Teknisk Beräkningsvetenskap I Tema 2: Nätverk och linjära system
|
|
- Siv Elsa Lindström
- för 8 år sedan
- Visningar:
Transkript
1 Teknisk Beräkningsvetenskap I Tema : Nätverk och linjära system Eddie Wadbro November, 04 Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 ( : 48) Innehåll Algoritmer: Grundalgoritmen för Gausselemination och bakåtsubstitution Grundalgoritmen är numeriskt instabil! Stabilisering via radpivotering Beräkningskomplexitet, exekveringstid LU-faktorisering (en variant av Gausselimination) Noggrannhet Normer för vektorer och er Konditionstal (störningskänslighet) Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 ( : 48) Linjära system Matematiska modeller ger ofta upphov till mycket stora linjära ekvationssystem (exempelvis, nätverksmodellen i detta tema) som behöver lösas med hjälp av datorer I många simuleringar domineras exekveringstiden av tiden för lösning av linjära ekvationssystem! Kategori Linjär Icke-linjär Algebra Analys ( Beräkningsbart) kostsamt om högdimensionellt Lösningen till ett matematiskt problem är beräkningsbar om den kan konstrueras med en ändlig sekvens av operationerna +,-,*,/ och exakt symbolisk manipulation Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 ( : 48)
2 Mål: Att lösa det linjära ekvationssystemet Ax = b Jämfört med tidigare kurs: Linjär algebra (grundkurs i matematik) Allmän förståelse av vektorer, er, linjära ekvationssystem, och deras egenskaper Lära sig hur små linjära ekvationssystem löses för hand Denna kurs Förstå algoritmer anpassade för numerisk lösning av linjära ekvationssystem och deras egenskaper Lära sig lösa stora linjära ekvationsssytem med hjälp av datorer Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 (4 : 48) Linjära ekvationssystem Repetition från linjär algebrakursen A: kvadratisk n n Det linjära systemet Ax = b har en unik lösning för varje kolonnvektor b om en A är icke-singulär Matrisen är icke-singular om och endast om något av följande villkor håller Raderna är linjärt oberoende Kolonnerna är linjärt oberoende Ax = 0 x = 0 Determinanten av A är nollskild (det(a) 0) A är inverterbar Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 (5 : 48) Algoritmer Matlabs backslash operator (\ eller mldivide) löser systemet Ax = b >> x = A\b där A är en kvadratisk och b samt x är kolonnvektorer Grundalgoritmen: Gausseliminationsbaserad LU-faktorisering (dagens huvudämne!) Matlabs \ är en intelligent operator: den väljer vilken metod som ska användas beroende på egenskaper hos en! (Vilket vi kommer att testa i datorlaborationen!) Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 (6 : 48)
3 Grundalgoritmen för Gausselimination Grundalgoritmen för Gausselimination består av två steg Faktorisering: Elementära radoperationer omvandlar systemet Ax = b till ett system på formen Ux = d, där U är en övertriangular Bakåtsubstitution: Lös systemet Ux = d Naiv version av faktoriseringssteget (samma algoritm som när man löser för hand): Input: A, b, n (storleken på systemet). Skapa en  = [A b]. För kolonn k =,,..., n Släck ut (sätt till 0) elementen i raderna i, där i > k i kolonn k genom att lägga en multipel av rad k till rad i = k +, k +,..., n Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 (7 : 48) Kod för den naiva faktoriseringsalgoritmen Input: n n A och n vektor b n = length(b); Aug = [A b]; for k = : n- for i = k+:n Lik = Aug(i,k)/Aug(k,k); for j = k:n+ Aug(i,j) = Aug(i,j) - Lik*Aug(k,j); end end end Observera att de första n kolonnerna av Aug skrivs över med en U och att kolonn n + i Aug (vilken från början innehöll högerledet b) skrivs över med lösningsvektorn d. Strategin att skriva över information sparar minne, vilket är viktigt när en är stor! Den innersta loopen kan i Matlab skrivas som en instruktion Aug(i,k:n+) = Aug(i,k:n+) - Lik*Aug(k,k:n+); Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 (8 : 48) Kod för bakåtsubstitution För i = n, n,..., : Input: U, d, och n U ii x i + n j=i+ U ijx j = d j x(n) = d(n)/u(n,n) for i = n-:-: x(i) = ( d(i) - U(i,i+:n)*x(i+:n) )/(U(i,i); end Observera att U(i,i+:n)*x(i+:n) är en inre produkt (skalärprodukt) mellan radvektorn U(i,i+:n) och kolonnvektorn x(i+:n) Vi behöver inte skapa ytterligare en för att spara U; faktoriseringen har sparat U i Aug(:n,:n) Vanligtvis skrivs Aug(:n,n+) över med x; det behövs således inte någon ytterligare variabel för svaret x Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 (9 : 48)
4 Den navia faktoriseringsalgoritmen är numeriskt instabil! Ex: ( A b ) = med exakt lösning x = Låt L ik vara faktorn som vi vill använder för att nolla ut a ik. För detta exempel, antag att vi avrundar till decimala siffror (istället för att avrunda till 5 binära siffror!) fl(l ) = fl(/) = 0. fl(l ) = fl(4/) = fl(l ) = fl(./0.) = Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 (0 : 48) Den navia faktoriseringsalgoritmen är numeriskt instabil! fl(x) = vilket är långt från den korrekta lösningen x = (,, ) T Numeriskt instabil algoritm: algoritmen förstärker successivt avrundningsfelen, vilket ger upphov till ett stort fel i den slutliga lösningen Betrakta: Aug(i,k:n+) = Aug(i,k:n+) - Lik*Aug(k,k:n+) Problemet: närhelst L ik >, så kommer multiplikationen att förstärka de (avrundnings)fel som finns i Aug(k,k:n+)! (Avrundnings)felen blir successivt större och större Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 ( : 48) Stabilisering via radpivotering Botemedel: radpivotering Kom ihåg: Lik = Aug(i,k)/Aug(k,k) För varje k, finn en rad m så att Aug(m,k) Aug(i,k), i = k, k+,..., n I ord: för kolonn k, hitta det element på eller under diagonalen som har störst absolutbelopp Byt innehållet i rad m och k Då är Aug(k,k) Aug(i,k) för i k, så L ik, vilket förhindrar felförstärkning vid multiplikationen med L ik Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 ( : 48)
5 Radpivotering Ex: ( A b ) = = Byt rad och fl(l ) = fl(/4) = 0.5 fl(l ) = fl(/4) = Byt rad och Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 ( : 48) Radpivotering fl(l ) = fl( 0.5/.5) = fl(x) = Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 (4 : 48) Exekveringstid Det kan ta mycket lång tid att utföra Gausselimination för stora er En central fråga: hur beror antalet flyttalsoperationer på ens storlek? Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 (5 : 48)
6 Antalet flyttalsoperationer Betrakta den andra for-loopen i faktoriseringssteget: for i = k+:n Lik = Aug(i,k)/Aug(k,k) for j = k:n+ Aug(i,j) = Aug(i,j) - Lik*Aug(k,j) utförs n k gånger op utförs n k + gånger op Antal flyttalsoperationer (flops): [ + (n k + ) ] (n k) (n k) (plus termer som är linjära i k och n) Loopen ovan utförs för k =,..., n. Summera över k ger totalt antal flyttalsoperationer: n (n k) = n + O(n ) (Lemma 8.. i kursboken) k= Slutsats: faktoriseringssteget i Gausseliminationen av ett n-gånger-n system, kräver n + O(n ) flops En liknande analys: Bakåtsubstitutionen kräver n flops Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 (6 : 48) Exekveringstid Analysen ovan säger att komplexiteten för Gausselimiationen är O(n ) (faktorisering) och O(n ) (för bakåtsubstitutionen) Vad säger denna analys om exekveringstiden? Antag att det tar t f = 0 0 s/flop faktorisering bakåtsubstitution n n t f n t f s 0 4 s s. years 00 s Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 (7 : 48) Exekveringstid Hur stort system kan lösas på en timme om datorn utför 0 Gflop/s? (Gflop = 0 9 flops) Svar: n 0 0 = 600 n Hur stort system kan lösas på en minut? Svar: n 0 0 = 60 n För större system kan minnessaccesser utgöra en stor del av tiden och därmed orsaka signifikanta dröjsmål! Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 (8 : 48)
7 Behovet av effektiva algoritmer n komplexiteten begränsar nyttan med Guasselimination; det är praktiskt ogörbart att lösa mycket stora ssystem Alternativ: Utnyttja, om möjligt, den struktur en har Det finns versioner av Gausselimination för bandade eller mycket glesa er En helt annan typ av algoritmer, iterativa metoder, är nödvändiga för att lösa system med mycket stora (glesa) er Denna typ av er erhålls ofta vid diskretisering av partiella differentialekvationer Matrisstorlekar i storleksordningen n = 0 8 kan förekomma för dessa problem! Sådana problem kräver stora parallelldatorer (t.ex. Abisko i Umeå) och skräddarsydda algoritmer Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 (9 : 48) LU-faktorsering Vanligt problem: vi vill lösa en sekvens av linjära ekvationer som har samma system men olika högerled Ax (k) = b (k), k =,..., m Ide: faktorisera A enbart en gång: Spara U Spara faktorerna L ik i en undertriangulär L (som har or på diagonalen) Spara information om de pivoteringar (radbyten) som utförts i en P Ovanstående algoritm kallas LU-faktorisering Kan visa att LU = PA (Sats 8.6. i kursboken) Kan också visa att A är icke-singular om och endast om det finns en permutationsmatrix P, en undertriangular L med ettor på diagonalen samt en övertriangular U så att PA = LU Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 (0 : 48) LU-faktorisering Givet A, beräkna L, U, P, så att LU = PA Ax = b PAx = Pb LUx = Pb [faktorisering, O(n ) flops] För varje högerled b (k) : Lös problemet Ld = Pb (k) [framåtsubstitution, O(n ) flops] för att bestämma d Lös problemet Ux (k) = d [bakåtsubstitution, O(n ) flops] för att bestämma lösningen x (k) Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 ( : 48)
8 LU-faktorisering Vad är fördelen med LU faktorisering jämfört med vanlig Gausselimination? Ineffektiv strategi: Lös varje stystem med xi=a\bi A kommer att faktoriseras på nytt för varje högerled bi! Antal flyttalsoperationer: m( n + n ) (vi har m system som alla faktoriseras och bakåtsubstituteras) Effektiv strategi: LU-faktorisera A och lös d = L\b x = U\d Antal flyttalsoperationer: n + mn (A faktoriseras en gång, m framåt- och bakåtsubstitutioner) Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 ( : 48) LU-faktorisering i Matlab >> A = [ - ; 0 -; 4 -]; >> [L, U, P] = lu(a) L = U = P = Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 ( : 48) Testa om: PA = LU >> P*A ans = >> L*U ans = Lösning med LU-faktorisering >> b = [8; -; -4]; >> d = L\(P*b) d = >> x = U\d x = - Kom ihåg: Backslash operatorn \ är smart ; när erna är över- eller undertriangulära så används algoritmerna för framåt- och bakåtsubstitution istället för algoritmen som löser med full Gausseliminering Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 (4 : 48)
9 LU-faktorisering i Matlab Testa om backslash är smart nog att använda LU faktorisering! >> n = 5000; >> A = rand(n,n); >> b40 = rand(n,40); b= rand(n,); >> tic;x40 = A\b40;toc Elapsed time is seconds. >> tic;x = A\b;toc Elapsed time is seconds. Matrisen b40= [b b... b 40 ] lagrar 40 högerled Matrisen x40= [x x... x 40 ] innehåller lösningarna till de linjära ekvationsssytem för högerleden i b40 40 system med samma system löses nästan lika snabbt som endast system! Detta tyder på att Matlab faktiskt använder LU-faktorisering! Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 (5 : 48) LU-faktorisering: exempel Matematiskt objekt 4 9 Radbyte: 4 9 Datastrukturer Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 (6 : 48) LU-faktorisering: exempel / Matematiskt objekt / 4 9 Datastrukturer Eliminering, kolonn, med faktorerna L = /, L = /: Obs: tecken 4 / / / - / 4 8 Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 (7 : 48)
10 LU-faktorisering: exempel Matematiskt objekt 4 / / 4 8 Radbyte Datastrukturer / - / / 4 8 / -4 - / 4 8 -/ - Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 (8 : 48) LU-faktorisering: exempel Matematiskt objekt 4 / 4 / 4 8 / Datastrukturer -4 - / 4 8 -/ - Eliminering, kolonn, med faktorn L = /4: 4 / 4 8 / /4-4 - / 4 8 -/ /4 - Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 (9 : 48) LU-faktorisering: exempel Matematiskt objekt 4 / 4 8 / /4 Datastrukturer -4 - / 4 8 -/ /4 - Klar! Matrisversioner av datastrukturerna: L = 0 0 / 0 / /4, U = , P = Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 (0 : 48)
11 LU-faktorisering: exempel LU = 0 0 / 0 / /4 PA = = = Så vi har: LU = PA Inget extra lagringsutrymme: L (förutom diagonalelementen) och U lagras på den plats i minnet som tidigare innehöll A Information om pivoteringarna lagras i en heltalsvektor (att lagra P som en full med mest nollor vore slöseri med minne) Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 ( : 48) Noggrannhet Ax = b Exakt lösning x (vanligtvis okänd) Avrundningsfel akkumuleras under Gausseliminationen, vilket ger en beräknad lösning x Hur noggrann är den beräknade lösningen? Naturligt test: undersök om ekvationerna är uppfyllda Residualen ska vara nära nollvektorn! b A x Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 ( : 48) Residual och noggrannhet: exempel A = ( ) ( ) , b = A = >> A = [ ; ]; >> b = A*[;-]; >> xs = single(a)\single(b) xs = ( ) xs beräknad med A och b i enkelprecision >> xd = A\b xd = xd beräknad med A och b lagrade ( som vanligt ) i dubbelprecision Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 ( : 48)
12 Residual och noggrannhet: exempel För enkelprecisions beräkningen: >> res_s = b - A*xs res_s =.0e-07 * >> xs - [;-] ans = >> cond(a) ans =.05e+08 Residualen är liten: exakt upp till avrundningsfel (ungefär ɛ M i enkelprecision) Men felet är stort! Observera att det så kallade konditionstalet är högt! Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 (4 : 48) Konditionstal och residual Slutsats: storleken på residualen är inte ett bra mått på lösningens noggrannhet Varför? Exempelproblemet ovan är illa-konditionerat (känsligt för störningar) Vi behöver ett bättre sätt att uppskatta felet än att mäta residualen! Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 (5 : 48) Väl-konditionerade kontra illa-konditionerade problem Koncepten väl-konditionerat och illa-konditionerat problem kan illustreras grafiskt för system med två okända: x x x x De två linjerna illustrerar vilka x och x värden som uppfyller de två ekvationerna Lösningen till ekvationssystemet ligger på skärningpunkten mellan linjerna När ekvationerna nästan beskriver samma linje så är linjerna nära varandra även långt från skärningspunkten; eller med andra ord, residualen är liten även långt från lösningen Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 (6 : 48)
13 Normer För att mäta fel, måste vi kunna mäta storleken av vektorer och er på ett sätt som generaliserar begreppet absolutbelopp för reella tal Vi kommer att använda oss av normer Normen av en vektor x skrivs som x Det finns både vektornormer och normer Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 (7 : 48) Vektornormer De vanligaste vektornormerna, för en vektor x = (x,..., x n ) T, är -normen, Euklidisk norm: x = x + x + + x n -normen -normen, max-normen Generellt, p-normen x = x + x + + x n x = max( x, x,..., x n ) ) /p x p = ( x p + x p + + x n p Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 (8 : 48) Vektornormer Varför finns det olika normer? Ibland är en norm mer lämplig än andra. Ex: -normen ger det kortaste avståndet mellan två punkter fågelvägen -normen ger det kortaste avståndet mellan två punkter om man måste följa gatorna i ett rutnät! Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 (9 : 48)
14 Matrisnormer Matrisnormer definieras oftast med hjälp av en given vektornorm: Ax A = max x 0 x Ger den maximala förstoringsfaktorn som en orsakar när den appliceras på en vektor Från definitionen oven gäller för varje x 0, vilket även kan skrivas, Ax x max Ax = A () x 0 x Ax A x x Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 (40 : 48) Matrisnormer Enklare formler än själva definitionen kan härledas för -, - och -normen Man kan visa att ( ) A = max A ij j i A = max i j A ij (den största -normen bland ens kolonner) (den största -normen bland ens rader) A = max(λ i (A T A)) (kvadratroten till det största egenvärdet av A T A) i - och -normerna är mycket enklare och snabbare att beräkna än -normen! Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 (4 : 48) Elementvisa normer Det finns normer som inte induceras av vektornormer Dessa normer behandlar vanligtvis en m n som en mn vektor Användande av p-vektornormen ger m A = i=0 j=0 n A i,j p För det speciella valet p =, kallas denna norm för Frobeniusnormen m n A F = A i,j i=0 j=0 /p Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 (4 : 48)
15 Fel och konditionstal Låt A vara en icke-singular och låt b 0 vara ett högerled, samt b vara ett stört (på grund av avrudningsfel, mätfel,... ) högerled Låt x och x vara lösningarna till de linjära ekvationssystemen Ax = b and A x = b Differensen mellan ekvationssystemen ovan är A(x x) = b b Eftersom att A är icke-singular så har vi att x x = A (b b) () Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 (4 : 48) Fel och konditionstal Genom att ta normen på båda sidor av uttryck () och använda egenskap () erhåller vi att x x = A (b b) A b b Division med x ger ( x 0) x x x A x b b () Eftersom b = Ax A x (även detta enligt ()) har vi x A b (4) Genom att substituera uttryck (4) in i uttyck () får vi följande begränsning av det relativa felet i lösningen x x A b b A x b Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 (44 : 48) Fel och konditionstal Vi har således bevisat följande feluppskattning x x x b b κ(a) b där κ(a) = A A är konditionstalet för en A I ord: det relativa felet i x är begränsat av konditionstalet multiplicerat med det relativa felet i högerledet Fel i b kan alltså bli förstärkta med en faktor κ(a) vid lösning av det linjära ekvationssystemet Ax = b Observera att vi inte har gjort några antaganden om hur störningen ser ut eller vilken metod som används för att lösa systemet Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 (45 : 48)
16 Fel och konditionstal Konditionstalet för en beror på valet av norm! För vårt exempel A = ( ) , κ (A) = κ (A) = κ (A) = Det relativa felet i b är i bästa fall begränsat av ɛm, vilket är ungefär 0 6 i dubbel precision (i enkel precision är ɛ M ungefär 0 8 ) Alltså, vid lösning av ekvationssystemet kan vi förlora all noggrannhet i enkel precision (det relativa felet kan vara ); i dubbel precision kan halva noggrannheten försvinna Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 (46 : 48) Konditionstal Matematiskt så är en singulär eller inte. För beräkningsändamål är det värdefullt att prata om nära singulära er Ett högt konditionstal (ett illa-konditionerat problem) antyder att en nästan är singulär Ett högt konditionstal är en egenskap hos det underliggande ekvationssystemet! Konditionstalet och lösningens störningskänslighet beror inte på vilken lösningsalgoritm som används! Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 (47 : 48) Konditionstal Konditionstal fungerar som ett varningstecken Feluppskattningen som innehåller konditionstalet beskriver det västa fallet; det kan hända att felet är mycket mindre än vad feluppskattningen anger För varje inverterbar har vi följande uppskattning av konditionstalet κ(a) = A A A A = I = I bästa fall är konditionstalet, vilket innebär att det relativa felet i högerledet inte förstärks vid lösning av linjära ekvationssystem Eddie Wadbro, Tema : Nätverk och linjära system, November, 04 (48 : 48)
Block 2: Lineära system
Exempel Från labben: Block : Lineära system Del 1 Trampolinens böjning och motsvarande matris (här 6060-matris) Matrisen är ett exempel på - gles matris (huvuddelen av elementen nollor) - bandmatris Från
Ekvationssystem, Matriser och Eliminationsmetoden
Matematiska institutionen Göteborgs universitet och Chalmers tekniska högskola Version 359 Ekvationssystem, Matriser och Eliminationsmetoden - En inledning Ekvationssystem - matrisformulering Vi såg att
Linjära ekvationssystem
Föreläsning 3 Linjära ekvationssystem Gausselimination Vanlig gausselimination för det linjära ekvationssystemet Ax = b utgår från den utökade matrisen [A b] och applicerar elementära radoperationer på
Linjära ekvationssystem
Linjära ekvationssystem Gausselimination Vanlig gausselimination för det linjära ekvationssystemet Ax = b utgår från den utökade matrisen [A b] och applicerar elementära radoperationer på denna för att
Algebra, polynom & andragradsekvationer en pampig rubrik på ett annars relativt obetydligt dokument
Algebra, polynom & andragradsekvationer en pampig rubrik på ett annars relativt obetydligt dokument Distributiva lagen a(b + c) = ab + ac 3(x + 4) = 3 x + 3 4 = 3x + 12 3(2x + 4) = 3 2x + 3 4 = 6x + 12
a n = A2 n + B4 n. { 2 = A + B 6 = 2A + 4B, S(5, 2) = S(4, 1) + 2S(4, 2) = 1 + 2(S(3, 1) + 2S(3, 2)) = 3 + 4(S(2, 1) + 2S(2, 2)) = 7 + 8 = 15.
1 Matematiska Institutionen KTH Lösningar till tentamensskrivning på kursen Diskret Matematik, moment A, för D och F, SF161 och SF160, den juni 008 kl 08.00-1.00. DEL I 1. (p) Lös rekursionsekvationen
Linjära system av differentialekvationer
CTH/GU LABORATION MVE0-0/03 Matematiska vetenskaper Linjära system av differentialekvationer Inledning Vi har i envariabelanalysen sett på allmäna system av differentialekvationer med begynnelsevillkor
Kontrollskrivning i Linjär algebra 2014 10 30, 14 18.
LINKÖPINGS UNIVERSITET Matematiska Institutionen Ulf Janfalk Kurskod: TATA Provkod: KTR Kontrollskrivning i Linjär algebra, 8. Inga hjälpmedel. Ej räknedosa. På uppgift skall endast svar ges. Varje rätt
Tentamen i Linjär algebra (TATA31/TEN1) 2013 08 24, 14 19.
LINKÖPINGS UNIVERSITET Matematiska Institutionen Ulf Janfalk Kurskod: TATA Provkod: TEN Tentamen i Linjär algebra (TATA/TEN 8, 9. Inga hjälpmedel. Ej räknedosa. För godkänt räcker 9 poäng och minst uppgifter
Väga paket och jämföra priser
strävorna 2AC 3AC Väga paket och jämföra priser begrepp rutinuppgifter tal geometri Avsikt och matematikinnehåll Den huvudsakliga avsikten med denna aktivitet är att ge elever möjlighet att utveckla grundläggande
Föreläsning 14: Exempel på randvärdesproblem. LU-faktorisering för att lösa linjära ekvationssystem.
11 april 2005 2D1212 NumProg för T1 VT2005 A Föreläsning 14: Exempel på randvärdesproblem. LU-faktorisering för att lösa linjära ekvationssystem. Kapitel 8 och 5 i Q&S Stationär värmeledning i 1-D Betrakta
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Intro till vektorer, matriser och Gausselimination 8. Den euklidiska normen x = x 1 + x + x n och x 1 + x + ( ) x n = x 1 x x n 9. Vi ska
Kapitel 6. f(x) = sin x. Figur 6.1: Funktionen sin x. 1 Oinas-Kukkonen m.fl. Kurs 6 kapitel 1
Kapitel 6 Gränsvärde 6. Definition av gränsvärde När vi undersöker gränsvärdet av en funktion undersöker vi vad som händer med funktionsvärdet då variabeln, x, går mot ett visst värde. Frågeställningen
Lathund, procent med bråk, åk 8
Lathund, procent med bråk, åk 8 Procent betyder hundradel, men man kan också säga en av hundra. Ni ska kunna omvandla mellan bråkform, decimalform och procentform. Nedan kan ni se några omvandlingar. Bråkform
Block 2: Linjära system
Exempel Frå labbe: Block : Lijära system Del Trampolies böjig och motsvarade matris (här 60*60-matris) Matrise är ett exempel på - gles matris (huvuddele av elemete ollor) - badmatris Frå labbe Beräkigstid
Föreläsning 8: Räkning. Duvhålsprincipen. Kombinatorik
Föreläsning 8: Räkning. Duvhålsprincipen. Kombinatorik Summaregeln Om och B är disjunkta mängder så B = + B, ty innehåller inga upprepningar Produktregeln Om och B är disjunkta mängder så är B = B Exempel:
Linjära system av differentialekvationer
CTH/GU STUDIO 6 MVE6 - /6 Matematiska vetenskaper Inledning Linjära system av differentialekvationer Vi har i studioövning sett på allmäna system av differentialekvationer med begynnelsevillkor u (t) =
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar
Övningshäfte i matematik för. Kemistuderande BL 05
Övningshäfte i matematik för Kemistuderande BL 05 Detta häfte innehåller några grundläggande övningar i de delar av matematiken som man har användning för i de tidiga kemistudierna. Nivån är gymnasiematematik,
2D1250 Tillämpade numeriska metoder II Läsanvisningar och repetitionsfrågor:
1 Axel Ruhe NADA 10 mars 2005 2D1250 Tillämpade numeriska metoder II Läsanvisningar och repetitionsfrågor: Dessa frågor är till hjälp vid inläsning av Linjär Algebra momenten i kursen. Hänvisningar till
SEPARABLA DIFFERENTIALEKVATIONER
SEPARABLA DIFFERENTIALEKVATIONER En differentialekvation (DE) av första ordningen sägs vara separabel om den kan skrivas på formen P ( y) Q( ) () Den allmänna lösningen till () erhålles genom att integrera
1 Navier-Stokes ekvationer
Föreläsning 5. 1 Navier-Stokes ekvationer I förra föreläsningen härledde vi rörelsemängdsekvationen Du j Dt = 1 τ ij + g j. (1) ρ x i Vi konstaterade också att spänningstensorn för en inviskös fluid kan
4-3 Vinklar Namn: Inledning. Vad är en vinkel?
4-3 Vinklar Namn: Inledning I det här kapitlet skall du lära dig allt om vinklar: spetsiga, trubbiga och räta vinklar. Och inte minst hur man mäter vinklar. Att mäta vinklar och sträckor är grundläggande
Konsten att multiplicera (stora) heltal
Konsten att multiplicera (stora) heltal 18 november 2006 Stora heltal Mental bild: Handmultiplikation av tal med hundratals siffor. Datormultiplikation av tal med miljontals siffror. Mina exempel är mycket
SF1625 Envariabelanalys
Modul 2: Derivata Institutionen för matematik KTH 8 september 2015 Derivata Innehåll om derivata (bokens kapitel 2). Definition vad begreppet derivata betyder Tolkning hur man kan tolka derivata Deriveringsregler
konstanterna a och b så att ekvationssystemet x 2y = 1 2x + ay = b 2 a b
Tentamen i Inledande matematik för V och AT, (TMV25), 20-0-26. Till denna uppgift skulle endast lämnas svar, men här ges kortfattade lösningar. a) Bestäm { konstanterna a och b så att ekvationssystemet
Linjära ekvationssystem och egenvärdesproblem
Vetenskapliga beräkningar III 50 Kapitel 5. Linjära ekvationssystem och egenvärdesproblem Några av den linjära algebrans huvuduppgifter är att a) lösa det linjära ekvationssystemet Ax = b, och att b) lösa
Laborativ matematik som bedömningsform. Per Berggren och Maria Lindroth 2016-01-28
Laborativ matematik som bedömningsform Per Berggren och Maria Lindroth 2016-01-28 Kul matematik utan lärobok Vilka förmågor tränas Problemlösning (Förstå frågan i en textuppgift, Använda olika strategier
Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Standardform för randvärdesproblem
Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN8 09-03-30 Hedvig Kjellström hedvig@csc.kth.se! Repetition av FN7 (GNM kap 4, 6.3)! Bandmatrismetoden/Finita differensmetoden!
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar
Träning i bevisföring
KTHs Matematiska Cirkel Träning i bevisföring Andreas Enblom Institutionen för matematik, 2005 Finansierat av Marianne och Marcus Wallenbergs Stiftelse 1 Mängdlära Här kommer fyra tips på hur man visar
Individuellt Mjukvaruutvecklingsprojekt
Individuellt Mjukvaruutvecklingsprojekt RPG-spel med JavaScript Författare Robin Bertram Datum 2013 06 10 1 Abstrakt Den här rapporten är en post mortem -rapport som handlar om utvecklandet av ett RPG-spel
Något om permutationer
105 Något om permutationer Lars Holst KTH, Stockholm 1. Inledning. I många matematiska resonemang måste man räkna antalet fall av olika slag. Den del av matematiken som systematiskt studerar dylikt brukar
Begrepp :: Determinanten
c Mikael Forsberg 2008 1 Begrepp :: Determinanten Rekursiv definition :: Kofaktorutveckling Låt oss börja definiera determinanten för en 1 1 matris A = (a). En sådan matris är naturligtvis bara ett vanligt
10.03.2010. Översikt. Rapport från skolverket. Förändring av matematikprestationerna 1995 2003-2007. Grundtankar bakom Pixel
Översikt Hur är situationen i Sverige och Norge när det gäller matematik-kompetensen? Är det nödvändigt att undervisa på andra sätt än vi gjort tidigare? Förändring av matematikprestationerna 1995 2003-2007
Snabbslumpade uppgifter från flera moment.
Snabbslumpade uppgifter från flera moment. Uppgift nr Ställ upp och dividera utan hjälp av miniräknare talet 48 med 2 Uppgift nr 2 Skriv talet 3 8 00 med hjälp av decimalkomma. Uppgift nr 3 Uppgift nr
Modul 6: Integraler och tillämpningar
Institutionen för Matematik SF65 Envariabelanalys Läsåret 5/6 Modul 6: Integraler och tillämpningar Denna modul omfattar kapitel 6. och 6.5 samt kapitel 7 i kursboken Calculus av Adams och Essex och undervisas
PRÖVNINGSANVISNINGAR
Prövning i Matematik 5 PRÖVNINGSANVISNINGAR Kurskod MATMAT05 Gymnasiepoäng 100 Läromedel Valfri aktuell lärobok för kurs Matematik 5 Skriftligt prov, 4h Teoretiskt prov Bifogas Provet består av två delar.
Sammanfattninga av kursens block inför tentan
FÖRELÄSNING 14 Sammanfattninga av kursens block inför tentan BILD Vi har jobbat med numerisk metoder, datorprogram och tolkning av lösning. Numeriska metoder BILD olika områden: Linjära ekvationssytem,
2 Matrisfaktorisering och lösning till ekvationssystem
TANA21+22/ 5 juli 2016 LAB 2. LINJÄR ALGEBRA 1 Inledning Lösning av ett linjärt ekvationssystem Ax = b förekommer ofta inom tekniska beräkningar. I laborationen studeras Gauss-elimination med eller utan
Exempel på tentamensuppgifter i LMA100, del 1
Exempel på tentamensuppgifter i LMA100, del 1 Diskret matematik 1. Givet är de 7 bokstäverna i ordet APPARAT. Hur många olika ord (= bokstavspermutationer) kan man bilda av dem med (a) 7 bokstäver (b)
Möbiustransformationer.
224 Om Möbiustransformationer Torbjörn Kolsrud KTH En Möbiustransformation är en komplexvärd funktion f av en komplex variabel z på formen f(z) = az + b cz + d. Här är a b c och d komplexa tal. Ofta skriver
Erfarenheter från ett pilotprojekt med barn i åldrarna 1 5 år och deras lärare
Erfarenheter från ett pilotprojekt med barn i åldrarna 1 5 år och deras lärare I boken får vi följa hur barn tillsammans med sina lärare gör spännande matematikupptäckter - i rutinsituationer - i leken
Mätningar på op-förstärkare. Del 3, växelspänningsförstärkning med balanserad ingång.
Mätningar på op-förstärkare. Del 3, växelspänningsförstärkning med balanserad ingång. Denna gång skall vi titta närmare på en förstärkare med balanserad ingång och obalanserad utgång. Normalt använder
2005-01-31. Hävarmen. Peter Kock
2005-01-31 Hävarmen Kurs: WT0010 Peter Kock Handledare: Jan Sandberg Sammanfattning Om man slår upp ordet hävarm i ett lexikon så kan man läsa att hävarm är avståndet mellan kraften och vridningspunkten.
Facit med lösningsförslag kommer att anslås på vår hemsida www.ebersteinska.norrkoping.se. Du kan dessutom få dem via e-post, se nedan.
Detta häfte innehåller uppgifter från fyra olika områden inom matematiken. Meningen är att de ska tjäna som en självtest inför gymnasiet. Klarar du dessa uppgifter så är du väl förberedd inför gymnasiestudier
912 Läsförståelse och matematik behöver man lära sig läsa matematik?
912 Läsförståelse och matematik behöver man lära sig läsa matematik? Med utgångspunkt från min egen forskning kring läsförståelse av matematiska texter kommer jag att diskutera olika aspekter av läsning
DOP-matematik Copyright Tord Persson. Bråktal -3-2 -1 0 1 2 3. Läs av vilka tal på tallinjen, som pilarna pekar på. Uppgift nr 10 -3-2 -1 0 1 2 3
Bråktal Uppgift nr En limpa delas i 4 lika stora delar. Hur stor del av limpan blir varje del? Uppgift nr 2 Hur många tiondelar behövs för att det skall räcka till en hel? Uppgift nr Hur läser man ut bråket
729G04 - Hemuppgift, Diskret matematik
79G04 - Hemuppgift, Diskret matematik 5 oktober 015 Dessa uppgifter är en del av examinationen i kursen 79G04 Programmering och diskret matematik. Uppgifterna ska utföras individuellt och självständigt.
Har du förstått? I De här talen är primtal a) 29,49 och 61 b) 97, 83 och 89 c) 0, 2 och 3.
PASS 5. FAKTORISERING AV POLYNOM 5. Nyttan av faktorisering och faktorisering av heltal Har vi nytta av att kunna faktorisera polynom? Ja det har vi. Bra kunskaper i faktorisering av polynom möjliggör
SANNOLIKHET. Sannolikhet är: Hur stor chans (eller risk) att något inträffar.
SANNOLIKHET Sannolikhet är: Hur stor chans (eller risk) att något inträffar. tomas.persson@edu.uu.se SANNOLIKHET Grundpremisser: Ju fler möjliga händelser, desto mindre sannolikhet att en viss händelse
SF1620 Matematik och modeller
KTH Teknikvetenskap, Institutionen för matematik 1 SF160 Matematik och modeller 007-09-10 Andra veckan Trigonometri De trigonometriska funktionerna och enhetscirkeln Redan vid förra veckans avsnitt var
ATT KUNNA TILL. MA1050 Matte Grund. 2011-06-14 Vuxenutbildningen Dennis Jonsson
ATT KUNNA TILL MA1050 Matte Grund 2011-06-14 Vuxenutbildningen Dennis Jonsson Sida 2 av 5 Att kunna till prov G1 Kunna ställa upp och beräkna additions-, subtraktions-, multiplikations- och divisuionsuppgifter
Vi skall skriva uppsats
Vi skall skriva uppsats E n vacker dag får du höra att du skall skriva uppsats. I den här texten får du veta vad en uppsats är, vad den skall innehålla och hur den bör se ut. En uppsats är en text som
Lokal pedagogisk planering i matematik för årskurs 8
Lokal pedagogisk planering i matematik för årskurs 8 Arbetsområde 2. Algebra Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera över matematikens
Tentamen i matematisk statistik (9MA241/9MA341/LIMAB6, STN2) 2012-01-09 kl 08-13
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341/LIMAB6, STN2) 212-1-9 kl 8-13 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är
Rekursion: varför? Problem delas upp i mindre bitar algoritm för att lösa problemet erhålls från problemformuleringen
Rekursion: varför Problem delas upp i mindre bitar algoritm för att lösa problemet erhålls från problemformuleringen Exempel på problem som kan lösas med rekursion: Beräkningar, t.ex. upphöjt, Fibonacci-tal,
Avsikt På ett lekfullt sätt färdighetsträna, utveckla elevers känsla för hur vårt talsystem är uppbyggt samt hitta mönster som uppkommer.
Strävorna 4A 100-rutan... förmåga att förstå, föra och använda logiska resonemang, dra slutsatser och generalisera samt muntligt och skriftligt förklara och argumentera för sitt tänkande.... grundläggande
4-6 Trianglar Namn:..
4-6 Trianglar Namn:.. Inledning Hittills har du arbetat med parallellogrammer. En sådan har fyra hörn och motstående sidor är parallella. Vad händer om vi har en geometrisk figur som bara har tre hörn?
Föreläsning 5: Rekursion
Föreläsning 5: Rekursion Vi har tidigare sett att man kan dela upp problem i mindre bitar med hjälp av underprogram, vilket är ett utmärkt sätt att lösa problem. Detta är ganska lätt att rita upp för sig
Elektronen och laddning
Detta är en något omarbetad version av Studiehandledningen som användes i tryckta kursen på SSVN. Sidhänvisningar hänför sig till Quanta A 2000, ISBN 91-27-60500-0 Där det har varit möjligt har motsvarande
De två första korten Tidig position
De två första korten Tidig position Hold em är ett positionsspel, och förmodligen mer än någon annan form av poker. Det beror på att knappen anger spelarnas turordning under satsningsrundorna. (Enda undantaget
Riktlinjer - Rekryteringsprocesser inom Föreningen Ekonomerna skall vara genomtänkta och välplanerade i syfte att säkerhetsställa professionalism.
REKRYTERINGSPOLICY Upprättad 2016-06-27 Bakgrund och Syfte Föreningen Ekonomernas verksamhet bygger på ideellt engagemang och innehar flertalet projekt där såväl projektledare som projektgrupp tillsätts
L(9/G)MA10 Kombinatorik och geometri Gruppövning 1
L(9/G)MA10 Kombinatorik och geometri Gruppövning 1 Lisa och Pelle leker med svarta och vita byggklossar. Deras pedagogiska föräldrar vill att de lär sig matematik samtidigt som de håller på och leker.
Tränarguide del 1. Mattelek. www.mv-nordic.se
Tränarguide del 1 Mattelek www.mv-nordic.se 1 ATT TRÄNA MED MATTELEK Mattelek är ett adaptivt träningsprogram för att träna centrala matematiska färdigheter såsom antalsuppfattning, den inre mentala tallinjen
Snapphanalegen. Firekángabogena. Spelregler. (4 spelare)
Snapphanalegen Firekángabogena Spelregler 1 800 (4 spelare) 800 är ett spel med anor från 1400-talet. Spelet ställer stora krav på spelarnas skicklighet. Fyra deltagare spelar ihop parvis. Spelet cirkulerar
Kunskapskrav för godtagbara kunskaper i matematik - slutet av åk 3
Kunskapskraven åk k 3 - matematik 20 Kunskapskrav för godtagbara kunskaper i matematik - slutet av åk 3 Eleven kan lösa enkla problem i elevnära situationer genom att välja och använda någon strategi med
Har vi lösningen för en bättre hemtjänst? Självklart.
Har vi lösningen för en bättre hemtjänst? Självklart. Låt oss prata om Självklarhetsmetoden. Låt oss prata om Självklarhetsmetoden! 164 000 äldre är beroende av hemtjänsten i sin vardag. Och det är du
NATIONELLA MATEMATIKTÄVLING
NATIONELLA MATEMATIKTÄVLING PRATA OM SPELS EN KURS I SANNOLIKHET 1 INLEDNING Sannolikhetskursen består av sju olika steg där det sista steget utgörs av själva tävlingsmomentet. Det är upp till pedagogen
Lokal kursplan för Ängkärrskolan år 9 Rev. 2009-09-22. -Positionssystemet. -Multiplikation och division. (utan miniräknare).
Lokal kursplan för Ängkärrskolan år 9 Rev. 009-09- Matematik år 9 MOMENT MÅL KRITERIER/EXEMPELl Taluppfattning, aritmetik Repetition av: Skriv med siffror tolv -Positionssystemet. hundradelar. 0,, 0,7
Du kommer känna igen en del av området och få chansen att repitera detta men samtidigt kommer du att stöta på lite nytt.
Aritmetik för år 9 Under några veckor kommer vi att arbeta med området Tal. Du kommer känna igen en del av området och få chansen att repitera detta men samtidigt kommer du att stöta på lite nytt. Som
Repetitivt arbete ska minska
Repetitivt arbete ska minska Ett repetitivt arbete innebär att man upprepar en eller några få arbetsuppgifter med liknande arbetsrörelser om och om igen. Ofta med ett högt arbetstempo. Ett repetitivt arbete
Instruktioner för beställning och kontoadministration för abonnenter av inlästa läromedel
Sidan 1 av 9 Instruktioner för beställning och kontoadministration för abonnenter av inlästa läromedel Version 2.0 Sidan 2 av 9 Innehåll Hur man beställer inlästa läromedel för abonnemangskunder... 3 Logga
3.1 Linjens ekvation med riktningskoefficient. y = kx + l.
Kapitel Analytisk geometri Målet med detta kapitel är att göra läsaren bekant med ekvationerna för linjen, cirkeln samt ellipsen..1 Linjens ekvation med riktningskoefficient Vi utgår från ekvationen 1
Matematisk programvara. Föreläsning 7 Matlab. Användning av Matlab. Matlab
Matematisk programvara Förberedelse inför laboration 5. Matlab, Maple, Mathematica Flyttal Matlab som miniräknare Vektorer Grafik Funktioner Matriser, ekvationssystem Föreläsning 7 Matlab Datorer kan räkna,
Allmän teori, linjära system
KTH, Avdelningen för matematik F2, Stockholm, 2 april 2014 Lösningsbegreppet Begynnelsevärdesproblem Lösningsbegreppet Betrakta ekvationen Definition En lösning på ett intervall I är en funktion x 1 (t)
Läraren som moderator vid problemlösning i matematik
Läraren som moderator vid problemlösning i matematik Cecilia Christiansen 9 oktober 2012 Kursplanen för matematik: matematisk verksamhet är till sin art en kreativ, reflekterande och problemlösande aktivitet
Matematik. Bedömningsanvisningar. Vårterminen 2009 ÄMNESPROV. Delprov B ÅRSKURS
ÄMNESPROV Matematik ÅRSKURS 9 Prov som ska återanvändas omfattas av sekretess enligt 4 kap. 3 sekretesslagen. Avsikten är att detta prov ska kunna återanvändas t.o.m. 2009-06-30. Vid sekretessbedömning
Sammanfattning av kursdag 2, 2013-03-07 i Stra ngna s och 2013-03-12 Eskilstuna
Sammanfattning av kursdag 2, 2013-03-07 i Stra ngna s och 2013-03-12 Eskilstuna Sammanfattning och genomgång av lektion 1 samt hemläxa. -Hur ta ut en position i sjökortet? Mät med Passaren mellan positionen
Institutionen för matematik Envariabelanalys 1. Jan Gelfgren Datum: Fredag 9/12, 2011 Tid: 9-15 Hjälpmedel: Inga (ej miniräknare)
Umeå universitet Dugga i matematik Institutionen för matematik Envariabelanalys 1 och matematisk statistik IE, ÖI, Stat. och Frist. Jan Gelfgren Datum: Fredag 9/12, 2011 Tid: 9-15 Hjälpmedel: Inga (ej
Presentationsövningar
Varje möte då temadialog används bör inledas med en presentationsövning. har flera syften. Både föräldrar och ledare har nytta av att gå igenom samtliga deltagares namn och dessutom få en tydlig bild av
Sektionen för Beteendemedicinsk smärtbehandling
Sektionen för Beteendemedicinsk smärtbehandling Karolinska Universitetssjukhuset Solna Smärtcentrum Sektionen för Beteendemedicinsk smärtbehandling tar emot patienter med långvarig och svårbehandlad smärta
Varför är det så viktigt hur vi bedömer?! Christian Lundahl!
Varför är det så viktigt hur vi bedömer?! Christian Lundahl! Fyra olika aspekter! Rättvisa! Reflektion och utvärdering av vår egen undervisning! Motivation för lärande! Metalärande (kunskapssyn)! 1. Rättvisa!
Repetition av cosinus och sinus
Repetition av cosinus och sinus Av Eric Borgqvist, 00-08-6, Lund Syftet med detta dokument är att få en kort och snabb repetition av vissa egenskaper hos de trigonometriska funktionerna sin och cos. Det
Får nyanlända samma chans i den svenska skolan?
Får nyanlända samma chans i den svenska skolan? Sammanställning oktober 2015 De nyanlända eleverna (varit här högst fyra år) klarar den svenska skolan sämre än andra elever. Ett tydligt tecken är att för
Boken om Teknik. Boken om Teknik är en grundbok i Teknik för åk 4 6.
Boken om Teknik Boken om Teknik är en grundbok i Teknik för åk 4 6. PROVLEKTION: Teknikens arbetssätt att göra på riktigt Följande provlektion är ett utdrag ur Boken om Teknik. Uppslaget som är hämtat
Svenska Du kan med flyt läsa texter som handlar om saker du känner till. Du använder metoder som fungerar. Du kan förstå vad du läser.
Svenska Du kan med flyt läsa texter som handlar om saker du känner till. Du använder metoder som fungerar. Du kan förstå vad du läser. Du berättar på ett enkelt sätt om det du tycker är viktigt i texten.
Föreläsning 14: Försöksplanering
Föreläsning 14: Försöksplanering Matematisk statistik Chalmers University of Technology Oktober 14, 2015 Modellbeskrivning Vi har gjort mätningar av en responsvariabel Y för fixerade värden på förklarande
Två konstiga klockor
strävorna C Två konstiga klockor resonemang geometri Avsikt och matematikinnehåll Det som kan göra det svårt för barn att avläsa en analog klocka är att förstå att den består av två skalor som är beroende
Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: Provkod: TEN1 Hjälpmedel: Inga. Examinator:
LPP laboration. Förmågor: Centralt innehåll: Kunskapskrav:
LPP laboration Syfte: Eleverna ska få möjlighet att undersöka vardagliga naturvetenskapliga händelser och skapa förståelse kring varför dessa händelser äger rum. Eleverna ska göra det med hjälp av naturvetenskapliga
OM KOMPLEXA TAL. 1 Om a är ett positivt reellt tal så betecknar a det positiva reella tal vars kvadrat är a men det är
OM KOMPLEXA TAL Inledning. Vilka olika talområden finns det? Jag gör en snabb genomgång av vad ni tidigare stött på, bl.a. för att repetera standardbeteckningarna för de olika talmängderna. Positiva heltal,
ANVÄNDARHANDLEDNING FÖR
ANVÄNDARHANDLEDNING FÖR TILLSÄTTARE/LAGLEDARE OCH DOMARE Cleverservice ett smart sätt att hantera matcher, domartillsättningar, samt utbetalningar av arvoden 2015 ANVÄNDARHANDLEDNING - CLEVERSERVICE Cleverservice
Arbetsplanering (Mål och räkneuppgifter) Period 3 VT 2009 IX1306 Matematik för ekonomiska tillämpningar Kursansvarig: Jan-Olof Åkerlund,
Arbetsplanering (Mål och räkneuppgifter) Period 3 VT 2009 IX1306 Matematik för ekonomiska tillämpningar Kursansvarig: Jan-Olof Åkerlund, jo@kth.se Med referenser till kursboken Sydsæter/Hammond: Essential
Distribuerade Informationssystem VT-04
Distribuerade Informationssystem VT-04 2 Projekt Kassasystem DS är ett stort varuhus som består av ett flertal fristående butiker. Varje butik i DS säljer sina egna varor samt varor som är specifika för
Statsbidrag för läxhjälp till huvudmän 2016
Statsbidragsenheten 1 (5) Statsbidrag för läxhjälp till huvudmän 2016 Skolverket lämnar statsbidrag enligt förordning (2014:144) om statsbidrag för hjälp med läxor eller annat skolarbete utanför ordinarie
Omvandla Vinklar. 1 Mattematiskt Tankesätt
Omvandla Vinklar 1 Mattematiskt Tankesätt (Kan användas till mer än bara vinklar) 2 Omvandla med hjälp av Huvudräkning (Snabbmetod i slutet av punkt 2) 3 Omvandla med Miniräknare (Casio) Läs denna Först
Pesach Laksman är lärarutbildare i matematik och matematikdidaktik vid Malmö högskola.
111a Geometri med snöre Pesach Laksman är lärarutbildare i matematik och matematikdidaktik vid Malmö högskola. Areabegreppet När elever får frågan vad area betyder ges mestadels svar som antyder hur man
Sundbybergs stad Skolundersökning 2015 Föräldrar förskola Fristående förskolor totalt 2015. Antal svar samtliga fristående förskolor: 360 (57 %)
Sundbybergs stad Skolundersökning Föräldrar förskola Antal svar samtliga fristående förskolor: ( %) Innehåll Om undersökningen Förklaring av diagram Resultat - Per fråga - NöjdKundIndex (NKI) Frågorna
Fel- och störningsanalys
Fel- och störningsanalys 1 Terminologi Antag att x är ett exakt värde och x är en approximation av x. Vi kallar då absoluta felet i x = x x, relativa felet i x = x x x. Ofta känner vi inte felet precis