Räkneflyt 2. Addition och Subtraktion. Färdighetsträning i matte. Talområde 11-20
|
|
- Max Berg
- för 8 år sedan
- Visningar:
Transkript
1 Räkneflyt 2 Addition och Subtraktion område Färdighetsträning i matte Gunnel Wendick Inga-Lis Klackenmo
2 Wendick-modellens träningsmaterial Wendick-modellen består av en serie strukturerade kartläggnings- och träningsmaterial som säkrar viktiga basfärdigheter. Aktuell forskning har påvisat att färdigheter måste nötas in, och våra material bygger på en tydlig metodik. Det är viktigt att först identifiera elevens behov och sedan ge möjlighet till träning där eleven befinner sig i sin utveckling. Våra erfarenheter bekräftar att detta arbetssätt kan göra underverk. I Wendick-modellen ingår f n 14 olika material: Intensivläsning med läslistor Språkljud Test med bilder Språkljud Träning med bilder Språkljud Utveckling med läslistor uppfattning 0-5 uppfattning 6-10 uppfattning uppfattning Räkneflyt 1 - Addition/Subtraktion 1-10 Räkneflyt 2 - Addition/Subtraktion Räkneflyt 3 - Multiplikation/Division 1-10 RäkneTest 1 - Add/Sub 1-10 RäkneTest 2 - Add/Sub RäkneTest 3 - Multi/Div 1-10 Läs mer och beställ på Om Räkneflyt Räkneflyt riktar sig till lärare som är involverade i elevers matematikutveckling och används för att träna tabellerna inom de fyra räknesätten och upptäcka sambanden. Korta fakta om Räkneflyt Har en tydlig och strukturerad metodik. Ger en systematisk genomgång och uppföljning av tal och tabeller. Baseras på kontinuerlig och strukturerad träning i skolan såväl som i hemmet. Utvecklar förståelsen av att använda tal vilket ger ökad säkerhet i den fortsatta matematikutvecklingen. Syftar till att uppnå en automatisering inom de olika räknesätten och ge bättre förutsättningar för elevens måluppfyllelse i matte. Har en enkel och ren sidlayout utan perceptionsstörande inslag. Är åldersoberoende och kan återanvändas år efter år. Ger smidig testmöjlighet vid misstanke om kunskapsluckor. Titta gärna på våra förberedande räknematerial uppfattning också! Addition och Subtraktion 11-20
3 Innehållsförteckning Introduktion Räkneflyt är kopplat till Lgr11 och Diamant Förståelse och automatisering 8-10 Metod Hjälpmedel Tabeller 11:ans talkamrater Förståelse 17 Träning Läxa Läxprov :ans talkamrater Förståelse Träning Läxa Läxprov :s talkamrater Förståelse Träning Läxa Läxprov :s talkamrater Förståelse Träning Läxa Läxprov :s talkamrater Förståelse Träning Läxa Läxprov Addition och Subtraktion 11-20
4 16:s talkamrater Förståelse Träning Läxa Läxprov :s talkamrater Förståelse Träning Läxa Läxprov :s talkamrater Förståelse Träning Läxa Läxprov :s talkamrater Förståelse Träning Läxa Läxprov Prov :s talkamrater Förståelse Träning Läxa Läxprov Repetition Stora Plus och Stora Minus Stora Plus dubblor, Stora Minus dubblor, 11- Träning Läxa Läxprov Stora Plus Stora Minus Träning Läxa Läxprov Addition och Subtraktion 11-20
5 Stora Plus Stora Minus Träning Läxa Läxprov Stora Plus Stora Minus Träning Läxa Läxprov Referenslitteratur 148 Bilagor rader 149 mönster Informationsbrev till vårdnadshavare mall 152 Diplom och Mattekörkort Räknestege Elevresultat addition och subtraktion Diamantdiagnoser 159 Digitala träningsprogram hänvisningar Räkneflyt ger resultat exempel 162 Winnetkakort Extra Triader 200 Pärmryggar Addition och Subtraktion 11-20
6 Räkneflyt är kopplat till Lgr11 och Diamant Läroplanen för grundskolan, Lgr11, har tydliga mål för matematik. Det finns sex områden i Centralt innehåll och ett av dessa är uppfattning och tals användning. För de olika årskurserna framgår vad som förväntas inom detta område. Delar av målen behandlas i, där betoningen ligger på grunderna som speglas i årskurserna 1-3: Lgr11 uppfattning och tals användning Naturliga tal och deras egenskaper, samt hur talen kan delas upp och användas för att ange antal och ordning. Hur tal byggs upp med hjälp av positionssystemet. Symboler för tal och symbolernas utveckling i några olika kulturer genom historien. Del av helhet och del av antal. Hur delarna kan benämnas och uttryckas som enkla bråk, samt hur enkla bråk förhåller sig till naturliga tal. De fyra räknesättens egenskaper och deras samband med varandra. Centrala metoder för beräkningar med naturliga tal, vid huvudräkning och överslagsräkning, vid beräkningar med skriftliga metoder och miniräknare samt vid val av räknesätt i olika situationer. Rimlighetsbedömning vid enkla beräkningar och uppskattningar. Naturliga tal och enkla tal i bråkform och deras användning i vardagliga situationer. Direkt koppling till Diamant Räkneflyts upplägg har en direkt koppling till Diamantdiagnoserna, som Skolverket gav ut år 2009 ( Detta Räkneflyts-material, Addition och Subtraktion område 11-20, är knutet till matematikområdet Aritmetik, grundläggande aritmetiken, AG: AG2: Addition och subtraktion inom talområde 10-19, utan tiotalsövergång AG3: Addition och subtraktion inom talområde 10-19, med tiotalsövergång AG5: Räknesättens innebörd, addition och subtraktion Citat ur Diamant För att lösa ett matematiskt problem räcker det inte med att förstå problemet och ha en lösningsmetod. Det krävs dessutom så goda räknefärdigheter att eleven också kan utföra de beräkningar som krävs för att få ett korrekt svar. Behärskar inte eleven sådana färdigheter blir lösningen oftast felaktig, eller kräver så mycket tankekraft, att eleven får svårigheter med att bearbeta den primära uppgiften. Man kan uttrycka detta som att eleven då saknar flyt i sitt räknande på samma sätt som en del elever saknar flyt i sitt läsande, sid Addition och Subtraktion 11-20
7 Resultat efter strukturerad undervisning och tabellträning Elever AG1 AG2 AG3 AG5 Elev A Elev B Elev C Elev D Elev E Elev F Elev G Elev H Elev I Elev J Elev K Elev L Elev M Elev N Elev O Elev P Elev Q Exempel på resultat från Inga-Lis Klackenmos strukturerade arbete med tabell för tabell. Alla elever i klassen nådde maxpoäng eller näst intill. Eleverna genomförde AG1 diagnosen i maj månad år 1 och påföljande år AG2, AG3 och AG5 diagnosen i år 2 vid samma tid på året. För att eleven ska få ett poäng bör denna klara av en grupp av matematikuppgifter om sex stycken i AG1 och i AG2, AG3 åtta stycken till antalet. AG5 innehåller åtta uppgifter som ger ett rätt för varje uppgift. För elever som behärskar uppgifterna tar det i AG1 2-3 minuter att genomföra uppgifterna och i AG2 och AG3 tar det 3-4 minuter samt i AG5 4-5 minuter Addition och Subtraktion 11-20
8 kamrater et 15 Förståelse Triader Namn: 1. Använd klossar när du ska dela talet 2. Skriv vad som kan utläsas ur triaderna 3. Dela talet utan klossar (kopiera fler tomma triader, sid. 200) 4. Dela talet muntligt eller eller eller = = = = 13 + = 15 0 = = eller eller eller Addition och Subtraktion 11-20
9 kamrater et 15 - Addition Träning Namn: 12 + = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = + 9 Winnetkakort - Additions- och Subtraktionstabell Addition och Subtraktion 11-20
10 kamrater et 15 - Subtraktion Träning Namn: 15 = 6 15 = = 2 15 = 8 15 = 4 15 = = 5 15 = 9 15 = 7 15 = = 3 15 = = = 15 4 = 15 6 = = = 15 8 = 15 7 = = 15 12= 15 2 = 15 5 = 9 = = 15 = 15 8 = = = 15 = 15 9 = = = 15 = 15 5 = 15 7 Winnetkakort - Additions- och Subtraktionstabell Addition och Subtraktion 11-20
11 Repetition Stora Plus dubblor, +2, +3 Läxa - 3 min. Namn: = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = Addition och Subtraktion 11-20
12 Repetition Stora Minus dubblor, 11 Läxa - 3 min. Namn: 11 6 = 16 8 = 11 5 = 18 9 = 11 3 = 11 7 = 11 8 = 11 4 = 12 6 = 11 2 = 14 7 = 11 9 = = 11 2 = 14 7 = 11 9 = 12 6 = 11 8 = 11 4 = 11 3 = 11 7 = 18 9 = 16 8 = 11 5 = = 5 2 = 9 11 = 9 18 = 9 8 = 8 7 = 4 11 = 8 11 = 5 3 = 8 6 = 6 14 = 7 11 = Addition och Subtraktion 11-20
13 Repetition Stora Plus, +4, +5 Läxa - 3 min. Namn: = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = Addition och Subtraktion 11-20
14 Repetition Stora Minus, 12, 13 Läxa - 3 min. Namn: 13 4 = 12 7 = 13 6 = 12 9 = 12 5 = 13 8 = 12 4 = 13 9 = 12 3 = 13 5 = 12 8 = 13 7 = = 13 5 = 12 7 = 13 4 = 12 8 = 13 8 = 12 9 = 13 6 = 12 5 = 12 3 = 13 9 = 12 4 = = 6 3 = 9 12 = 9 13 = 5 4 = 9 8 = 4 13 = 6 12 = 7 5 = 7 8 = 5 13 = 9 12 = Addition och Subtraktion 11-20
15 Repetition Stora Plus Läxprov A - 3 min. Namn: = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = Addition och Subtraktion 11-20
16 Repetition Stora Minus Läxprov A - 3 min. Namn: 11 7 = 16 8 = 13 4 = 14 5 = 15 7 = 12 8 = 14 6 = 16 9 = 12 5 = 13 6 = 15 9 = 11 8 = = 11 4 = 18 9 = 16 7 = 14 8 = 17 9 = 12 6 = 11 9 = 13 5 = 12 9 = 13 8 = 15 8 = = 6 8 = 4 4 = 9 12 = 5 12 = 9 8 = 3 9 = 6 14 = 7 13 = 6 5 = 9 9 = 8 11 = Addition och Subtraktion 11-20
17 Winnetkakort - Addition och Subtraktion tabell = = - 0 = 15-1 = = = - 2 = 13-3 = = = - 4 = 11-5 = = = - 6 = 9-7 = = = - 8 = 7-9 = Addition och Subtraktion 11-20
18 - Addition och Subtraktion tabell = = = = = = = = = = = = = = = = = = = = Addition och Subtraktion 11-20
19 Winnetkakort - Addition och Subtraktion tabell = = - 10 = 5-11 = = = - 12 = 3-13 = = = - 14 = 1-15 = Addition och Subtraktion 11-20
20 - Addition och Subtraktion tabell = = = = = = = = = = = = Addition och Subtraktion 11-20
Räkneflyt 1. Addition och Subtraktion. Färdighetsträning i matte. Talområde 1-10
Räkneflyt 1 Addition och Subtraktion Talområde 1-10 Färdighetsträning i matte Gunnel Wendick Inga-Lis Klackenmo Wendick-modellens träningsmaterial Wendick-modellen består av en serie strukturerade kartläggnings-
Läs merRäkneflyt. Addition och Subtraktion. Färdighetsträning i matte. Talområde 11-20
Räkneflyt Addition och Subtraktion område 11-20 Färdighetsträning i matte Gunnel Wendick Inga-Lis Klackenmo Innehållsförteckning Introduktion 2-3 Räkneflyt är kopplat till Lgr11 och Diamant 7 Förståelse
Läs merRäkneflyt 3. Multiplikation och Division. Färdighetsträning i matte. Tabeller 1-10
Räkneflyt 3 Multiplikation och Division Tabeller 1-10 Färdighetsträning i matte Gunnel Wendick Inga-Lis Klackenmo Wendick-modellens träningsmaterial Wendick-modellen består av en serie strukturerade kartläggnings-
Läs merRäkneTest 3. Multiplikation/Division med bråkstreck
RäkneTest 3 Multiplikation/Division 1-10 med bråkstreck Gunnel Wendick Inga-Lis Klackenmo Wendick-modellens material Wendick-modellen består av en serie med strukturerade test- och träningsmaterial som
Läs merRäkneTest 1. Addition och Subtraktion. Talområde 1-10
RäkneTest 1 Addition och Subtraktion Talområde 1-10 Gunnel Wendick Inga-Lis Klackenmo Wendick-modellens material Wendick-modellen består av en serie strukturerade kartläggnings- och träningsmaterial som
Läs merRäkneflyt. Multiplikation och Division. Färdighetsträning i matte. Tabeller 1-10
Räkneflyt Multiplikation och Division Tabeller 1-10 Färdighetsträning i matte Gunnel Wendick Inga-Lis Klackenmo Innehållsförteckning Introduktion 2-3 Räkneflyt är kopplat till Lgr11 och Diamant 6 Förståelse
Läs merKlockan. Analog. Systematisk genomgång av klockslag och tidsuppfattning
Klockan Analog Systematisk genomgång av klockslag och tidsuppfattning Gunnel Wendick Inga-Lis Klackenmo Om Wendick-modellens material Wendick-modellen består av en serie med strukturerade träningsmaterial
Läs merTaluppfattning 0-100
Taluppfattning 0-100 Med tiotalsövergångar Systematisk genomgång av talområden Gunnel Wendick Inga-Lis Klackenmo Om Wendick-modellens material Wendick-modellen består av en serie med strukturerade kartläggnings-
Läs merTaluppfattning Systematisk genomgång tal för tal
Taluppfattning 6-10 Systematisk genomgång tal för tal Gunnel Wendick Inga-Lis Klackenmo Wendick-modellens material Wendick-modellen består av en serie strukturerade kartläggnings- och träningsmaterial
Läs merTaluppfattning 0-5. Systematisk genomgång tal för tal Wendick-modellen Taluppfattning 0-5 version 1.5 PROVSIDA
Taluppfattning 0-5 Systematisk genomgång tal för tal Gunnel Wendick Inga-Lis Klackenmo 2016 Wendick-modellen Taluppfattning 0-5 version 1.5 Wendick-modellens material Wendick-modellen består av en serie
Läs merKlockan Med analog tid Systematisk genomgång av klockslag och tidsuppfattning Gunnel Wendick
Klockan Med analog tid Systematisk genomgång av klockslag och tidsuppfattning Gunnel Wendick Om Wendick-modellens material Wendick-modellen består av en serie med strukturerade träningsmaterial som säkrar
Läs merObs! Extraversion med fler bilder. Taluppfattning. Talområde Systematisk genomgång av talområden
Obs! Extraversion med fler bilder Taluppfattning Talområde 0-100 Systematisk genomgång av talområden Gunnel Wendick Inga-Lis Klackenmo Wendick-modellens material Wendick-modellen består av en serie med
Läs merTaluppfattning Utan tiotalsövergångar. Systematisk genomgång av talområden
Taluppfattning 0-100 Utan tiotalsövergångar Systematisk genomgång av talområden Gunnel Wendick Inga-Lis Klackenmo Wendick-modellens material Wendick-modellen består av en serie strukturerade kartläggnings-
Läs merTaluppfattning. Talområde Systematisk genomgång tal för tal
Taluppfattning Talområde 10-20 Systematisk genomgång tal för tal Gunnel Wendick Inga-Lis Klackenmo Wendick-modellens material Wendick-modellen består av en serie med strukturerade kartläggnings- och träningsmaterial
Läs merTaluppfattning Systematisk genomgång tal för tal
Taluppfattning 10-20 Systematisk genomgång tal för tal Gunnel Wendick Inga-Lis Klackenmo Wendick-modellens material Wendick-modellen består av en serie strukturerade kartläggnings- och träningsmaterial
Läs merRäkneTest 2. Addition och Subtraktion. Talområde 11-20. 2015 Wendick-modellen RäkneTest 2 Addition och subtraktion 11-20, version 1.
RäkneTest 2 Addition och Subtraktion Talområde 11-20 Gunnel Wendick Inga-Lis Klackenmo 1 Wendick-modellens material Wendick-modellen består av en serie med strukturerade test- och träningsmaterial som
Läs merWendick-modellens signum
Wendick-modellen Wendick-modellen Wendick-modellens signum Strukturerade material (wendick.se) Ren layout Tydliga mönster Små utvecklingssteg Tydlig och långsam progression Betonar vikten av baskunskaper/färdigheter
Läs merTaluppfattning. Talområde 10-20. Systematisk genomgång tal för tal
Taluppfattning Talområde 10-20 Systematisk genomgång tal för tal Gunnel Wendick Inga-Lis Klackenmo Wendick-modellens träningsmaterial Wendick-modellen består av en serie med strukturerade träningsmaterial
Läs merAddition, subtraktion, summa, differens, algebra, omgruppering, ental, tiotal, multiplikation, division, rimlighet, uppskatta
LPP Matematik räknesätten År 2 Beskrivning av arbetet Addition och subtraktion 0 200 - med utelämnat tal - algebra - med omgruppering och tiotalsövergång Addition och subtraktion med hela 100-tal Se likheter
Läs merEnhet / skola: Lindens skola i Lanna Åk: 3
Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 3 Avsnitt / arbetsområde: Undersöka med Hedvig Ämnen som ingår: Svenska/svenska som andraspråk, matematik, bild, So,
Läs merOm LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Läs merOm LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Läs merTaluppfattning. Talområde 0-5. Systematisk genomgång tal för tal. 2015 Wendick-modellen Taluppfattning 0-5 version 1.
Taluppfattning Talområde 0-5 Systematisk genomgång tal för tal Gunnel Wendick Inga-Lis Klackenmo 19 Wendick-modellens träningsmaterial Wendick-modellen består av en serie med strukturerade träningsmaterial
Läs merOm LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Läs merOm LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Läs merLgr 11 matriser i Favorit matematik 4 6
Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor
Läs merSUBTRAKTION ISBN
Till läraren SUBTRAKTION ISBN 978-91-7762-695-4 För att kunna lösa vardagliga matematiska problem måste eleverna bland annat ha väl inövade färdigheter i olika räknesätt. Repetitioner och individuella
Läs merEnhet / skola: Lindens skola i Lanna Åk: 1
Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 1 Avsnitt / arbetsområde: Ämnen som ingår: Tema: Undersöka med Hedvig Svenska/svenska som andraspråk, matematik, bild,
Läs merPP i matematik år 2. Taluppfattning och tals användning.
PP i matematik år 2. Taluppfattning och tals användning. Ord och begrepp siffra, tal tallinje, talrad, talsorter- ental, 10-tal, 100-tal, 1000-tal, addition, addera, term, summa, subtraktion, subtrahera,
Läs merkan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt
Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda
Läs merOm Lgr 11 och Favorit matematik 4 6
Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med
Läs merStudenter i lärarprogrammet GF(11GF20) 46 p G: 28 p VG: 38 p
11GF20 MaI Provmoment: Ladokkod: Tentamen ges för: Matematik 0,5 hp Studenter i lärarprogrammet GF(11GF20) 15 högskolepoäng TentamensKod: Tentamensdatum: 18-05-22 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel
Läs merArbetsområde: Från pinnar till tal
Arbetsområde: Från pinnar till tal Huvudsakligt ämne: Matematik, åk 1-3 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas:
Läs merPedagogisk planering aritmetik (räkning)
Pedagogisk planering aritmetik (räkning) Vi kommer att arbeta med de fyra räknesätten i matematik. Syfte (ur Skolverkets kursplan) Under det här arbetsområdet kommer vi att arbeta med att utveckla följande
Läs merProvmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1
Matematik med didaktisk inriktning för grundlärare i förskoleklass och grundskolans a rskurs 1-3, III, VT18 7,5 högskolepoäng Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1 Ladokkod:
Läs merPedagogisk planering i matematik; Tal i bråkform, decimalform och procentform. Ur Lgr 11 Kursplan i matematik.
Pedagogisk planering i matematik; Tal i bråkform, decimalform och procentform. Ur Lgr 11 Kursplan i matematik. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl
Läs merStrukturerad intensivundervisning
Susanne Lantz & Helena Roos Strukturerad intensivundervisning i aritmetik I en undervisning som är inkluderande betraktas olikheter som tillgångar och alla elever ges möjligheter att vara aktiva. Här beskriver
Läs mer8D Ma:bråk och procent VT 2018
8D Ma:bråk och procent VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att: med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp
Läs mer8C Ma: Bråk och Procent
8C Ma: Bråk och Procent Syftet med undervisningen är att du ska utveckla din förmåga att: med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och
Läs merESN lokala kursplan Lgr11 Ämne: Matematik
ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband
Läs merLokal studieplan matematik åk 1-3
Lokal studieplan matematik åk 1-3 Kunskaps område Taluppfat tning och tals användni ng Centralt Innehåll Kunskapskrav Moment Åk1 Moment Åk2 Moment Åk3 Naturliga tal och deras egenskaper samt hur talen
Läs mer7G,H och D matematik planering Syftet med undervisningen är att du ska utveckla din förmåga att:
Åsö grundskola VT2018 7G,H och D matematik planering Syftet undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder,
Läs merLokal pedagogisk planering
Lokal pedagogisk planering RO/Skola: Rebbelberga skola Arbetsområde: Taluppfattning Ämne: Matematik Termin/År: ht 2013 Årskurs: 1 Ämnets syfte enligt grundskolans kursplan: Genom undervisningen i ämnet
Läs merEnhet / skola: Lindens skola i Lanna Åk: 3
Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 3 Avsnitt / arbetsområde: Ämnen som ingår: Tema: Undersöka med Hedvig Svenska/svenska som andraspråk, matematik, bild,
Läs merCentralt innehåll som vi arbetar med inom detta område:
BRÅK & PROCENT PEDAGOGISK PLANERING/KUNSKAPSKRAV MATEMATIK Ö7 HT 2012 Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att ü formulera och lösa problem med hjälp
Läs merViktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. Skriv inte på bladens baksidor. Helst en uppgift per blad.
Ma F-3 I Provmoment: Ladokkod: Tentamen ges för: Matematik 5 hp Studenter i lärarprogrammet Ma F-3 I (11F322) 15 högskolepoäng TentamensKod: Tentamensdatum: 15-04-29 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel
Läs mer9D Ma VT Syftet med undervisningen är att du ska utveckla din förmåga att:
9D Ma VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska
Läs merMATEMATIK 5.5 MATEMATIK
5.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Läs merMATEMATIK 3.5 MATEMATIK
3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Läs merStatistik, sannolikhet, algebra och funktioner, 3 hp. Studenter i lärarprogrammet F-3 III, 12F380 ht17 Varberg
Grundläggande matematik II 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Statistik, sannolikhet, algebra och funktioner, 3 hp Studenter i lärarprogrammet F-3 III, 12F380 ht17 Varberg TentamensKod:
Läs merOm Favorit matematik för åk 4-6 och Lgr 11
Om Favorit matematik för åk 4-6 och Lgr 11 Tydlig och medveten matematikundervisning Mera 4A Mera Favmoatremiattik 4A Favmoatremiattik En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning
Läs mer48 p G: 29 p VG: 38 p
11F322 MaI Provmoment: Matematik 5 hp Ladokkod: Tentamen ges för: Studenter i lärarprogrammet F-3 15 högskolepoäng TentamensKod: Tentamensdatum: 16-05-31 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel Totalt
Läs merARBETSPLAN MATEMATIK
ARBETSPLAN MATEMATIK Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt värdera
Läs merFöra och följa matematiska resonemang, Berätta för andra hur du tänker och lyssna på andras matematiska tankegångar.
Sparsörskolan Lokal pedagogisk planering Klass: 6A Ansvarig lärare: Fanny Olausson och Linda Wahlberg Ämne/område: Ja mfo relse, uppskattning och ma tning av vikt och volym samt avrundning och o verslagsra
Läs merMa7-Åsa: Procent och bråk
Ma7-Åsa: Procent och bråk Det fjärde arbetsområdet handlar om procent och bråk. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt
Läs merKursplanen i matematik 2011 - grundskolan
Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust
Läs merKunskapsprofil Resultat på ämnesprovet
Kunskapsprofil Resultat på ämnesprovet Här fylls i om eleven nått kravnivån på delproven. N = nått kravnivån, EN = ej nått kravnivån. Elevens namn: Förmågor som prövas Kunskapskrav Uppnått kravnivån (N
Läs merLadokkod: TentamensKod: Tentamensdatum: Tid: Hjälpmedel: Inga hjälpmedel
11GF20 MaI Provmoment: Ladokkod: Tentamen ges för: Matematik 0,5 hp Studenter i lärarprogrammet GF(11GF20) 15 högskolepoäng TentamensKod: Tentamensdatum: 16-05-13 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel
Läs merCentralt innehåll. I årskurs 1.3
3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.
Läs merGrundläggande matematik fo r grundlärare med inriktning mot arbete i grundskolans a rskurs 4-6, 15 hp VT ho gskolepoäng
Grundläggande matematik fo r grundlärare med inriktning mot arbete i grundskolans a rskurs 4-6, 15 hp VT17 Provmoment: Tentamen Matematik, 4 hp, tillfälle 1 Ladokkod: TE01 Tentamen ges fo r: Studenter
Läs merLadokkod: Studenter i lärarprogrammet GF 11GF20 vt17 tillfälle 1 och vt16 tillfälle 4
11GF20 MaI Provmoment: Ladokkod: Tentamen ges för: Matematik 0,5 hp 15 högskolepoäng Studenter i lärarprogrammet GF 11GF20 vt17 tillfälle 1 och vt16 tillfälle 4 TentamensKod: Tentamensdatum: 17-05-12 Tid:
Läs merKursplan Grundläggande matematik
2012-12-06 Kursplan Grundläggande matematik Grundläggande matematik innehåller tre delkurser, sammanlagt 600 poäng: 1. Delkurs 1 (200 poäng) GRNMATu, motsvarande grundskolan upp till årskurs 6 2. Delkurs
Läs mer8G Ma: Bråk och Procent/Samband
8G Ma: Bråk och Procent/Samband Syftet undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera
Läs merBetyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik
Betyg i årskurs 6 Betyg i årskurs 6, respektive årskurs 7 för specialskolan, träder i kraft hösten 2012. Under läsåret 2011/2012 ska kunskapskraven för betyget E i slutet av årskurs 6 respektive årskurs
Läs merGunnar Hyltegren. Ämnet matematik 2011 i grundskolan
Ämnet matematik 2011 i grundskolan Förmågor som skall utvecklas i matematik 2011 - gr Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga
Läs merMULTIPLIKATION ISBN
Till läraren MULTIPLIKATION ISBN 978-91-7762-696-1 För att kunna lösa vardagliga matematiska problem måste eleverna bland annat ha väl inövade färdigheter i olika räknesätt. Repetitioner och individuella
Läs mer8G Ma: Bråk och Procent/Samband
8G Ma: Bråk och Procent/Samband Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, - använda
Läs merOm Lgr 11 och Favorit matematik 4 6
Om Lgr och Favorit matematik 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med undervisningen
Läs merRöda tråden. Skyttorps skola, Vattholmaskolan, Pluggparadiset, Storvretaskolan och Ärentunaskolan Reviderad:
Matematik Åk 1 Åk 2 Åk 3 Taluppfattning och tals användning. Naturliga tal och deras egenskaper samt hur talen kan delas upp och hur det kan användas för att ange antal och ordning. Kunna läsa och skriva
Läs merDIVISION ISBN Till läraren
Till läraren DIVISION ISBN 978-91-776-697-8 För att kunna lösa vardagliga matematiska problem måste eleverna bland annat ha väl i növade färdigheter i olika räknesätt. Repetitioner och individuella diagnoser
Läs mer2015-03-11. Kunskapskrav. Materialet består av flera olika komponenter.
Bedömning för lärande i matematik Dagens innehåll Biennette i Malmö 15 mars 2015 Katarina Kjellström Olika bedömningsstöd i matematik Vad är syftet med bedömningsstödet för åk 1-9 Vilka har arbeta med
Läs merDet nationella provet i årskurs 3 genomfördes första gången våren 2009
Anette Skytt Hur gick det 2010? Ämnesprov i matematik för årskurs 3 Ämnesprovet i matematik för årskurs 3 har nu genomförts under tre år. Här redovisas några av de resultat som framkommit liksom några
Läs merBedömning för lärande i matematik
Bedömning för lärande i matematik Vilka har arbeta med materialet Varför ser det ut som det gör När och hur kan du som lärare använda materialet Katarina Kjellström PRIM-gruppen Vilka har deltagit i arbetet
Läs merHjälpmedel: Miniräknare, skrivmateriel (ex. linjal, gradskiva, passare) och Lgr 11
Matematik och matematikdidaktik för 7,5 högskolepoäng grundlärare med inriktning mot arbete i förskoleklass och grundskolans årskurs 1-3, 7.5 hp VT17 Provmoment: Tentamen Matematik och matematikdidaktik,
Läs merDIAMANT. NaTionella DIAgnoser i Matematik. Ett diagnosmaterial i matematik för skolåren årskurs F- 9. Anpassat till Lgr 11. Löwing januari 2013
DIAMANT NaTionella DIAgnoser i Matematik Ett diagnosmaterial i matematik för skolåren årskurs F- 9 Anpassat till Lgr 11 Diamantmaterialets uppbyggnad 6 Områden 22 Delområden 127 Diagnoser Till varje Område
Läs merLokal pedagogisk planering för årskurs 7 i ämnet Matematik
Annerstaskolan Lokal pedagogisk planering för årskurs 7 i ämnet Matematik Centralt innehåll Lärområde Tid Delområde Undervisning/ arbetssätt Taluppfattning och tals Tal Vecka Förstå hur vårt Genomgång
Läs merTESTVERSION. Uppbyggnaden av utvecklingschemat Diamantdiagnoserna omfattar sex områden, de sex facetterna i diamanten. Dessa är
Utvecklingchema Enligt Grundskoleförordningen skall lärare minst en gång per termin informera eleven och elevens vårdnadshavare om elevens skolgång. Vid dessa utvecklingssamtal skall läraren skriftligt
Läs mer22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod:
SMID Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 3hp Studenter i inriktningen GSME 22,5 högskolepoäng Tentamensdatum: 12-08-30 Tid: 09.00-13.00 Hjälpmedel: Inga Totalt antal poäng på
Läs merOm Lgr 11 och Favorit matematik 4 6
Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med
Läs merBo skola 1 Matematikmål år F-3 Skriftligt omdöme/kunskapsinformation
Bo skola Matematikmål år - Namn: Strävansmål: Vi strävar efter att varje elev ska Utveckla goda baskunskaper i de fyra räknesätten Utvecklar en god förståelse för matematik och matematiska begrepp att
Läs merSpråkljud Träning. Uttalsträning med bilder. Gunnel Wendick
Språkljud Träning Uttalsträning med bilder Gunnel Wendick Wendick-modellens material Wendick-modellen består av en serie strukturerade kartläggnings- och träningsmaterial som säkrar viktiga basfärdigheter.
Läs merDel ur Lgr 11: kursplan i matematik i grundskolan
Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet
Läs merMålkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll.
ÖREBRO MATEMATIK, ÅR 3 1(5) Eleven kan tolka elevnära information med matematiskt innehåll Eleven kan uttrycka sig muntligt, skriftligt och i handling på ett begripligt sätt med hjälp av vardagligt språk,
Läs merAlgebraskogen. Tema: Taluppfattning och tals användning, algebra och problemlösning
Hagabackens rektorsområde Ramshyttans rektorsområde Algebraskogen. Tema: Taluppfattning och tals användning, algebra och problemlösning Planering för perioden: v. 34-51 Ämne: Matematik År: 1 Lärare: Jessica
Läs merKURSBESKRIVNING - MATEMATIK
KURSBESKRIVNING - MATEMATIK ARBETSOMRÅDE TAL OCH DECIMALTAL ÅK 6 (HT 2016) Daniel Spångberg Varför finns det tal? Finns det olika sorters tal? Och har det någon betydelse var de olika siffrorna i ett tal
Läs merMa Åk7-Conor: Aritmetik och bråkbegreppet
Under veckorna 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Ma Åk7-Conor: Aritmetik och bråkbegreppet Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera
Läs merDIAMANT. NaTionella DIAgnoser i MAtematik. En diagnosbank i matematik för skolåren före årskurs 6.
DIAMANT NaTionella DIAgnoser i MAtematik En diagnosbank i matematik för skolåren före årskurs 6 Matematikdelegationens betänkande Det är vår övertygelse att alla barn och ungdomar som kan klara en normal
Läs merCentralt innehåll. Problemlösning. Taluppfattning och tals användning. Tid och pengar. Sannolikhet och statistik. Geometri.
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Läs merFörslag den 25 september Matematik
Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Läs merLokal kursplan i matematik för Stehags rektorsområde
Lokal kursplan i matematik för Stehags rektorsområde MÅL Att eleverna ska få möjligheter att tillgodogöra sig de matematiska kunskaper som krävs för att uppnå kursplanens mål. Att eleverna ges en varierande
Läs merMatematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer
Matematik Steg: Bas ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i talområdet 0-10 bråk- och decimalform ordningstal upp till 5 ha en grundläggande rumsuppfattning och kunna
Läs mer15 högskolepoäng. Grundläggande matematik fo r la rare med inriktning mot arbete i fo rskoleklass och grund-skolans a rskurs 1-3, 15 hp VT17
Grundläggande matematik fo r la rare med inriktning mot arbete i fo rskoleklass och grund-skolans a rskurs 1-3, 15 hp VT17 Provmoment: Tentamen Matematik, 5 hp, tillfälle 1 Ladokkod: TE01 Tentamen ges
Läs merMålet med undervisningen är att eleverna ges förutsättningar att:
Matematik Målet med undervisningen är att eleverna ges förutsättningar att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska
Läs merKURSBESKRIVNING - MATEMATIK
KURSBESKRIVNING - MATEMATIK ARBETSOMRÅDE TAL OCH DECIMALTAL ÅK 6 (HT 2016) Jeff Linder, Daniel Spångberg, Emil Ohlander Varför finns det tal? Finns det olika sorters tal? Och har det någon betydelse var
Läs mer8B Ma: Procent och bråk
8B Ma: Procent och bråk Det fjärde arbetsområdet handlar om procent och bråk. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt
Läs merTALSYSTEMET. Syfte Lgr 11
TALSYSTEMET Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att formulera och lo sa problem med hja lp av matematik samt va rdera valda strategier och metoder,
Läs merKURSBESKRIVNING - MATEMATIK
KURSBESKRIVNING - MATEMATIK ARBETSOMRÅDE: TAL 9A, 9C LÄRARE: Jeff Linder Att använda och räkna med olika typer av tal har du användning av i matematikens alla områden och även i vardagen. Därför är detta
Läs merMatematik. Syfte. reflektera över rimlighet i situationer med matematisk anknytning, och använda ämnesspecifika ord, begrepp och symboler.
Matematik Kurskod: SGRMAT7 Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska en som sådan.
Läs merBEDÖMNINGSSTÖD. till TUMMEN UPP! matte i årskurs 3
BEDÖMNINGSSTÖD till TUMMEN UPP! matte i årskurs 3 Det här är ett BEDÖMNINGSSTÖD som hjälper dig att göra en säkrare bedömning av elevernas kunskaper i årskurs 3. Av tradition har man i den svenska skolan
Läs merLokal matematikplan för Ekenässkolan läsåret
STENUNGSUNDS KOMMUN Lokal matematikplan för Ekenässkolan läsåret 2016-2017 Ekenässkolans plan för förebyggande, upptäckande och åtgärdande insatser gällande matematikutveckling i skolår F-6 1 Lokal matematikplan
Läs mer