Is it worth to parameterize sequence alignment with an explicit evolutionary model?
|
|
- Carina Öberg
- för 5 år sedan
- Visningar:
Transkript
1 Is it worth to parameterize sequence alignment with an explicit evolutionary model? Sean Eddy & E.R. p. 1/33
2 Channelrhodopsin-1 adapted from p. 2/33
3 Bacterial Rhodopsins BACS2_HALSA.TWFWVGAVGMLAGTVLPI..RD CIRHP SHRRYDLVLAGITGLAAIAYTTMG LGITATTVGD...RTVY.. LARYIDWLVTTPL...IVLYLAMLA RPG... BACS2_NATPH TTLFWLGAIGMLVGTLAFAWAGR DAGSG E.RRYYVTLVGISGIAAVAYVVMA LGVGWVPVAE...RTVF.. APRYIDWILTTPL...IVYFLGLLA GLD... BACS2_HALVA TTWFTLGLLGELLGTAVLAY.GY TLVPE ETRKRYLLLIAIPGIAIVAYALMA LGFGSIQSEG...HAVY.. VVRYVDWLLTTPL...NVWFLALLA GAS... BACS1_HALSA ATAYLGGAVALIVGVAFVWLLYR SLDGS PHQSALAPLAIIPVFAGLSYVGMA YDIGTVIVNG...NQIV.. GLRYIDWLVTTPI...LVGYVGYAA GAS... C7P1Y4_HALMD TTVYGLTAVVYAVALVVLWGWLR QV.SP EHRRFCTPIVLVVALAGVASAVVA AGVGTITVNG...SEVV.. VPLFVESMIAYGV...LYAVMARLA DVE... D3SUL9_NATMM FVLLVVSSIVFISAAAIFVGYSR TLPDG PNQYGYAAAVA.AGSMGLAYVVMA LVNGISG...ADTD.. LFRFLGYTAMWTV...IVLVVCSVA GVD... BACH_NATPH ASSLYINIALAGLSILLFVFMTR GLDDP RAKLIAVSTILVPVVSIASYTGLA SGLTISVLEMPAGHFAEGSSVMLGGEEVDGVVTM WGRYLTWALSTPM...ILLALGLLA GSN... BACR_HALAR AIWLWLGTAGMFLGMLYFIARGW GETDS RRQKFYIATILITAIAFVNYLAMA LGFGLTIVEFAGEE...HPIY.. WARYSDWLFTTPL...LLYDLGLLA GAD... BACR_HALSA WIWLALGTALMGLGTLYFLVKGM GVSDP DAKKFYAITTLVPAIAFTMYLSML LGYGLTMVPFGGEQ...NPIY.. WARYADWLFTTPL...LLLDLALLV DAD... BACR1_HALSS TLWLGIGTLLMLIGTFYFIVKGW GVTDK EAREYYSITILVPGIASAAYLSMF FGIGLTEVQVGSEM...LDIY.. YARYADWLFTTPL...LLLDLALLA KVD... B6BSG6_9PROT GISFWVISMGMLAATAFFFMETG NVAAG W.RTSVIVAGLVTGIAFIHYMYMR EVWVTTG...DSPT.. VYRYIDWLITVPLQMVEFYLILSAVG KAN... C4YF64_CANAW WAAFSVFLLLTIIHLLLFLYGNF R.KPG VKNSLLVIPLFTNAVFSVFYFTYA SNLGYAWQAVEFQH...AGTGLRQIF.. YAKFIAWFVGWPA...VLALFEIV TST.VLDRIEENPNIFKKFFLI B9W6Y7_CANDC WAVFSVFALFAIVHGFIYSFTDV R.KSG LKRALLTIPLFNSAVFAFAYYTYA SNLGYTWILAEFNH...AGTGFRQIF.. YAKFVAWFLGWPL...VLAIFQIV TNT.SFTTTEDESDLLKKFISL A3LUH9_PICST WALFSVFSLFAVVHAFVYGFTSS E.KKS LKKTLLVIPLFINAVMAYTYFTYA SNLGWTSTPTEFQH...VTTSEDLDVRQIF.. YVKWVGYFLTWPL...VLTIIEVT TQS...TDFFEEGDILTKFFSL B5RTR5_DEBHA WAVFSIFATLAVVHAFVFSFTSS R.THR LKKILFIVPLFTNAIMAYCYFTYA ANLGWTSTRVEFNH...VSTNRLLGVRQVF.. YVKYIGWFLAWPF...VLFAIEVA THTLESTNLADGGETVTGILSL C5E3Q5_LACTC WAVFSVFGLVSLIYAALFVVFEH R.GTK IHRYAVAGPLSISLVLAFSYFTMA SNLGWTAVQAEFNN..LTTPNQSEVPGIRQIF.. YAKYVAWFLTWPA...LLYLTELT GVV.TRDSSNILGPRPWSFYDL C5DYF7_ZYGRC WTVTAIFGLLAVVYVLLFFVTQV RNGSG LSRYSLAAPFLIAFFEFFAYFTYA SNLGWTGTNAEFHHISVSKPVTGESPGIRQVF.. YCKYIAWFLSWPI...VLFLQDLA ALS...TIKRDALGSASVLDL HMM WTVFSVGALLALVGTLLFFVTAR RVKDG EKRKLLVILLLIPAIAAVAYVTMA LGLGLTGVEAEFEH RQVF-- YARYIDWLLTTPL----LVLVLAELA GAD HRTSAWLLAADVFVIAAGIAAAL T..T GVQ...RWLFFAVGAAGYAALLYGLL.GTLPRALGDDPR VR..SLFVTLRNITVVL...WTLYPVVWLL SPAGIGILQ TEMYTIVVVYLDFISKVAFVAFAVLGADA VSRLV SREFGIVITLNTVVMLAGFAGAM V..P GIE...RYALFGMGAVAFLGLVYYLV.GPMTESASQRSS GIK.SLYVRLRNLTVIL...WAIYPFIWLL GPPGVALLT PTVDVALIVYLDLVTKVGFGFIALDAAAT LRAEH REDTVKLVVLQALTIVFGFAGAV T..P SPV...SYALFAVGGALFGGVIYLLY.RNIAVAAKSTLS DIEVSLYRTLRNFVVVL...WLVYPVVWLL GAAGVGLMD VETATLVVVYLDVVTKVGFGVIALLAMID LGSAG RRSIIGVMVADALMIAVGAGAVV T..D GTL...KWALFGVSSIFHLSLFAYLY.VIFPRVVPDVPE QI..GLFNLLKNHIGLL...WLAYPLVWLF GPAGIGEAT AAGVALTYVFLDVLAKVPYVYFFYARRRV FMHSE GRALAAIVLTPVVQRIAFEVAAV S..G GIV...ALIGLVVVVGGHLAIAAYLL.GPVWTQTRGVPE QRR.LLHWKARNLVLFLIGMLIAYAVIALF GVF...D AFVSLAISQYMAVLIRVGFAGFLLANLDA VGSAS RRLTLFLFAAVLGRLWITLGSWF V..D GTL...ALVATLGTFAALGFGLYLLF.GPFTRAAAALES ERR.LLFSKLKYLIVLG...WVGL.VATGI MAQGAGLAD DFVGQLVVIYVEVILILGFGAIVVRSRTA LSQTA ATKLFTAITFDIAMCVTGLAAAL TTSS HLM...RWFWYAISCACFLVVLYILL.VEWAQDAKAAGT A...DMFNTLKLLTVVM...WLGYPIVWAL GVEGIAVLP VGVTSWGYSFLDIVAKYIFAFLLLNYLTS NESVV RNTITSLVSLDVLMIGTGLVATL SPGS GVLSAGAERLVWWGISTAFLLVLLYFLF.SSLSGRVADLPS DTR.STFKTLRNLVTVV...WLVYPVWWLI GTEGIGLVG IGIETAGFMVIDLTAKVGFGIILLRSHGV LDGAA QGTILALVGADGIMIGTGLVGAL T.KV YSY...RFVWWAISTAAMLYILYVLF.FGFTSKAESMRP EVA.STFKVLRNVTVVL...WSAYPVVWLI GSEGAGIVP LNIETLLFMVLDVSAKVGFGLILLRSRAI FGEAE RVSIGTLVGVDALMIVTGLVGAL S.HT PLA...RYTWWLFSTICMIVVLYFLA.TSLRAAAKERGP EVA.STFNTLTALVLVL...WTAYPILWII GTEGAGVVG LGIETLLFMVLDVTAKVGFGFILLRSRAI LGDTE SGMFWRLLLGSVVMLVGGYLGEA...G YIN...ATLGFIIGMAGWVYILYEVF SGEAGKAAAKSGN KALVTAFGAMRMIVTVG...WAIYPLGYVF GYLTGGV.D AESLNVVYNLADFVNKIAFGLVIWAAATS SSGKR FQTWLVKFIFVEIYVLGLLIGSI I..F STY...KFGYFTFAVFFQLLLMVWVG.RDLHRSFKSPSH S...NIANFFLIFFYLV...WILYPVAWGL SEGGNVI.Q PDSEAVFYGILDLITFGLMPTILIFFAIK GCDEE FEALFTRVLAIEVFVLGLLIGAL I..E STY...KWGYFTFAVVFQLFAIYLVI.NDVVVSFGSSSH S...VFGNALILAFVVV...WILYPVAWGL SEGGNVI.Q PDSEAVFYGILDLITFGVIPIILTWIAIN NVDEE FSRLFAKILATEVFVIGLLIGAL I..E STY...KWGYFTFSVTAQLFAEIYIF.VNVMTAWRQSTQ...KLGLILVLCQLVI...WILYPIAWGL SEGGNKI.Q PDSEAAFYGVLDFFTFFFIPVGLTWLAIN NVDEE LSGLIVKTFATEIYVLGLLIGIL I..P SSY...RWGYFTFAVSAQLFAMSLIL.VSMFSAAKSVHT N...KAAIIFIAFQLLV...WILYPICWGL SEGGNRI.Q PDSEAVFYGILDLITFSFVPIILTWINAS GVDED VHGLFLQICGSWFFIIGLLVGSL I..H SSY...KWGYWTMAAFAQLLVTYLIF...KHQLVDLTI S...GIKLVLLVFTHVC...IYLYLVAWGL SDGGNVI.T VDSSHVFFGILDLLIFVLVPALLVATATS SGVMP IHSLLVQIFGHYFWVIALLVGAL I..P STY...RWGYWTIGAFTMLVTEGLVL...QRQVQALRT R...GIYLILLMFMCLI...VWCYFIAWAV SEGGNKI.Q PDSEAVFYGILDLVVFAIYPSILVWIITV RGEWP RRTLLVLVLADVVMIVGGLVGAL I--E STY-----RWVYFTISVAAQLVLLYLLL -GELARAAKSLSS EI--SLFNTLRNLVVVL---WLLYPVAWLL GEEGNGI-Q ADSEAVVYGILDLVAKVGFGLILLASATS NES-- static (fixed in time) HMM p. 3/33
4 Bacterial Rhodopsins Alphaproteobacteria M M M M M M M D D D D D D D M M M M E V W V T T G D S P T M M M M M M M M M M M M M IIII M M M M M M M M M V Y R Y I D W L I T V P L QMVE F Y L I L S A V G HMM L G L G L T G V E A E F E H R Q V F Y A R Y I D W L L T T P L L V L V L A E L A S G L T I S V L E M P A G H FAEGSSVMLGGEEV D G V V TM M M M M M M M M M M M M M M IIIIIIIIIIIIII M M M M II Halobacteria (Archaea) W G R Y L T W A L S T P M I L L A L G L L A M M M M M M M M M M M M M M M M M M M M M M M an evolved ancestral residue (a substitution) D I a deleted ancestral residue an insertion relative to the ancestral sequence evolutionary (time-dependent) HMM p. 4/33
5 Homology is an evolutionary question Homology detection is hypothesis testing Forward score Posterior of H given s F = log P(s H) P(s R) P(H s)= ef+ρ 1 + e F+ρ Evolutionary distance is a nuisance parameter in P(s H) Current approaches assume (implicitly or explicitly) afixedevolutionarydistance p. 5/33
6 An explicit time-parameterization allows to Integrate over Evolutionary Distance Homology detection Homology coverage Optimize for Evolutionary Distance Alignment of homologs p. 6/33
7 Affine Gap cost A way of dealing with variability A V G S P I V L - K A H G V L S K S(A,A) + S(V,H) + S(G,G) + β + η + η + S(V,V) + S(L,L) + β + S(K,K) substitution matrix gap open cost β gap extent cost η affine gap cost BLAST syncs (empirically) the choice of substitution matrix with that of the affine gap costs substitution matrix BLOSUM62 gap open -11 gap extent -1 p. 7/33
8 HMMs formalize sw-like affine methods From Smith-Waterman to an HMM x 1..i-1 y 1..k-1 x i+1..l y k+1..m β match σ(x i y k ) β insert x i - delete - y k η η ε S (x 1..i-1 ) insert t MI ε I (x i ) match ε M (x i y k ) t IM t MM t SMk ε T (x i+1..l ) t MkT t DM t MD delete - y k t DkT t MkT +t SMk t MM + t MI insert match ε M (x i y k ) +t IM +t MM t MM t MD +t DM t MM - delete - y k t II t DD t II t DD Eddy & Castellano unpublished A probabilistic evolutionary model provides time-dependent HMM transitions p. 8/33
9 Is it worth to parameterize pair and profile HMMs with an explicit evolutionary model? p. 9/33
10 Alignment Accuracy Benchmark Score Efficiency (%) A P(seqs Model) P(seqs Optimal-branch Model) Global Homology Set P(seqs Model) P(seqs Optimal-branch Model) B SEN = PPV = aligned positions inferred correctly true aligned positions aligned positions inferred correctly inferred aligned positions F = SEN PPV ( + ) NCBIBLAST AUC= 78.9 phmmer (no filters) AUC= 78.7 AUC=71.4 AUC=8.4 MSAProbs AUC= F (%) % ID trusted alignment % ID trusted alignment 2 p. 1/33
11 Evolution of residue substitutions A A A A Assume For very small times ε: RATES α ε C G T residue changes 3α ε A residue is unchanged propose and solve differential equations 1 α =.1 Infer For finite time t: substitution probability P t ( A A) = 1 4 P t ( C A) = - 4 α t ( e ) divergence time - 4 α t ( 1 - e ).25 Substitution Matrix P t Jukes & Cantor (1969) p. 11/33
12 Evolution of Insertions compatible with affine models T T G P L L V L Ancestral sequence t S T - P M Q M V E F Y L Descendant sequence Substitutions infinitesimal rate α Insertions & Deletions rate for deleting an ancestral residue rate for starting a new insert with n residue rate for deleting a whole insert with n residues rate for adding to an insert x residue rate for removing from an insert x residues μ Α λ (1- s ) s n-1 Ι Ι μ (1- s ) s n-1 D D x-1 λ Ι (1- ν Ι ) ν I μ Ι (1- ν D ) ν D x-1 P t ( S T) P t ( Descendant Ancestral ) p. 12/33
13 Not affine Models number of inserts A Geometric ML fit (q=.947) G = 1348, p < 1e-6 χ 2 = 1585, p < 1e-6 Simulation variables L = 1, N = 1 time = PAM24 μ =.5 λ =.5 μ Ι =.2 λ Ι = 1.2 μ A =.3 v Ι = s Ι =.4 v D = s D =.9 B Geometric ML fit (q=.859) G = 735, p < 1e-6 χ 2 = 833, p < 1e-6 μ =.5 λ =.5 μ Ι =.2 λ Ι = 1.2 μ A =.3 v Ι = s Ι =. v D = s D =. Simulation variables L = 1, N = 1 time = PAM number of inserts insert length insert length number of inserts C Geometric ML fit (q=.94) G = 6638, p < 1e-6 χ 2 = 6231, p < 1e-6 μ = μ Ι =.35 λ = λ Ι =.65 μ A =.3 v Ι = s Ι =.9 v D = s D =.4 D Geometric ML fit (q=.669) G = 13.2, p =.59 χ 2 = 13.1, p =.664 μ = μ Ι =.35 λ = λ Ι =.65 μ A =.3 v Ι = s Ι =. v D = s D = number of inserts 1 1 Simulation variables L = 1, N = 1 time = PAM24 Simulation variables L = 1, N = 1 time = PAM insert length insert length p. 13/33
14 Analytical closed-form solutions AIF (fragment) Model Gap opens: β t = λ Ι 1 - e (λ Ι - μ Ι ) t μ Ι - λ Ι e (λ Ι - μ Ι ) t Gap extends: η t = λ Ι (1- r) + μ Ι r μ Ι - λ Ι e - e (λ Ι - μ Ι ) t λ Ι (λ Ι - μ Ι ) t Ancestral residue dies: γ t = 1 - e - (μ A ) t More realistic microscopic models result in non-affine macroscopic solutions p. 14/33
15 Evolved BLAST -2-4 Gap extend standard empirical values score Gap open very similar high cost for insertions blosum9 blosum62 blosum45 very divergent lower cost for insertions p. 15/33
16 An evolved HMM 1 Position in a conserved region Transition Probability M M ancestral alive / no insertions (1 - γ ) ( 1 - β ) t t M Ι Start Insert = β t 1 t = divergence time t Position at start of an insertion Transition Probability M Ι Start Insert = β t M M ancestral alive / no insertions (1 - γ ) ( 1 - β ) t t divergence time t time at which parameters were trained from data p. 16/33
17 Affine Evolutionary Models ACatalog Microscopic model Macroscopic model EVOLUTIONARY total # free geometric # states rates other properties MODEL parameters parameters minimal HMM single-residue models AALI 6 λ I, µ I, µ {M,D,I} A p 3 not reversible in general LI 4 λ I, µ I, µ A p 1 not reversible in general LR 2 λ I, µ A, (µ I = λ I + µ A ) (p LR = λ I /µ A ) 1 reversible TKF91 2 λ, µ (p TKF = λ/µ) 2 reversible, ref. [?] fragment models AFGX 9 λ I, µ I, µ {M,D,I} A r M, r D, r I,p 3 not reversible AFG 7 λ I, µ I, µ A r M, r D, r I,p 3 not reversible AFGR 4 λ I, µ A r M, r DI,(p LR ) 3 reversible AFR 3 λ I, µ A r,(p LR ) 3 reversible TKF92 3 λ, µ r,(p TKF92 ) 3 reversible, ref. [?] FID 2 λ r,(p =1) 3 reversible, ref. [?] fragment affine model for profile HMMs AIFX 7 λ I, µ I, µ {M,D,I} A r I,p 3 not reversible AIF 5 λ I, µ I, µ A r I,p 3 not reversible no-fragment affine model for profile HMMs (plan7 HMMER) AGAX 9 λ {M,D}, µ {M,D}, µ {M,D,I} A s I,p 3 not reversible AGA 7 λ {M,D}, µ {M,D}, µ A s I,p 3 not reversible p. 17/33
18 A fixed long-branch parameterization is sufficient to align global homologies of all degrees of conservation. p. 18/33
19 Score Efficiency (%) Sensitivity (%) A C P(seqs Model) P(seqs Optimal-branch Model) % ID trusted alignment NCBIBLAST AUC= phmmer (no filters) AUC=76.7 AUC= % ID trusted alignment Global Homology Set P(seqs Model) P(seqs Optimal-branch Model) 2 AUC= MSAProbs AUC= B SEN = PPV = D aligned positions inferred correctly true aligned positions aligned positions inferred correctly inferred aligned positions F = SEN PPV ( + ) 8 8 NCBIBLAST AUC= AUC= 78.7 AUC=81.9 phmmer (no filters) AUC= % ID trusted alignment NCBIBLAST AUC= % ID trusted alignment AUC= 82.6 AUC=8.4 2 phmmer (no filters) MSAProbs AUC=79.9 AUC= MSAProbs AUC= F (%) Positive Predictive Value (%) p. 19/33
20 A fixed short-branch parameterization reduces non-homologous alignment overextension for high-identity local homologies. 5 amino acid homologies p. 2/33
21 F (%) A SSEARCH36 (BLOSUM62, -11/-1) AUC=71.7 Local Homology Set Alignment Accuracy Homology Coverage AUC=68.2 NCBIBLAST AUC=68.4 AUC=68.2 phmmer (no filters) AUC=72.9 SSEARCH36 (BLOSUM62, -11/-1) AUC=77.1 AUC=73.9 NCBIBLAST AUC=72.7 AUC=69.5 phmmer (no filters) AUC=77.4 B F (%) 2 2 SEN (%) phmmer (no filters) AUC=74.3 NCBIBLAST AUC= % ID aligned homologous domain 2 AUC=76.1 SSEARCH36 (BLOSUM62, -11/-1) AUC= % ID aligned homologous domain phmmer (no filters) AUC=76.5 NCBIBLAST AUC=74. 2 AUC=8.2 SSEARCH36 (BLOSUM62, -11/-1) AUC= SEN (%) 2 AUC=64.5 AUC= % ID aligned homologous domain % ID aligned homologous domain 2 PPV (%) SSEARCH36 phmmer (BLOSUM62, -11/-1) NCBIBLAST (no filters) AUC=68.9 AUC=66.3 AUC=71.9 AUC=61.9 AUC=77.2 AUC=7. AUC=84.4 phmmer SSEARCH36 (no filters) (BLOSUM62, -11/-1) NCBIBLAST AUC=8.4 AUC=77. AUC= PPV (%) % ID aligned homologous domain % ID aligned homologous domain 2 p. 21/33
22 Optimal branch parameterization A variable optimal-branch parameterization is best to align local homologies of any percentage identity. p. 22/33
23 e2msa - pairhmm aligner Score Efficiency (%) Alignment Accuracy- Evolutionary pair HMM (e2msa) P(seqs Model) P(seqs Optimal-branch Model) Global Homology Set P(seqs Model) P(seqs Optimal-branch Model) Local Homology Set P(seqs Model) P(seqs Optimal-branch Model) P(seqs Model) P(seqs Optimal-branch Model) Score Efficiency (%) AUC= % ID alignment 2 Optimal-branch AUC= % ID aligned homologous domain AUC= Optimal-branch AUC= F (%) AUC=71.4 AUC= F (%) % ID alignment % ID aligned homologous domain 2 p. 23/33
24 ephmmer Score Efficiency (%) Alignment Acuracy - Evolutionary phmmer (ephmmer) Global Homology Set P(seqs Model) P(seqs Optimal-branch Model) P(seqs Model) P(seqs Optimal-branch Model) Score Efficiency (%) Local Homology Set P(seqs Model) P(seqs Optimal-branch Model) P(seqs Model) P(seqs Optimal-branch Model) F (%) ephmmer AUC= phmmer 3.1b1 AUC= F (%) 1 % ID alignment % ID aligned homologous domain ephmmer AUC=66.7 Optimal-branch ephmmer AUC= ephmmer AUC= ephmmer AUC= Optimal-branch ephmmer AUC=74.5 phmmer 3.1b1 AUC= % ID alignment % ID aligned homologous domain 2 p. 24/33
25 Performance of different models Method ALIGNMENT ACCURACY [ AUC for F measure (%) ] Global Homology Set PARAMETERIZATION SHORT LONG OPTIMAL Local Homology Set PARAMETERIZATION SHORT LONG OPTIMAL e2msa.aga e2msa.aif e2msa.tkf e2msa.li e2msa.tkf ephmmer (no filters) phmmer (no filters) SSEARCH (BLOSUM62, -11/-1) NCBIBLAST MSAProbs MUSCLE Evolutionary models with more parameters tend to perform better p. 25/33
26 The detection and coverage of embedded global homologies is robust with just one long-branch parameterization p. 26/33
27 Embedded Global Homologies % of True Positives before 5 False Positives HMMER 3.1b1 Optimal-branch % average ID of test domain to query msa 4 Homology Detection 2 Homolog Residue Coverage (F measure %) Optimal-branch HMMER 3.1b1 6 % average ID of test domain to query msa 4 Homology Coverage 2 p. 27/33
28 Short Local Homologies The detection and coverage of embedded short local homologies improves with a variable optimal-branch parameterization p. 28/33
29 % of True Positives before 5 False Positives % of True Positives before 5 False Positives HMMER 3.1b % average ID of test domain to query msa 6 % average ID of test domain to query msa 4 4 Embedded 5 aa Local Homologies Optimal-branch 2 2 Embedded 3 aa Local Homologies HMMER 3.1b1 Optimal-branch Homolog Residue Coverage (F measure %) Homolog Residue Coverage (F measure %) HMMER 3.1b % average ID of test domain to query msa 6 HMMER 3.1b1 % average ID of test domain to query msa 4 4 Optimal-branch 2 Optimal-branch 2 Homology Detection Homology Coverage p. 29/33
30 Fragments The detection of very short naked local homologies improves with a short-branch or optimal-branch parameterization p. 3/33
31 Naked Fragments % of True Positives before 5 False Positives AUC= AUC= Naked 3 aa Homologies HMMER 3.1b1 AUC=72.7 % average ID of test domain to query msa Optimal-branch AUC= Optimal-branch AUC= AUC=72.6 % average ID of test domain to query msa 4 HMMER 3.1b1 AUC=76.9 AUC= Coverage (F measure %) % of True Positives before 5 False Positives HMMER 3.1b1 AUC=4.1 AUC= AUC=42.6 % average ID of test domain to query msa 4 Naked 15 aa Homologies Optimal-branch AUC=42.8 Homology Detection 2 1 AUC= HMMER 3.1b1 AUC= Optimal-branch AUC=51.2 % average ID of test domain to query msa 4 AUC=5.2 Homology Coverage Coverage (F measure %) p. 31/33
32 Explicit evolutionary models?? It is nice to wind up and down a model without additional information For Sensitivity > For SEN/PPV > Use a long-branch parameterization (12% id). Except for metagenomics < 3 aa, then use a short-branch parameterization (45% id). Use a optimal-branch for short embbeded homologies. For global embedded homologies still OK using a long-branch parameterization. Ancestral reconstruction p. 32/33
33 p. 33/33
Chapter 2: Random Variables
Chapter 2: Random Variables Experiment: Procedure + Observations Observation is an outcome Assign a number to each outcome: Random variable 1 Three ways to get an rv: Random Variables The rv is the observation
12.6 Heat equation, Wave equation
12.6 Heat equation, 12.2-3 Wave equation Eugenia Malinnikova, NTNU September 26, 2017 1 Heat equation in higher dimensions The heat equation in higher dimensions (two or three) is u t ( = c 2 2 ) u x 2
Kurskod: TAMS24 / Provkod: TEN (8:00-12:00) English Version
Kurskod: TAMS24 / Provkod: TEN 25-8-7 (8: - 2:) Examinator/Examiner: Xiangfeng Yang (Tel: 7 2234765). Please answer in ENGLISH if you can. a. You are permitted to bring: a calculator; formel -och tabellsamling
Biochemistry 201 Advanced Molecular Biology (
Biochemistry 201 Advanced Molecular Biology (http://cmgm cmgm.stanford.edu/biochem201/) Bioinformatics: Discovering Function from Sequence Doug Brutlag Departments of Biochemistry June 4, 1999 Discovering
Lösningar till Tentamen i Reglerteknik AK EL1000/EL1100/EL
Lösningar till Tentamen i Reglerteknik AK EL/EL/EL 9-6- a. Ansätt: G(s) = b s+a, b >, a >. Utsignalen ges av y(t) = G(iω) sin (ωt + arg G(iω)), ω = G(iω) = b ω + a = arg G(iω) = arg b arg (iω + a) = arctan
Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm
Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm Guldplätering kan aldrig helt stoppa genomträngningen av vätgas, men den får processen att gå långsammare. En tjock guldplätering
Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version
Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 5 June 217, 14:-18: Examiner: Zhenxia Liu (Tel: 7 89528). Please answer in ENGLISH if you can. a. You are allowed to use a calculator, the formula and
Adding active and blended learning to an introductory mechanics course
Adding active and blended learning to an introductory mechanics course Ulf Gran Chalmers, Physics Background Mechanics 1 for Engineering Physics and Engineering Mathematics (SP2/3, 7.5 hp) 200+ students
Tentamen i Matematik 3: M0031M.
Tentamen i Matematik 3: M0031M. Datum: 2009-10-26 Skrivtid: 09:00 14:00 Antal uppgifter: 6 ( 30 poäng ). Jourhavande lärare: Norbert Euler Telefon: 0920-492878 Tillåtna hjälpmedel: Inga Till alla uppgifterna
Robust och energieffektiv styrning av tågtrafik
1 Robust och energieffektiv styrning av tågtrafik - CATO - Forskning inom OnTime - Vidareutveckling och möjligheter KAJT, temadag om punktlighet 2014-11-13 Tomas Lidén Transrail Sweden AB Dagens trafikledning
Motif-based Hidden Markov Models for Multiple Sequence Alignment
Motif-based Hidden Markov Models for Multiple Sequence Alignment William N. Grundy Charles P. Elkan Dept. of Computer Science & Engineering University of California, San Diego Abstract Protein families
Eternal Employment Financial Feasibility Study
Eternal Employment Financial Feasibility Study 2017-08-14 Assumptions Available amount: 6 MSEK Time until first payment: 7 years Current wage: 21 600 SEK/month (corresponding to labour costs of 350 500
Pre-Test 1: M0030M - Linear Algebra.
Pre-Test : M3M - Linear Algebra. Test your knowledge on Linear Algebra for the course M3M by solving the problems in this test. It should not take you longer than 9 minutes. M3M Problem : Betrakta fyra
Exam Molecular Bioinformatics X3 (1MB330) - 1 March, Page 1 of 6. Skriv svar på varje uppgift på separata blad. Lycka till!!
Exam Molecular Bioinformatics X (MB) - March, - Page of Skriv svar på varje uppgift på separata blad. Lycka till!! Write the answers to each of the questions on separate sheets of paper. ood luck!! ) Sequence
Tentamen i Matematik 2: M0030M.
Tentamen i Matematik 2: M0030M. Datum: 203-0-5 Skrivtid: 09:00 4:00 Antal uppgifter: 2 ( 30 poäng ). Examinator: Norbert Euler Tel: 0920-492878 Tillåtna hjälpmedel: Inga Betygsgränser: 4p 9p = 3; 20p 24p
x 2 2(x + 2), f(x) = by utilizing the guidance given by asymptotes and stationary points. γ : 8xy x 2 y 3 = 12 x + 3
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA151 Single Variable Calculus, TEN2 Date:
Statistik för bioteknik SF1911 Föreläsning 11: Hypotesprövning och statistiska test del 2. Timo Koski
Statistik för bioteknik SF1911 Föreläsning 11: Hypotesprövning och statistiska test del 2. Timo Koski TK 28.11.2017 TK 28.11.2017 1 / 40 Outline of Lecture 11. Matched pairs or the paired samples (sticprov
Labokha AA et al. xlnup214 FG-like-1 xlnup214 FG-like-2 xlnup214 FG FGFG FGFG FGFG FGFG xtnup153 FG FGFG xtnup153 FG xlnup62 FG xlnup54 FG FGFG
xlnup214 FG-like-1 (aa 443-69) TSVSAPAPPASAAPRSAAPPPYPFGLSTASSGAPTPVLNPPASLAPAATPTKTTSQPAAAATSIFQPAGPAAGSLQPPSLPAFSFSSANNAANASAPSSFPFGA AMVSSNTAKVSAPPAMSFQPAMGTRPFSLATPVTVQAATAPGFTPTPSTVKVNLKDKFNASDTPPPATISSAAALSFTPTSKPNATVPVKSQPTVIPSQASVQP
PRESS FÄLLKONSTRUKTION FOLDING INSTRUCTIONS
PRESS FÄLLKONSTRUKTION FOLDING INSTRUCTIONS Vänd bordet upp och ner eller ställ det på långsidan. Tryck ner vid PRESS och fäll benen samtidigt. Om benen sitter i spänn tryck benen mot kortsidan före de
Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås
Schenker Privpak AB Interface documentation for web service packageservices.asmx 2012-09-01 Version: 1.0.0 Doc. no.: I04304b Sida 2 av 7 Revision history Datum Version Sign. Kommentar 2012-09-01 1.0.0
This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum
Examiner Linus Carlsson 016-01-07 3 hours In English Exam (TEN) Probability theory and statistical inference MAA137 Aids: Collection of Formulas, Concepts and Tables Pocket calculator This exam consists
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik SIGNALBEHANDLING I MULTIMEDIA, EITA50, LP4, 209 Inlämningsuppgift av 2, Assignment out of 2 Inlämningstid: Lämnas in senast kl
Mapping sequence reads & Calling variants
Universitair Medisch Centrum Utrecht Mapping sequence reads & Calling variants Laurent Francioli 2014-10-28 l.francioli@umcutrecht.nl Next Generation Sequencing Data processing pipeline Mapping to reference
Statistical modelling and alignment of protein sequences
Statistical modelling and alignment of protein sequences Martin Weigt Laboratoire de Biologie Computationnelle et Quantitative Université Pierre et Marie Curie Paris ENS Paris 11 July 2016 What is the
Image quality Technical/physical aspects
(Member of IUPESM) Image quality Technical/physical aspects Nationella kvalitetsdokument för digital radiologi AG1 Michael Sandborg och Jalil Bahar Radiofysikavdelningen Linköping 2007-05-10 Requirements
SUPPLEMENTARY INFORMATION
SUPPLEMENTARY INFORMATION SUPPLEMENTARY METHODS Preparation of the cells for transmission electron microscopy - Cells grown on coverslips were fixed for 45 minutes with 2.5% glutaraldehyde (50 mm cacodylate
A study of the performance
A study of the performance and utilization of the Swedish railway network Anders Lindfeldt Royal Institute of Technology 2011-02-03 Introduction The load on the railway network increases steadily, and
Discrete choice models with multiplicative error terms
Munich Personal RePEc Archive Discrete choice models with multiplicative error terms Fosgerau, Mogens and Bierlaire, Michel Technical University of Denmark 2009 Online at https://mpra.ub.uni-muenchen.de/42277/
Isometries of the plane
Isometries of the plane Mikael Forsberg August 23, 2011 Abstract Här följer del av ett dokument om Tesselering som jag skrivit för en annan kurs. Denna del handlar om isometrier och innehåller bevis för
PRESS FÄLLKONSTRUKTION FOLDING INSTRUCTIONS
PRESS FÄLLKONSTRUKTION FOLDING INSTRUCTIONS Vänd bordet upp och ner eller ställ det på långsidan. Tryck ner vid PRESS och fäll benen samtidigt. OBS! INGA STORA KRAFTER KRÄVS!! Om benen sitter i spänn tryck
Support Manual HoistLocatel Electronic Locks
Support Manual HoistLocatel Electronic Locks 1. S70, Create a Terminating Card for Cards Terminating Card 2. Select the card you want to block, look among Card No. Then click on the single arrow pointing
Tunga metaller / Heavy metals ICH Q3d & Farmakope. Rolf Arndt Cambrex Karlskoga
Tunga metaller / Heavy metals ICH Q3d & Farmakope Rolf Arndt Cambrex Karlskoga Tunga metaller / Heavy metals Rolf Arndt -Quality Assurance Cambrex Karlskoga - Svenska Farmakopekommitten / Working Party
Affärsmodellernas förändring inom handeln
Centrum för handelsforskning vid Lunds universitet Affärsmodellernas förändring inom handeln PROFESSOR ULF JOHANSSON, EKONOMIHÖGSKOLAN VID LUNDS UNIVERSITET Centrum för handelsforskning vid Lunds universitet
SOLAR LIGHT SOLUTION. Giving you the advantages of sunshine. Ningbo Green Light Energy Technology Co., Ltd.
2017 SOLAR LIGHT SOLUTION Address:No.5,XingYeMiddleRoad,NingboFreeTradeZone,China Tel:+86-574-86812925 Fax:+86-574-86812905 Giving you the advantages of sunshine SalesServiceE-mail:sales@glenergy.cn Tech.ServiceE-mail:service@glenergy.cn
8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers.
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MAA150 Vektoralgebra TEN1 Datum: 9januari2015 Skrivtid:
Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik,
Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik, 7,5 hp. Tid: Lördag den 18 april 2009, kl 14:00-18:00 Väg och vatten Examinator: Olle Nerman, tel 7723565. Jour: Frank Eriksson,
Supplementary Data. Figure S1: EIMS spectrum for (E)-1-(3-(3,7-dimethylocta-2,6-dienyl)-2,4,6-trihydroxyphenyl)butan-1-one (3d) 6'' 7'' 3' 2' 1' 6
Supplementary Data H 9'' ' 1' 1 ' ' '' 7'' 8'' 10'' H H Figure S1: EIMS spectrum for (E)-1-(-(,7-dimethylocta-,-dienyl)-,,-trihydroxyphenyl)butan-1-one (d) H 9'' ' 1' 1 ' ' '' 7'' 8'' 10'' H H Figure S:
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 2012-03-24 kl 14.30-19.30 Hjälpmedel : Inga hjälpmedel
1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)
UMEÅ UNIVERSITY Department of Mathematics and Mathematical Statistics Pre-exam in mathematics Linear algebra 2012-02-07 1. Compute the following matrix: (2 p 3 1 2 3 2 2 7 ( 4 3 5 2 2. Compute the determinant
Rev No. Magnetic gripper 3
Magnetic gripper 1 Magnetic gripper 2 Magnetic gripper 3 Magnetic gripper 4 Pneumatic switchable permanent magnet. A customized gripper designed to handle large objects in/out of press break/laser cutting
Measuring child participation in immunization registries: two national surveys, 2001
Measuring child participation in immunization registries: two national surveys, 2001 Diana Bartlett Immunization Registry Support Branch National Immunization Program Objectives Describe the progress of
Energy and Quality oriented modeling and control of REFiners
The northernmost University of Technology in Scandinavia Top-class Research and Education Energy and Quality oriented modeling and control of REFiners Wolfgang Birk Innehåll Status information om projektet
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00. English Version
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling
Övning 3 - Tillämpad datalogi 2012
/home/lindahlm/activity-phd/teaching/12dd1320/exercise3/exercise3.py September 14, 20121 0 # coding : latin Övning 3 - Tillämpad datalogi 2012 Summering Vi gick igenom problemträd, sökning i problem träd
ALGEBRA I SEMESTER 1 EXAM ITEM SPECIFICATION SHEET & KEY
ALGEBRA I SEMESTER EXAM ITEM SPECIFICATION SHEET & KEY Constructed Response # Objective Syllabus Objective NV State Standard Identify and apply real number properties using variables, including distributive
JTS snabbstartsguide. Endast för användning av utbildad personal
JTS snabbstartsguide Endast för användning av utbildad personal Läs förlängningsprotokollet och bruksanvisningen för fullständiga instruktioner, tillsammans med varningar och försiktighetsåtgärder innan
Indikatorer för utvecklingen av de Europeiska energisystemen
Indikatorer för utvecklingen av de Europeiska energisystemen Filip Johnsson NEPP:s vinterkonferens 2018 Stockholm, 2018 Division of Energy Technology Department of Space, Earth and Environment Chalmers
SF1911: Statistik för bioteknik
SF1911: Statistik för bioteknik Föreläsning 4. TK 7.11.2017 TK Matematisk statistik 7.11.2017 1 / 42 Lärandemål Betingad sannolikhet (definition, betydelse) Oberoende händelser Lagen om total sannolikhet
(4x 12) n n. is convergent. Are there any of those x for which the series is not absolutely convergent, i.e. is (only) conditionally convergent?
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA5 Single Variable Calculus, TEN Date: 07-03-
Installation Instructions
Installation Instructions (Cat. No. 1794-IE8 Series B) This module mounts on a 1794 terminal base unit. 1. Rotate keyswitch (1) on terminal base unit (2) clockwise to position 3 as required for this type
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00. English Version
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 0896661). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling
INDUKTIV SLINGDETEKTOR INDUCTIVE LOOP DETECTOR
INDUKTIV SLINGDETEKTOR INDUCTIVE LOOP DETECTOR Slingdetektorn används som ett alternativ till mekaniska gränslägen, momentbrytare eller annat gränsläge i gödselrännor. Detektorn är kopplad till en trådslinga
Solutions to exam in SF1811 Optimization, June 3, 2014
Solutions to exam in SF1811 Optimization, June 3, 14 1.(a) The considered problem may be modelled as a minimum-cost network flow problem with six nodes F1, F, K1, K, K3, K4, here called 1,,3,4,5,6, and
4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler
Föreläsning 2 4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler Stokastiskavariabler Stokastisk variabel (eng: random variable) En variabel vars värde
Enkel linjär regression. Enkel linjär regression. Enkel linjär regression
Enkel linjär regression Exempel.7 i boken (sida 31). Hur mycket dragkraft behövs för att en halvledare skall lossna från sin sockel vid olika längder på halvledarens ben och höjder på sockeln. De halvledare
and u = och x + y z 2w = 3 (a) Finn alla lösningar till ekvationssystemet
Kursen bedöms med betyg,, 5 eller underkänd, där 5 är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna
NO NEWS ON MATRIX MULTIPLICATION. Manuel Kauers Institute for Algebra JKU
NO NEWS ON MATRIX MULTIPLICATION Manuel Kauers Institute for Algebra JKU ( ) ( ) ( ) a1,1 a 1,2 b1,1 b 1,2 c1,1 c = 1,2 a 2,1 a 2,2 b 2,1 b 2,2 c 2,1 c 2,2 c 1,1 = a 1,1 b 1,1 + a 1,2 b 2,1 c 1,2 = a 1,1
Styrteknik: Binära tal, talsystem och koder D3:1
Styrteknik: Binära tal, talsystem och koder D3:1 Digitala kursmoment D1 Boolesk algebra D2 Grundläggande logiska funktioner D3 Binära tal, talsystem och koder Styrteknik :Binära tal, talsystem och koder
LOG/iC2. Introduction
LOG/iC2 Introduction L00000 11110111111111111111111111111111111111111111* L04884 11111111111111111111111111111111111111111111* L04928 11111111011111111111111111111111111111101111* L04972 11111111101110111111111111111111111111011111*
7.5 Experiment with a single factor having more than two levels
7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan
Resultat av den utökade första planeringsövningen inför RRC september 2005
Resultat av den utökade första planeringsövningen inför RRC-06 23 september 2005 Resultat av utökad första planeringsövning - Tillägg av ytterligare administrativa deklarationer - Variant (av case 4) med
English Version. Number of sold cakes Number of days
Kurskod: TAMS24 (Statistisk teori / Provkod: TEN 206-0-04 (kl. 8-2 Examinator/Examiner: Xiangfeng Yang (Tel: 070 089666. Please answer in ENGLISH if you can. a. You are permitted to bring: a calculator;
English Version. + 1 n 2. n 1
Kurskod: TAMS24 (Statistisk teori) / Provkod: TEN 205-0-23 (kl. 4-8) Examinator/Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. You are permitted to bring: a calculator;
Authentication Context QC Statement. Stefan Santesson, 3xA Security AB stefan@aaa-sec.com
Authentication Context QC Statement Stefan Santesson, 3xA Security AB stefan@aaa-sec.com The use case and problem User identities and user authentication is managed through SAML assertions. Some applications
Mälardalens Högskola. Formelsamling. Statistik, grundkurs
Mälardalens Högskola Formelsamling Statistik, grundkurs Höstterminen 2015 Deskriptiv statistik Populationens medelvärde (population mean): μ = X N Urvalets medelvärde (sample mean): X = X n Där N är storleken
Measuring void content with GPR Current test with PaveScan and a comparison with traditional GPR systems. Martin Wiström, Ramboll RST
Measuring void content with GPR Current test with PaveScan and a comparison with traditional GPR systems Martin Wiström, Ramboll RST Hålrum med GPR SBUF-projekt pågår för att utvärdera möjligheterna att
Thinning the branches of the GNSS decision tree. Sten Bergstrand Per Jarlemark Jan Johansson
Thinning the branches of the GNSS decision tree Sten Bergstrand Per Jarlemark Jan Johansson GPS MAC VRS NRTK PPP RTK DGPS Uncorr. DGPS Science Uncorr. Phase Phase Phase Code Code Business Pleasure Restr.
Kanban är inte din process. (låt mig berätta varför) #DevLin2012 15 Mars 2012
Kanban är inte din process (låt mig berätta varför) #DevLin2012 15 Mars 2012 Torbjörn Tobbe Gyllebring @drunkcod tobbe@cint.com Är du eller känner du en Kanban hipster? Förut körde vi X nu kör vi Kanban
2.1 Installation of driver using Internet Installation of driver from disk... 3
&RQWHQW,QQHKnOO 0DQXDOÃ(QJOLVKÃ'HPRGULYHU )RUHZRUG Ã,QWURGXFWLRQ Ã,QVWDOOÃDQGÃXSGDWHÃGULYHU 2.1 Installation of driver using Internet... 3 2.2 Installation of driver from disk... 3 Ã&RQQHFWLQJÃWKHÃWHUPLQDOÃWRÃWKHÃ3/&ÃV\VWHP
Metodprov för kontroll av svetsmutterförband Kontrollbestämmelse Method test for inspection of joints of weld nut Inspection specification
Stämpel/Etikett Security stamp/lable Metodprov för kontroll av svetsmutterförband Kontrollbestämmelse Method test for inspection of joints of weld nut Inspection specification Granskad av Reviewed by Göran
Mönster. Ulf Cederling Växjö University Ulf.Cederling@msi.vxu.se http://www.msi.vxu.se/~ulfce. Slide 1
Mönster Ulf Cederling Växjö University UlfCederling@msivxuse http://wwwmsivxuse/~ulfce Slide 1 Beskrivningsmall Beskrivningsmallen är inspirerad av den som användes på AG Communication Systems (AGCS) Linda
Gradientbaserad Optimering,
Gradientbaserad Optimering, Produktfamiljer och Trinitas Hur att sätta upp ett optimeringsproblem? Vad är lämpliga designvariabler x? Tjockleksvariabler (sizing) Tvärsnittsarean hos stänger Längdmått hos
Module 4 Applications of differentiation
Department of mathematics SF1625 Calculus 1 Year 2015/2016 Module 4 Applications of differentiation Chapter 4 of Calculus by Adams and Essex. Three lectures, two tutorials, one seminar. Important concepts.
Beijer Electronics AB 2000, MA00336A, 2000-12
Demonstration driver English Svenska Beijer Electronics AB 2000, MA00336A, 2000-12 Beijer Electronics AB reserves the right to change information in this manual without prior notice. All examples in this
Läcksökning som OFP-metod
1 Läcksökning 2 Provtryckning Provtryckning används för att kontrollera hållfastheten hos ett objekt. Normalt sker provtryckning med vatten eller gas som tryckmedia. Objektet trycksätts med media och en
The Swedish National Patient Overview (NPO)
The Swedish National Patient Overview (NPO) Background and status 2009 Tieto Corporation Christer Bergh Manager of Healthcare Sweden Tieto, Healthcare & Welfare christer.bergh@tieto.com Agenda Background
balans Serie 7 - The best working position is to be balanced - in the centre of your own gravity! balans 7,45
balans Serie 7 - The best working position is to be balanced - in the centre of your own gravity! balans 7,45 balans dynamic seating system TM Wheelbase aluminium Hjulkryss aluminium Back support upholstered,
S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA151 Single Variable Calculus, TEN1 Date:
SVENSK STANDARD SS-EN ISO 19108:2005/AC:2015
SVENSK STANDARD SS-EN ISO 19108:2005/AC:2015 Fastställd/Approved: 2015-07-23 Publicerad/Published: 2016-05-24 Utgåva/Edition: 1 Språk/Language: engelska/english ICS: 35.240.70 Geografisk information Modell
Kurskod: TAMS11 Provkod: TENB 12 January 2015, 08:00-12:00. English Version
Kurskod: TAMS Provkod: TENB 2 January 205, 08:00-2:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. You are allowed to use: a calculator; formel -och tabellsamling
Basic reliability concepts. Sven Thelandersson Structural Engineering Lund University
Basic reliability concepts Sven Thelandersson Structural Engineering Lund University Begreppet Tillförlitlighet Allmän definition Förmåga att uppfylla specifika krav under specificerad tid Matematisk definition
sin(x 2 ) 4. Find the area of the bounded region precisely enclosed by the curves y = e x and y = e.
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA151 Single Variable Calculus, TEN1 Date:
English Version. 1 f(x) = if 0 x θ; 0 otherwise, ) = V (X) = E(X2 ) (E(X)) 2 =
Kurskod: TAMS24 (Statistisk teori) / Provkod: TEN1 2017-01-03 14:00-18:00 Examinator/Examiner: Zhenxia Liu (Tel: 070 0895208). Please answer in ENGLISH if you can. a. You are permitted to bring: a calculator;
Module 1: Functions, Limits, Continuity
Department of mathematics SF1625 Calculus 1 Year 2015/2016 Module 1: Functions, Limits, Continuity This module includes Chapter P and 1 from Calculus by Adams and Essex and is taught in three lectures,
Kroppstemperaturen hos människa anses i regel vara 37,0 C/ 98,6 F. För att beräkna och rita grafer har programmet Minitab använts.
Syfte: Bestämma normal kroppstemperatur med tillgång till data från försök. Avgöra eventuell skillnad mellan män och kvinnor. Utforska ett eventuellt samband mellan kroppstemperatur och hjärtfrekvens.
Magic Grippers System för att enkelt bygga robotgrippers / grippers. -- Kort presentation -- Beställ komplett katalog
Magic Grippers System för att enkelt bygga robotgrippers / grippers Teknisk information - Kostnadseffektiv lösning - Enkel byggnation med profiler / magic grippers - 9 olika typer av sugkoppsläppar - Sugkoppsläppar
Second handbook of research on mathematics teaching and learning (NCTM)
Second handbook of research on mathematics teaching and learning (NCTM) The effects of classroom mathematics teaching on students learning. (Hiebert & Grouws, 2007) Inledande observationer Undervisningens
F ξ (x) = f(y, x)dydx = 1. We say that a random variable ξ has a distribution F (x), if. F (x) =
Problems for the Basic Course in Probability (Fall 00) Discrete Probability. Die A has 4 red and white faces, whereas die B has red and 4 white faces. A fair coin is flipped once. If it lands on heads,
Tentamen i 2D1396 Bioinformatik, 11 mars 2006
Tentamen i 2D1396 Bioinformatik, 11 mars 2006 Kursansvarig: Lars Arvestad Inga hjälpmedel förutom skrivmedel är tillåtna. Skriv tydligt! Skriv bara på en sida av pappret och behandla bara en uppgift per
Module 6: Integrals and applications
Department of Mathematics SF65 Calculus Year 5/6 Module 6: Integrals and applications Sections 6. and 6.5 and Chapter 7 in Calculus by Adams and Essex. Three lectures, two tutorials and one seminar. Important
Room E3607 Protein bioinformatics Protein Bioinformatics. Computer lab Tuesday, May 17, 2005 Sean Prigge Jonathan Pevsner Ingo Ruczinski
Room E3607 Protein bioinformatics 260.841 Protein Bioinformatics Computer lab Tuesday, May 17, 2005 Sean Prigge Jonathan Pevsner Ingo Ruczinski Outline of today s lab Topic Suggested time 1 Find a protein
Mer om Rainflowcykler
Mer om Kurs i Lastanalys för Utmattning SP Bygg och Mekanik Pär Johannesson Par.Johannesson@sp.se Nivåkorsningar Lastspektrum Rainflowmatris Rainflow Cycle Counting: Hysteresis and rate independence Rainflow
Methods to increase work-related activities within the curricula. S Nyberg and Pr U Edlund KTH SoTL 2017
Methods to increase work-related activities within the curricula S Nyberg and Pr U Edlund KTH SoTL 2017 Aim of the project Increase Work-related Learning Inspire theachers Motivate students Understanding
FÖRBÄTTRA DIN PREDIKTIVA MODELLERING MED MACHINE LEARNING I SAS ENTERPRISE MINER OSKAR ERIKSSON - ANALYSKONSULT
FÖRBÄTTRA DIN PREDIKTIVA MODELLERING MED MACHINE LEARNING I SAS ENTERPRISE MINER OSKAR ERIKSSON - ANALYSKONSULT VEM ÄR JAG? VAD SKA VI GÖRA? Pimafolket Vilka då? Diabetes Typ 2 Regressionsanalys Machine
STATISTISK ANALYS AV KOMPLEXA DATA
STATISTISK ANALYS AV KOMPLEXA DATA LONGITUDINELLA DATA Linda Wänström Linköpings universitet Linda Wänström (Linköpings universitet) LONGITUDINELLA DATA 1 / 56 Longitudinella data Tvärsnittsdata Flera
Tentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering
KTH Matematik Tentamen del 2 SF1511, 2018-03-16, kl 8.00-11.00, Numeriska metoder och grundläggande programmering Del 2, Max 50p + bonuspoäng (max 4p). Rättas ast om del 1 är godkänd. Betygsgränser inkl
Hur fattar samhället beslut när forskarna är oeniga?
Hur fattar samhället beslut när forskarna är oeniga? Martin Peterson m.peterson@tue.nl www.martinpeterson.org Oenighet om vad? 1.Hårda vetenskapliga fakta? ( X observerades vid tid t ) 1.Den vetenskapliga
Undergraduate research:
Undergraduate research: Laboratory experiments with many variables Arne Rosén 1, Magnus Karlsteen 2, Jonathan Weidow 2, Andreas Isacsson 2 and Ingvar Albinsson 1 1 Department of Physics, University of
ARC 32. Tvättställsblandare/Basin Mixer. inr.se
ARC 32 Tvättställsblandare/Basin Mixer inr.se SE Användning och skötsel Manualen är en del av produkten. Bevara den under hela produktens livscykel. Vi rekommenderar er att noggrant läsa igenom manualen
Gradientbaserad strukturoptimering
Gradientbaserad strukturoptimering Anders Klarbring solutions by Bo Torstenfelt, Thomas Borrvall and others Division of Mechanics, Linköping University, Sweden ProOpt Workshop - October 7, 2010 Klarbring