Matematik för elever med läs- och skrivsvårigheter
|
|
- Rut Bergman
- för 8 år sedan
- Visningar:
Transkript
1 Matematik för elever med läs- och skrivsvårigheter Per Berggren & Maria Lindroth
2 Mer %d ü Elever som har dyslexi (eller läs- och skrivsvårigheter) behöver 50% längre tid för att lösa samma uppgift. ü Det innebär att de har 2/3 av den tid som andra elever har. ü Det innebär att dessa elever har 6 års undervisning i matematik istället för 9 år!
3 Dyslexi? Dyslexi Läs- och skrivförmåga Bilkörning Matematikinlärning Matlagning
4 Dyslexi! Läs- och skrivförmåga Bilkörning Dyslexi Matematikinlärning Matlagning
5 Bakomliggande faktorer Ø Omkastningar Ø Osäkerhet på symboler Ø Bristande spatial förmåga Ø Bristande sekvensering Ø Korttidsminne Ø Långtidsminne Ø Begreppsbildning Matematikängslan, stress och självbild
6 Omkastningar Efter skolan ska jag spela med mitt nya datrospel när jag kommer hem. Peter kände sig rik, han hade kr kr? kr? 151 kr?
7 Omkastningar Enilgt en uniökserndng på ett ekegslnt uesrnvitiet så seplar det ignen rlol i vkeiln odrinng brtvkäseona i ett ord står, det edna som är vigtikt är att ftsröa och stsia bsaoekvtn såtr på rtät palts. Retsen kan stå hleulr om bellur och man kan ändå läsa ttxeen utan pebolrm. Dttea beror på att vi itne lesär vraje bkostav var för sig, uatn odren som hleeht.
8 Bakomliggande faktorer Ø Omkastningar Ø Osäkerhet på symboler Ø Bristande spatial förmåga Ø Bristande sekvensering Ø Korttidsminne Ø Långtidsminne Ø Begreppsbildning Matematikängslan, stress och självbild
9
10 Osäkerhet på symboler, + - : _ / 2x (-3) +3-(+3)
11 Bakomliggande faktorer Ø Omkastningar Ø Osäkerhet på symboler Ø Bristande spatial förmåga Ø Bristande sekvensering Ø Korttidsminne Ø Långtidsminne Ø Begreppsbildning Matematikängslan, stress och självbild
12 Bristande spatial förmåga
13 Bristande spatial förmåga Hur ser fåtöljen ut uppifrån? Från höger sida? Underifrån? För en person som står på huvudet på vänster sida om fåtöljen!?!?
14 Räkneriktning? ?!?!?
15 Mul$plika$on utan förståelse! 5 x 13 = 5 x x 3 = x 17 = 10 x x 7 = 121!!!
16 Mul$plika$on med förståelse! 17 13
17 Mul$plika$on med förståelse! x10=100 10x7=70 3x10=30 3x7=21 17 x =221
18 Bakomliggande faktorer Ø Omkastningar Ø Osäkerhet på symboler Ø Bristande spatial förmåga Ø Bristande sekvensering Ø Korttidsminne Ø Långtidsminne Ø Begreppsbildning Matematikängslan, stress och självbild
19 Fingermultiplikation
20 Bakomliggande faktorer Ø Omkastningar Ø Osäkerhet på symboler Ø Bristande spatial förmåga Ø Bristande sekvensering Ø Korttidsminne Ø Långtidsminne Ø Begreppsbildning Matematikängslan, stress och självbild
21 Inlärningsnivåer i matematik 1. Intuitiv tänka, tala 2. Konkret göra och pröva 3. Representationsformer synliggöra 4. Abstrakt/symbolisk nivå förstå, formulera 5. Tillämpning att använda i verkliga och påhittade situationer 6. Kommunikation kunna förklara, argumentera, reflektera
22 Fraction Estimation Ett bra sätt att lära sig att uppskatta bråk
23 Matematikrapport Bild Ord/Text Tal/siffror
24 Matematikrapport Namn på uppgiften:. Datum: Vi som arbetat med uppgiften är:.. Beskriv problemet med egna ord: Vilken strategi använde ni för att lösa problemet: Visa med tabell, diagram, figur, uträkningar eller liknande hur ni löste problemet: Skriv lösningen/lösningarna på problemet: Vilka slutsatser kan ni dra: Skriv ett eget liknande problem och lös det.
25 Vad finns i påsen?
26 5x5-spel Vad är mönstret värt?
27 Hör av dig Vi söker alltid efter nya kontakter och idéer så hör gärna av dig Geijersvägen Stockholm (- 7)
Matematik för elever med läs- och skrivsvårigheter
Matematik för elever med läs- och skrivsvårigheter Per Berggren & Maria Lindroth 2012-03- 27 Lgr11 Matema+ska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar
Matematik för elever med läs- och skrivsvårigheter
Matematik för elever med läs- och skrivsvårigheter Per Berggren & Maria Lindroth 2012-04- 17 Lgr11 Matema+ska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar
Inlärningsnivåer i matema0k och en varierad undervisning
Inlärningsnivåer i matema0k och en varierad undervisning Per Berggren & Maria Lindroth Lgr11- Matema0ska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar
Matematik för elever med läs- och skrivsvårigheter
Matematik för elever med läs- och skrivsvårigheter Per Berggren & Maria Lindroth 2012-03- 29 Lgr11 Matema+ska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar
Inlärningsnivåer i matema0k och en varierad undervisning
Inlärningsnivåer i matema0k och en varierad undervisning Per Berggren & Maria Lindroth 2015-03- 17 Lgr11- Matema0ska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges
Inlärningsnivåer i matema0k och en varierad undervisning
Inlärningsnivåer i matema0k och en varierad undervisning Per Berggren & Maria Lindroth 2012-10- 09 Lgr11- Matema0ska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges
Varierad undervisning
Varierad undervisning Per Berggren & Maria Lindroth 2013-01- 29 Inlärningsnivåer i matema=k 1. Intui=v tänka, tala 2. Konkret göra och pröva 3. Representa=onsformer synliggöra 4. Abstrakt/symbolisk nivå
Inlärningsnivåer i matema0k och en varierad undervisning
Inlärningsnivåer i matema0k och en varierad undervisning Per Berggren & Maria Lindroth 2012-04- 24 Lgr11- Matema0ska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges
Per Berggren och Maria Lindroth 2014-11-19
Varierad matematikundervisning Per Berggren och Maria Lindroth 2014-11-19 Luffarschack Med en utmaning! Sfinxen En rik laborativ matematikuppgift som tar sin början i de första skolåren och fortsätter
Inlärningsnivåer i matema0k och en varierad undervisning
Inlärningsnivåer i matema0k och en varierad undervisning Per Berggren & Maria Lindroth 2013-04- 23 Lgr11- Matema0ska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges
Mönster och Algebra. NTA:s första matematiktema. Per Berggren & Maria Lindroth
Mönster och Algebra NTA:s första matematiktema Per Berggren & Maria Lindroth 1 Lgr11- Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att
Bedömning för lärande i matematik i praktiken. Per Berggren och Maria Lindroth
Bedömning för lärande i matematik i praktiken Per Berggren och Maria Lindroth 2012-10-30 Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar
Mönster och Algebra. NTA:s första matematiktema. Per Berggren
Mönster och Algebra NTA:s första matematiktema Per Berggren 1 Mål Varierad undervisning Varierad bedömning Kursplaneinriktad undervisning Rättvist för alla elever 2 Kursplaner för grundskolan (utbildningsdepartementet
Mönster och Algebra. NTA:s första matematiktema. Per Berggren
Mönster och Algebra NTA:s första matematiktema Per Berggren 1 Lgr11- Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga
bedömning Per Berggren och Maria Lindroth
Varierad undervisning och bedömning Per Berggren och Maria Lindroth 2013-01-22 Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla
bedömning Per Berggren och Maria Lindroth
Varierad undervisning och bedömning Per Berggren och Maria Lindroth 2016-11-30 Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla
Matematikverkstad Per Berggren & Maria Lindroth
Matematikverkstad Per Berggren & Maria Lindroth 2012-08-10 Kons%gt 2 + 4 = 6 11 + 11 = 10 8 + 6 = 2 10 + 9 = 7 hur tänker jag! 19+19= 134+108= 13x27= 23 2 = Matema%kverkstad Vad är en matema%kverkstad?
Labora&v matema&k - En varierad undervisning
Labora&v matema&k - En varierad undervisning Per Berggren & Maria Lindroth 2013-04- 20 Cars in the Garage En rikt problem med många möjligheter A@ arbeta som en matema&ker Först vill matema-ker ha e0 intressant
matematiska förmågor Per Berggren och Maria Lindroth 2013-05-21
Varierad undervisning och bedömning av matematiska förmågor Per Berggren och Maria Lindroth 2013-05-21 5x5-spel Vad är mönstret värt? Kul Matematik Per Berggren och Maria Lindroth Matematiska förmågor
Strukturerad undervisning för ökad måluppfyllelse. Per Berggren och Maria Lindroth
Strukturerad undervisning för ökad måluppfyllelse Per Berggren och Maria Lindroth 2017-09-18 Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar
Motivationshöjande och strukturerad matematikundervisning som skapar bättre förutsättningar. Per Berggren och Maria Lindroth
Motivationshöjande och strukturerad matematikundervisning som skapar bättre förutsättningar Per Berggren och Maria Lindroth 2017-03-21 Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna
Labora&v matema&k - för en varierad undervisning
Labora&v matema&k - för en varierad undervisning Per Berggren & Maria Lindroth 2012-03- 13 Kons> 2 + 4 = 6 11 + 11 = 10 8 + 6 = 2 10 + 9 = 7 hur räknar jag! 19+19= 134+108= 13x27= 23 2 = Lgr11- Matema&ska
Utmanande uppgifter som utvecklar. Per Berggren och Maria Lindroth
Utmanande uppgifter som utvecklar Per Berggren och Maria Lindroth 2014-11-12 Vilka förmågor ska utvecklas Problemlösning (Förstå frågan i en textuppgift, Använda olika strategier när jag löser ett problem,
Fånga alla elever i klassrummet effektiv undervisningsstruktur i matematik som gör alla elever delaktiga. Per Berggren och Maria Lindroth
Fånga alla elever i klassrummet effektiv undervisningsstruktur i matematik som gör alla elever delaktiga Per Berggren och Maria Lindroth 2017-11-14 Matematiska förmågor Genom undervisningen i ämnet matematik
Variation i undervisning och bedömning. Per Berggren och Maria Lindroth
Variation i undervisning och bedömning Per Berggren och Maria Lindroth 2012-03-06 Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla
Laborativ matematik som bedömningsform. Per Berggren och Maria Lindroth 2014-06-17
Laborativ matematik som bedömningsform Per Berggren och Maria Lindroth 2014-06-17 Vad är mönstret värt? Lika eller olika Vilka förmågor tränas Problemlösning (Förstå frågan i en textuppgift, Använda olika
Per Berggren och Maria Lindroth 2012-10-30
Varierad undervisning Per Berggren och Maria Lindroth 2012-10-30 Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga
Labora&v matema&k - för en varierad undervisning
Labora&v matema&k - för en varierad undervisning Per Berggren & Maria Lindroth 2012-02- 23 Lgr11- Matema&ska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar
Variation i undervisning och bedömning. Per Berggren och Maria Lindroth 2013-04-23
Variation i undervisning och bedömning Per Berggren och Maria Lindroth 2013-04-23 Bedömning Att göra det viktigaste bedömbart och inte det enkelt bedömbara till det viktigaste. Astrid Pettersson, PRIM-gruppen
bedömning Per Berggren och Maria Lindroth 2014-05-23
Varierad undervisning och bedömning Per Berggren och Maria Lindroth 2014-05-23 Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla
Bedömning som ett sätt att utveckla matematikundervisningen. Per Berggren och Maria Lindroth
Bedömning som ett sätt att utveckla matematikundervisningen Per Berggren och Maria Lindroth 2012-01-10 Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar
Bedömning av matematiska förmågor. Per Berggren och Maria Lindroth
Bedömning av matematiska förmågor Per Berggren och Maria Lindroth 2013-01-08 Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla
Varierad undervisning för lust a1 lära
Varierad undervisning för lust a1 lära Per Berggren & Maria Lindroth 2012-01- 17 Lgr11- Matema@ska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att
Bedömning av matematiska förmågor. Per Berggren och Maria Lindroth 2012-01-26
Bedömning av matematiska förmågor Per Berggren och Maria Lindroth 2012-01-26 Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla
Elever i läs- och skrivsvårigheter i matematikundervisningen
Elever i läs- och skrivsvårigheter i matematikundervisningen Forskares resultat och lärares erfarenheter Sandra Eriksson Sandra Eriksson Ht 2011 Examensarbete, 30 hp Lärarutbildningen, institutionen för
Konkret kombinatorik. Per Berggren och Maria Lindroth
Konkret kombinatorik Per Berggren och Maria Lindroth 2018-01-26 Cars in the Garage En rikt problem med många möjligheter Centralt innhåll Slumpmässiga händelser i experiment och spel. Enkla tabeller och
Studenter i lärarprogrammet GF(11GF20) 46 p G: 28 p VG: 38 p
11GF20 MaI Provmoment: Ladokkod: Tentamen ges för: Matematik 0,5 hp Studenter i lärarprogrammet GF(11GF20) 15 högskolepoäng TentamensKod: Tentamensdatum: 18-05-22 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel
Laborativ matematik som bedömningsform. Per Berggren och Maria Lindroth 2015-01-31
Laborativ matematik som bedömningsform Per Berggren och Maria Lindroth 2015-01-31 Vilka förmågor tränas Problemlösning (Förstå frågan i en textuppgift, Använda olika strategier när jag löser ett problem,
Concept cartoons - resonemangsuppgifter. Per Berggren och Maria Lindroth 2013-06-18
Concept cartoons - resonemangsuppgifter Per Berggren och Maria Lindroth 2013-06-18 Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla
Observationsschema Problemlösningsförmåga
Observationsschema Problemlösningsförmåga Klass: Elevens namn Kan formulera räknehändelser i addition/ subtraktion/multiplikation/division. Läser och visar förståelse för matematiska problem. Kan överföra
Statistik, sannolikhet, algebra och funktioner, 3 hp. Studenter i lärarprogrammet F-3 III, 12F380 ht17 Varberg
Grundläggande matematik II 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Statistik, sannolikhet, algebra och funktioner, 3 hp Studenter i lärarprogrammet F-3 III, 12F380 ht17 Varberg TentamensKod:
Layout. Proportioner. Layout: Proportioner
Layout Proportioner Layout: Proportioner A4 1,42 (roten ur 2) Letter 8,5 x 11 Gyllene snittet 1,62 Kvadrat (1:1) Datorskärm 0,75 (3:4) Layout: Proportioner Layout: Proportioner Pocket: 110 x 178 mm Fackpockett:
Matematiksvårigheter en trasslig historia
Matematiksvårigheter en trasslig historia Föreläsning 4/5 Helena Roos Vad är matematiksvårigheter? Matematiksvårigheter är ett relativt begrepp, vi ställer elevers kunskaper i matematik i relation till
Kursplan för matematik År 1-5 Rösjöskolan TÄBY KOMMUN
RUMSUPPFATTNING GEOMETRI OCH MÄTNING MATEMATIK REDOVISNING OCH MATEMATISKT SPRÅK TALUPPFATTNING, OCH RÄKNEMETODER STATISTIK Kursplan för matematik År 1-5 Rösjöskolan TÄBY KOMMUN Kursplan i matematik Lgr
HJÄRNGYMP A NFI TESTFORUM - 2013
HJÄRNGYMPA NFI TESTFORUM - 2013 Mäter strömmen i en hjärncell 1990 Med tankens kraft styra en dator 2010 1980 fmri-scannern 2000 Hjärnceller styr en robot HJÄRNGYMPA HJÄRNGYMPA HJÄRNGYMPA HJÄRNGYMPA -
Lokal pedagogisk planering
Lokal pedagogisk planering RO/Skola: Rebbelberga skola Arbetsområde: Taluppfattning Ämne: Matematik Termin/År: ht 2013 Årskurs: 1 Ämnets syfte enligt grundskolans kursplan: Genom undervisningen i ämnet
mattetankar Reflektion kring de olika svaren
Reflektion kring de olika svaren Taluppfattning och tals användning 15 Skriv trehundrasju Reflektion: 31007 tyder på att eleven tolkar talet som 3, 100, 7 3007 tyder på att eleven tolkar talet som 300,
1. Vad är formativ bedömning? Tankarna bakom Tummen Upp! Formativ bedömning Det här hittar du i Tummen Upp! Formativ bedömning...
1. Vad är formativ bedömning?... 2 2. Tankarna bakom Tummen Upp! Formativ bedömning... 5 3. Det här hittar du i Tummen Upp! Formativ bedömning... 6 4. Hur ni kan arbeta med Tummen Upp Matematik, formativ
Pedagogiskt café. Problemlösning
Pedagogiskt café Problemlösning Vad är ett matematiskt problem? Skillnad mellan uppgift och problem - Uppgift är något som eleven träffat på tidigare, kan lösa med vanliga standardmetoder - Matematiskt
Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1
Matematik med didaktisk inriktning för grundlärare i förskoleklass och grundskolans a rskurs 1-3, III, VT18 7,5 högskolepoäng Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1 Ladokkod:
48 p G: 29 p VG: 38 p
11F322 MaI Provmoment: Matematik 5 hp Ladokkod: Tentamen ges för: Studenter i lärarprogrammet F-3 15 högskolepoäng TentamensKod: Tentamensdatum: 16-05-31 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel Totalt
Ladokkod: TentamensKod: Tentamensdatum: Tid: Hjälpmedel: Inga hjälpmedel
11GF20 MaI Provmoment: Ladokkod: Tentamen ges för: Matematik 0,5 hp Studenter i lärarprogrammet GF(11GF20) 15 högskolepoäng TentamensKod: Tentamensdatum: 16-05-13 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel
DYSKALKYLI MATEMATIKSVÅRIGHETER. Agneta Marsell Specialpedagog, Komvux Sundsvall agneta.marsell@skola.sundsvall.se
MATEMATIKSVÅRIGHETER DYSKALKYLI Agneta Marsell Specialpedagog, Komvux Sundsvall agneta.marsell@skola.sundsvall.se Susanna Vuorela, Studerande, Komvux Sundsvall susanna.vuorela@skola.sundsvall.se 2008-09-22
Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. Skriv inte på bladens baksidor. Helst en uppgift per blad.
Ma F-3 I Provmoment: Ladokkod: Tentamen ges för: Matematik 5 hp Studenter i lärarprogrammet Ma F-3 I (11F322) 15 högskolepoäng TentamensKod: Tentamensdatum: 15-04-29 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Kursplan för Matematik
Sida 1 av 5 Kursplan för Matematik Inrättad 2000-07 SKOLFS: 2000:135 Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematik som behövs för
Terminsplanering årskurs 6 Matematik Ärentunaskolan
Inledning Terminsplanering årskurs 6 Matematik Ärentunaskolan På Ärentunaskolan arbetar vi med läromedlet MatteBorgen. Förutom uppgifter i boken arbetar vi med problemlösning och tränar olika strategier
Bedömning för lärande i matematik i praktiken. Per Berggren och Maria Lindroth 2012-11-29
Bedömning för lärande i matematik i praktiken Per Berggren och Maria Lindroth 2012-11-29 Inlärningsnivåer i matematik 1. Intuitiv tänka, tala 2. Konkret göra och pröva 3. Representationsformer synliggöra
Arbetsområde: Från pinnar till tal
Arbetsområde: Från pinnar till tal Huvudsakligt ämne: Matematik, åk 1-3 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas:
Layout. Proportioner. Layout: Proportioner
Layout Proportioner Layout: Proportioner Layout: Proportioner Layout: Proportioner Layout: Proportioner A4 1,42 (roten ur 2) Letter 8,5 x 11 Gyllene snittet 1,62 Kvadrat (1:1) Datorskärm 0,75 (3:4) Layout:
Bengt Drath. Högskolan i Skövde Stöpenskolan i Skövde kommun
Prata matematik Bengt Drath Högskolan i Skövde Stöpenskolan i Skövde kommun Matematikkunnande tikk Vad ingår i begreppet matematikkunnande? eller som elever skulle tänka: Hur skall en duktig elev i matte
MATEMATIK 3.5 MATEMATIK
TETIK 3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.
Ladokkod: Studenter i lärarprogrammet GF 11GF20 vt17 tillfälle 1 och vt16 tillfälle 4
11GF20 MaI Provmoment: Ladokkod: Tentamen ges för: Matematik 0,5 hp 15 högskolepoäng Studenter i lärarprogrammet GF 11GF20 vt17 tillfälle 1 och vt16 tillfälle 4 TentamensKod: Tentamensdatum: 17-05-12 Tid:
Layout. Proportioner. A4 1,42 (roten ur 2) Letter 8,5 x 11. Gyllene snittet 1,62. Kvadrat (1:1) Datorskärm 0,75 (3:4) Layout: Proportioner
Layout Proportioner A4 1,42 (roten ur 2) Letter 8,5 x 11 Gyllene snittet 1,62 Kvadrat (1:1) Datorskärm 0,75 (3:4) Pocket: 110 x 178 mm Fackpockett: 110 x 170 mm Lilla romanformatet: 135 x 210 mm Stora
Lgr 11 matriser i Favorit matematik 4 6
Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor
Prata matematik. Bengt Drath. Stöpenskolan i Skövde kommun
Prata matematik Bengt Drath Högskolan i Skövde Stöpenskolan i Skövde kommun Matematikkunnande Vad ingår i begreppet matematikkunnande? eller som elever skulle tänka: Hur skall en duktig elev i matte vara?
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Ur kursplanen för ämnet matematik I detta arbetsområde ska eleven utveckla sin förmåga att:
PALMBLADSSKOLAN Matematik PP för arbetsområde: Tal åk 8 Ur kursplanen för ämnet matematik I detta arbetsområde ska eleven utveckla sin förmåga att: formulera och lösa problem med hjälp av matematik samt
Bagarmossens skolas kravnivåer beträffande tal och talens beteckningar som eleven ska ha uppnått efter:
Matematik 1-5 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik och
Gunnar Hyltegren. Ämnet matematik 2011 i grundskolan
Ämnet matematik 2011 i grundskolan Förmågor som skall utvecklas i matematik 2011 - gr Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga
ämnesområden. Funktioner och räta linjens ekvation. Hur funktioner kan användas för att undersöka förändring, förändringstakt och andra samband.
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Jag tror att alla lärare introducerar bråk
RONNY AHLSTRÖM Variabler och mönster Det är viktigt att eleverna får förståelse för grundläggande matematiska begrepp. Ett sätt att närma sig variabelbegreppet är via mönster som beskrivs med formler.
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
Arbetsområde: Huvudsakligt ämne: Matematik, åk 4-6 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa
7G,H och D matematik planering Syftet med undervisningen är att du ska utveckla din förmåga att:
Åsö grundskola VT2018 7G,H och D matematik planering Syftet undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder,
Nationella strävansmål i matematik. Skolan skall i sin undervisning i matematik sträva efter att eleven
Nationella strävansmål i matematik Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära
Enhet / skola: Lindens skola i Lanna Åk: 3
Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 3 Avsnitt / arbetsområde: Undersöka med Hedvig Ämnen som ingår: Svenska/svenska som andraspråk, matematik, bild, So,
matematik Syfte Kurskod: GRNMAT2 Verksamhetspoäng: 600 1. KuRSplanER FöR KoMMunal VuxEnutBildninG på GRundläGGandE nivå 55
Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att
2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ
Matematik, 600 verksamhetspoäng Ämnet handlar bland annat om mängder, tal och geometriska figurer. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska
MATEMATIK 3.5 MATEMATIK
3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Gör studierna enklare. Per Brohagen
Gör studierna enklare Per Brohagen Dagens schema Minnet och glömska Läsning Anteckningar Lite om hjärnan och inlärning Motivation Vilken motivation varar längst? Yttre motivation Betyg Status Klara tentor
Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. En uppgift per blad och inga svar på baksidan av bladen Lycka till!
Matematik 4-6 II Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 4 hp Studenter i lärarprogrammet LAG 4-6 T3 15 högskolepoäng Tentamensdatum: 15-01-15 Tid: 09.00 13.00 Hjälpmedel: Lgr 11,
Digitala verktyg i matematik- och fysikundervisningen ett medel för lärande möten
Digitala verktyg i matematik- och fysikundervisningen ett medel för lärande möten Ulrika Ryan Hur bygger jag den vetenskapliga grunden för min undervisning? Styrdokument Forskning Beprövad erfarenhet Matematik
Centralt innehåll. I årskurs 1.3
3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.
DYSKALKYLI MATEMATIKSVÅRIGHETER. Agneta Marsell Specialpedagog, Komvux Sundsvall agneta.marsell@skola.sundsvall.se
MATEMATIKSVÅRIGHETER DYSKALKYLI Agneta Marsell Specialpedagog, Komvux Sundsvall agneta.marsell@skola.sundsvall.se Susanna Vuorela, Studerande, Komvux Sundsvall SannaV@horse-mail.com 2011-06-23 Agneta Marsell
Förslag den 25 september Matematik
Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Läs- och skrivsvårigheter och matematiksvårigheter En sambandsstudie gällande några specialpedagogers uppfattningar
Beteckning: Akademin för teknik och miljö Läs- och skrivsvårigheter och matematiksvårigheter En sambandsstudie gällande några specialpedagogers uppfattningar Hanna Albertsson Ht-2010 15 hp Grundläggande
9A Ma: Statistik och Sannolikhetslära
9A Ma: Statistik och Sannolikhetslära Efter påsklovet börjar det femte arbetsområdet som handlar om statistik och sannolikhetslära. Det kommer också att bli tid för att arbeta vidare med målen för begrepp
Del ur Lgr 11: kursplan i matematik i grundskolan
Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet
Kunskapsprofil Resultat på ämnesprovet
Kunskapsprofil Resultat på ämnesprovet Här fylls i om eleven nått kravnivån på delproven. N = nått kravnivån, EN = ej nått kravnivån. Elevens namn: Förmågor som prövas Kunskapskrav Uppnått kravnivån (N
Dyslexirelaterade svårigheter i matematik
Dyslexirelaterade svårigheter i matematik En studie om dyslektiker som är normalpresterande i matematik Beatrice Halldén Höstterminen 2014 Beatrice Halldén Institutionen för matematik och matematisk statistik
Skolverkets förslag till kursplan i matematik i grundskolan. Matematik
Matematik Matematiken har en mångtusenårig historia med bidrag från många kulturer. Den har utvecklats ur människans praktiska behov och hennes naturliga nyfikenhet och lust att utforska. Matematisk verksamhet
Skola och hemmet. Per Berggren och Maria Lindroth 2014-03-04
Skola och hemmet Per Berggren och Maria Lindroth 2014-03-04 Skolans uppdrag Att ge förutsättningar för: Goda medborgare Fortsatta studier Personlig utveckling Lgr11 - läroplan med kursplaner Första delen
Computa(onal thinking progression F-9
Computa(onal thinking progression F-9 Digitala verktyg för lärande Jessica Andersson / Peter Samuelsson Trönninge vo Trönninge vo Två skolor CT-grupp CT-grupp Progression F-9 Mjuka värden Pedagogiska verktyg
Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll.
ÖREBRO MATEMATIK, ÅR 3 1(5) Eleven kan tolka elevnära information med matematiskt innehåll Eleven kan uttrycka sig muntligt, skriftligt och i handling på ett begripligt sätt med hjälp av vardagligt språk,
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
15 högskolepoäng. Grundläggande matematik fo r la rare med inriktning mot arbete i fo rskoleklass och grund-skolans a rskurs 1-3, 15 hp VT17
Grundläggande matematik fo r la rare med inriktning mot arbete i fo rskoleklass och grund-skolans a rskurs 1-3, 15 hp VT17 Provmoment: Tentamen Matematik, 5 hp, tillfälle 1 Ladokkod: TE01 Tentamen ges
Redan de gamla grekerna kände till tekniker att påverka andra. Retoriken.
Påverkan Redan de gamla grekerna kände till tekniker att påverka andra. Retoriken. De ansåg att det hörde till allmänbildningen All kommunikation är påverkan Vi påverkas hela dagarna Påverkan är ursprungligen
Samband och förändringar Olika proportionella samband, däribland dubbelt och hälften.
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod:
SMID Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 3hp Studenter i inriktningen GSME 22,5 högskolepoäng Tentamensdatum: 12-08-30 Tid: 09.00-13.00 Hjälpmedel: Inga Totalt antal poäng på
Målet med undervisningen är att eleverna ges förutsättningar att:
Matematik Målet med undervisningen är att eleverna ges förutsättningar att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska