslutsproblem: A(x) =Ja. 2. Optimeringsproblem: A(x) =m Vanligen max/min. 3. Konstruktionsproblem: A(x) =En struktur. Vanligen lösningen till
Grundläggande logik och modellteori
Modeller och uttrycksfullhet hos predikatlogik Department of mathematics Umeå university Föreläsning 10 Dagens föreläsning 1 Innehåll på resten av kursen 2 Varför verifikation? Formella metoder för verifikation
Datorrepresentation av vårdriktlinjer
Datorrepresentation av vårdriktlinjer Innehåll Introduktion/bakgrund Behov Uppdateringsproblem Metoder PROforma Asgaard/Arbru Arden Praktiska implementeringar Hypertoni-behandling Guidelines/vårdriktlinjer
7, Diskreta strukturer
Objektorienterad modellering och diskreta strukturer 7, Diskreta strukturer Sven Gestegård Robertz Datavetenskap, LTH 2015 Modeller Matematiska modeller Kontinuerliga modeller Kontinuerliga funktioner
F. Drewes Datavetenskapens grunder, VT02. Lite logik
F Drewes 2002-05-23 Datavetenskapens grunder, VT02 Lite logik Den här texten är en sammanfattning av logikdelen i kursen Datavetenskapens grunder Den handlar om satslogik och predikatlogik, några av deras
Tommy Färnqvist, IDA, Linköpings universitet. 1 Kursadministration 1. 2 Introduktion 2 2.1 Varför logik?... 2 2.2 Satslogik... 2
Föreläsning 1 Syntax 729G06 Logikdelen Föreläsningsanteckningar i Programmering och logik 21 januari 2014 Tommy Färnqvist, IDA, Linköpings universitet 1.1 Innehåll Innehåll 1 Kursadministration 1 2 Introduktion
Lektion 8: Konstruktion av semantiska tablåer för PTL-formler
Lektion 8: Konstruktion av semantiska tablåer för PTL-formler Till denna lektion hör uppgift 2, 6 och 0 i lärobokens avsnitt.6 (sid. 255). Lös uppgift 2 genom att konstruera en semantisk tablå. Följande
I en matchning ligger varje hörn i högst en kant. I en stig ligger varje hörn i högst två kanter.
26.2-9 Antag att rätt lösning är att dela upp V i V 1 och V 2 (V 1 V 2 =, V 1 V 2 = V ). Antal kanter vi måste skära är då det minsta snittet mellan v 1 och v 2, där v 1 är ett godtyckligt hörn i V 1 och
Robin Stenwall Lunds universitet
Robin Stenwall Lunds universitet Vik$gt a) tänka på Innehållet i kursen formell logik förutsätts vara inhämtat (repetera om du är osäker). I allmänhet gäller att kursinnehållet, som ska instuderas på relativt
Högre ordnings ekvationer och system av 1:a ordningen
Institutionen för matematik, KTH 05020 Tillägg för 5B209/HT05/E.P. Högre ordnings ekvationer och system av :a ordningen Vi har hittills lärt oss lösa linjära ekvationer med konstanta koefficienter och
Logik och modaliteter
Modallogik Introduktionsföreläsning HT 2015 Formalia http://gul.gu.se/public/courseid/70391/lang-sv/publicpage.do Förkunskaper etc. Logik: vetenskapen som studerar argument med avseende på (formell) giltighet.
Robin Stenwall Lunds universitet
Robin Stenwall Lunds universitet Vik$gt a) tänka på Innehållet i kursen formell logik förutsätts vara inhämtat (repetera om du är osäker). I allmänhet gäller att kursinnehållet, som ska instuderas på relativt
MA2047 Algebra och diskret matematik
MA2047 Algebra och diskret matematik Något om logik och mängdlära Mikael Hindgren 5 september 2018 Utsagor Utsaga = Påstående som har sanningsvärde Utsagan kan vara sann (S) eller falsk (F) öppen eller
Logik och kontrollstrukturer
Logik och kontrollstrukturer Flödet av instruktioner i ett programmeringsspråk bygger vi upp med hjälp av dess kontrollstrukturer. I C har vi exemplen if, if else, while, do while. Dessutom finns switch
729G06 Logik FÖRELÄSNING 1 ANDERS MÄRAK LEFFLER IDA/HCS
729G06 Logik FÖRELÄSNING 1 ANDERS MÄRAK LEFFLER IDA/HCS 160127 Vad är logik? Som ämne, område... 2 Läran om korrekta resonemang Följer slutsatserna av ens antaganden? 3 Alla hundar är djur. Alla enhörningar
Substitution och unifiering
Substitution och unifiering Exempel varför behövs substitution? Substitution Unifiering Den mest generella unifieraren Substitution och unifiering 1 Resolution kräver substitution ett enkelt exempel Gäller
Datorlingvistisk grammatik I Institutionen för lingvistik och filologi Oktober 2007 Mats Dahllöf
UPPSALA UNIVERSITET Datorlingvistisk grammatik I Institutionen för lingvistik och filologi Oktober 2007 Mats Dahllöf http://stp.ling.uu.se/ matsd/uv/uv07/dg1/ Logisk semantik II 1 Predikatlogik, generella
Kap. 7 Logik och boolesk algebra
Ka. 7 Logik och boolesk algebra Satslogik Fem logiska konnektiv: ej, och, eller, om-så, omm Begre: sats, sanningsvärde, sanningsvärdestabell tautologi, kontradiktion Egenskaer: Räkneregler för satslogik
Logik för datavetare DVK:Log Tisdagen 28 oktober 2014. Institutionen för dataoch systemvetenskap David Sundgren
Institutionen för dataoch systemvetenskap David Sundgren Logik för datavetare DVK:Log Tisdagen 28 oktober 2014 Skrivtid: 9 00-13 00. Inga hjälpmedel utom formelsamlingen på nästa sida är tillåtna. För
Karlstads Universitet, Datavetenskap 1
2003-01-20 DAV B04 - Databasteknik 2003-01-20 KaU - Datavetenskap - DAV B04 - MGö 26 Relationsmodellen En formell teori som baserar sig på (främst) mängdlära predikatlogik Föreslogs av E.F Codd 1970 i
Semantik och pragmatik (serie 5)
Semantik och pragmatik (serie 5) (Predikat)logik Mängdlära överkurs (och repetition för en del). Mats Dahllöf Institutionen för lingvistik och filologi April 2015 1 / 41 Korsning av två egenskaper E 1
En introduktion till predikatlogik
rasmus.blanck@gu.se FT1200, LC1510 och LGFI52 VT2017 (Premiss 1) (Premiss 2) (Slutsats) Alla människor är dödliga Sokrates är en människa Sokrates är dödlig Detta argument är intuitivt giltigt: Det finns
Logik. Dr. Johan Hagelbäck.
Logik Dr. Johan Hagelbäck johan.hagelback@lnu.se http://aiguy.org Vad är logik? Logik handlar om korrekta och inkorrekta sätt att resonera Logik är ett sätt att skilja mellan korrekt och inkorrekt tankesätt
DD1350 Logik för dataloger
DD1350 Logik för dataloger Fö 8 Axiomatiseringar 1 Modeller och bevisbarhet Sedan tidigare vet vi att: Om en formel Φ är valid (sann i alla modeller) så finns det ett bevis för Φ i naturlig deduktion.
MATEMATIKENS SPRÅK. Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt,
Explorativ övning 1 MATEMATIKENS SPRÅK Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, lära oss förstå språket. Vi skall försöka utveckla vårt matematiska språk,
Semantik och pragmatik
Semantik och pragmatik OH-serie 5 http://stp.lingfil.uu.se/~matsd/uv/uv12/semp/ Mats Dahllöf Institutionen för lingvistik och filologi Januari 2012 Så här långt Konjunktion (p q): att två enklare satser
Föreläsning 9: Turingmaskiner och oavgörbarhet. Turingmaskinen. Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen.
Föreläsning 9: Turingmaskiner och oavgörbarhet Turingmaskinen Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen. Data är ett oändligt långt band där nollor och ettor står
DEL I. Matematiska Institutionen KTH
1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF1631 och SF1630, den 25 mars 2008. DEL I 1. (3p Bestäm antalet binära ord av längd
*UXSS YQLQJ±/RJLNPHGWLOOlPSQLQJDUYW
*USS YQLQJ±/RJLNPHGWLOOlPSQLQJDUYW 8SSJLIW Här kommer några teoretiska frågor, skriv svaren med egna ord, dvs skriv inte av ohbilderna: a. Vad är en beslutsprocedur? En algoritm som terminerar och som
Funktionella beroenden - teori
Relationell databasdesign, FB Teori 7-12 Funktionella beroenden - teori Vid utformning av databassystem är det av största vikt att man kan resonera systematiskt om funktionella beroenden bl.a. för att
Probabilistisk logik 1
729G43 Artificiell intelligens / 2016 Probabilistisk logik 1 Marco Kuhlmann Institutionen för datavetenskap Osäkerhet 1.01 Osäkerhet Agenter måste kunna hantera osäkerhet. Agentens miljö är ofta endast
Vad är det? Översikt. Innehåll. Vi behöver modeller!!! Kontinuerlig/diskret. Varför modeller??? Exempel. Statiska system
Vad är det? Översikt Discrete structure: A set of discrete elements on which certain operations are defined. Discrete implies non-continuous and therefore discrete sets include finite and countable sets
Robin Stenwall Lunds universitet
Robin Stenwall Lunds universitet Dagens föreläsning Informella bevismetoder för kvantifikatorer Universell elimination Existentiell introduktion Existentiell elimination Universell introduktion General
Utsagor (Propositioner) sammansatta utsagor sanningstabeller logisk ekvivalens predikat (öppna utsagor) kvantifierare Section
Föreläsning 1 Utsagor (Propositioner) sammansatta utsagor sanningstabeller logisk ekvivalens predikat (öppna utsagor) kvantifierare Section 1.1-1.3 i kursboken Definition En utsaga (proposition) är ett
Logik: sanning, konsekvens, bevis
Logik: sanning, konsekvens, bevis ft1100 samt lc1510 HT 2016 Giltiga argument (Premiss 1) (Premiss 2) (Slutsats) Professorn är på kontoret eller i lunchrummet Hon är inte på kontoret Professorn är i lunchrummet
DD1350 Logik för dataloger
DD1350 Logik för dataloger Fö 4 Predikatlogik 1 Kort repetition Satslogik Naturlig deduktion är ett sunt och fullständigt bevissystem för satslogik Avgörbarhet Så vad saknas? Egenskaper Satslogiken är
Filosofisk logik Kapitel 19. Robin Stenwall Lunds universitet
Filosofisk logik Kapitel 19 Robin Stenwall Lunds universitet Dagens upplägg Gödels fullständighetsteorem Sundhet och fullständighet Fullständighetsbeviset Vittneskonstanter Henkinteorin Eliminationsteoremet
HD-metoden och hypotesprövning. Vetenskapliga data
HD-metoden och hypotesprövning. Vetenskapliga data En central vetenskaplig metod? Vetenskap har (minst) fyra olika komponenter: Att ställa upp hypoteser. Att verifiera hypoteser med logik. Att värdera
Diskret matematik: Övningstentamen 4
Diskret matematik: Övningstentamen 22. Beskriv alla relationer, som är såväl ekvivalensrelationer som partiella ordningar. Är någon välbekant relation sådan? 23. Ange alla heltalslösningar till ekvationen
EDA Digital och Datorteknik 2009/2010
EDA45 - Digital och Datorteknik 29/2 EDA 45 - Digital och Datorteknik 29/2, lärobokens kapitel 3 Ur innehållet: Satslogik och Boolesk algebra Grindar Funktionstabell Binär evaluering Normal orm/förenklad
Formell logik Kapitel 3 och 4. Robin Stenwall Lunds universitet
Formell logik Kapitel 3 och 4 Robin Stenwall Lunds universitet Kapitel 3: De Booleska konnektiven Vi sade att predikaten och namnen kan variera mellan olika FOL Vi ska nu titta på några språkliga element
Logik I. Åsa Hirvonen Helsingfors universitet. Våren 2013
Logik I Åsa Hirvonen Helsingfors universitet Våren 2013 Inledning Logik är läran om härledning. Med hjälp av logiken kan vi säga när ett resonemang är korrekt och när det inte är det. För att kunna studera
MATEMATIKENS SPRÅK. Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, lära oss
Explorativ övning 1 LMA100 vt 2003 MATEMATIKENS SPRÅK Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, lära oss förstå språket. Vi skall försöka utveckla vårt
Övningshäfte 1: Logik och matematikens språk
GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2014 INLEDANDE ALGEBRA Övningshäfte 1: Logik och matematikens språk Övning A Målet är att genom att lösa och diskutera några inledande uppgifter få erfarenheter
Föreläsning 9 i programmeringsparadigm. Unifiering (Brna Chapter 4.1).
Föreläsning 9 i programmeringsparadigm. Unifiering (Brna Chapter 4.1). Repetition: I Haskell är mönster-passning (pattern-matchning) jättepraktiskt: När vi gör ett anrop av en funktion med ett visst argument
Formell Verifiering. Hur vet man att ett system fungerar korrekt? Lisa Kaati
Formell Verifiering Hur vet man att ett system fungerar korrekt? Lisa Kaati Innehåll Motivering Formell verifiering Modellkontroll (model checking) Verifiering av kod Forskning Dator system finns överallt
Kompletteringsmaterial. K2 Något om modeller, kompakthetssatsen
KTH Matematik Bengt Ek Maj 2008 Kompletteringsmaterial till kursen SF1642, Logik för D1 och IT3: K2 Något om modeller, kompakthetssatsen Vi skall presentera ett enkelt (om man känner till sundhets- och
Prova på-laboration i Prolog
Prova på-laboration i Prolog Peter Dalenius petda@ida.liu.se Institutionen för datavetenskap, Linköpings universitet 2006-09-12 1. Introduktion till Prolog Programspråket Prolog konstruerades i början
Lite om räkning med rationella uttryck, 23/10
Lite om räkning med rationella uttryck, / Tänk på att polynom uppför sig ungefär som heltal Summan, differensen respektive produkten av två heltal blir ett heltal och på motsvarande sätt blir summan, differensen
Föreläsning 8. newtype Chess = Chess [(Square, Chessman)] -- data ist f newtype OK -- data istället för newtype krävs om >1 konstruerare.
Föreläsning 8. Typer och programmeringsstil i Haskell. När vi definerade ett schack gjorde vi så här: newtype Chess = Chess [(Square, Chessman)] -- data ist f newtype OK deriving Show -- newtype effektivare
K2 Något om modeller, kompakthetssatsen
KTH Matematik Bengt Ek Maj 2005 Kompletteringsmaterial till kursen 5B1928 Logik för D1: K2 Något om modeller, kompakthetssatsen Vi skall presentera ett enkelt (om man känner till sundhets- och fullständighetssatsen
1 Duala problem vid linjär optimering
Krister Svanberg, april 2012 1 Duala problem vid linjär optimering Detta kapitel handlar om två centrala teoretiska resultat för LP, nämligen dualitetssatsen och komplementaritetssatsen. Först måste vi
EDA Digital och Datorteknik 2010/2011
EDA45 - Digital och Datorteknik 2/2 EDA 45 - Digital och Datorteknik 2/2, lärobokens kapitel 3 Ur innehållet: Satslogik och Boolesk algebra Grindar Funktionstabell Binär evaluering Normal orm/förenklad
Turingmaskiner och oavgörbarhet. Turingmaskinen. Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen.
Turingmaskiner och oavgörbarhet Turingmaskinen Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen. Data är ett oändligt långt band där nollor och ettor står skrivna: Oändligt
Switchnätsalgebra. Negation, ICKE NOT-grind (Inverterare) Konjunktion, OCH AND-grind. Disjunktion, ELLER OR-grind
Dagens öreläsning behandlar: Läroboken kapitel 3 Arbetsboken kapitel,3 Ur innehållet: Satslogik och Grindar Funktionstabell Binär evaluering Normal orm/förenklad orm/ Minimal orm Karnaughdiagram Negation,
Formell logik Kapitel 5 och 6. Robin Stenwall Lunds universitet
Formell logik Kapitel 5 och 6 Robin Stenwall Lunds universitet Kapitel 5 Bevismetoder för boolesk logik Visa att en sats är en tautologisk konsekvens av en mängd premisser! Lösning: sanningstabellmetoden
8. Moralpsykologi. Några klargöranden:
8. Moralpsykologi Några klargöranden: Det är vanligt att uttrycka MI/ME-debatten i termer av moraliska övertygelser (eller omdömen ), men detta är för generellt. MI är endast rimlig om den begränsas till
7, Diskreta strukturer
Objektorienterad modellering och diskreta strukturer 7, Diskreta strukturer Sven Gestegård Robertz Datavetenskap, LTH 2013 1 Inledning 2 Satslogik Inledning Satslogiska uttryck Resonemang och härledningar
MATEMATIKENS SPRÅK. Avsnitt 1
Avsnitt 1 MATEMATIKENS SPRÅK Varje vetenskap, liksom varje yrke, har sitt eget språk som ofta är en blandning av vardagliga ord och speciella termer. En instruktionshandbok för ett kylskåp eller för en
SANNING eller fake 1
SANNING eller fake 1 LITE DEFINITIONER Korrekt: Det som hänför sig till verkligheten (motsats: Inkorrekt) Avgörs genom empiriska observationer Personliga Sant: Logisk sanning (motsats: falskt) Avgörs genom
Detta är ett ofärdigt utdrag ur ovanstående text. Vänligen sprid inte!
Filosofiska institutionen Göteborgs universitet UTKAST Resolution, unifiering och syntaktiska modeller En introduktion till logikprogrammeringens teori Björn Haglund Detta är ett ofärdigt utdrag ur ovanstående
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 9 Anton Grensjö grensjo@csc.kth.se 9 november 2017 1 Idag Bevis av NP-fullständighet Labbteoriredovisning inför labb 4 2 Teori Teori När vi talar om NP-fullständighet
Sanningens paradoxer: om ändliga och oändliga lögnare
STEN LINDSTRÖM Sanningens paradoxer: om ändliga och oändliga lögnare 1. Inledning Lögnarparadoxen, i dess olika versioner, tycks ge vid handen att vår naiva förståelse av sanningspredikatet, uttryckt i