Introduktion till L A TEX
|
|
- Gösta Gustafsson
- för 5 år sedan
- Visningar:
Transkript
1 Introduktion till L A TEX Niels Chr. Overgaard N. Chr. Overgaard Intro. LATEX / 12
2 Varför L A TEX? Syftet med dokumentpreparationssystemet L A TEX är att generera välstrukturerade dokument som innehåller matematisk text och formler: En formel: Följande integral är välkänd från sannolikhetsteori och statistik: e x 2 /2 dx = 2π. Den härleds m.h.a. dubbeltintegraler i kursen Analys i flera variabler. N. Chr. Overgaard Intro. LATEX / 12
3 Hur kom L A TEX till? Skapades av Donald Knuth i slutet av 70-talet. Knuth var missnöjd med förlagets typsättning av hans opus magnum: The Art of Computer Programming. Knuth programmerade själv ett system (TEX ), inklusiva typsnitt, som gör det möjligt att själv skapa dokument med matematisk text. Leslie Lamport skrev 1984 ett makropaket till TEX som gör det enklare att använda. Detta paket kallas L A TEX N. Chr. Overgaard Intro. LATEX / 12
4 Hur kom L A TEX till? Skapades av Donald Knuth i slutet av 70-talet. Knuth var missnöjd med förlagets typsättning av hans opus magnum: The Art of Computer Programming. Knuth programmerade själv ett system (TEX ), inklusiva typsnitt, som gör det möjligt att själv skapa dokument med matematisk text. Leslie Lamport skrev 1984 ett makropaket till TEX som gör det enklare att använda. Detta paket kallas L A TEX N. Chr. Overgaard Intro. LATEX / 12
5 Hur kom L A TEX till? Skapades av Donald Knuth i slutet av 70-talet. Knuth var missnöjd med förlagets typsättning av hans opus magnum: The Art of Computer Programming. Knuth programmerade själv ett system (TEX ), inklusiva typsnitt, som gör det möjligt att själv skapa dokument med matematisk text. Leslie Lamport skrev 1984 ett makropaket till TEX som gör det enklare att använda. Detta paket kallas L A TEX N. Chr. Overgaard Intro. LATEX / 12
6 Hur kom L A TEX till? Skapades av Donald Knuth i slutet av 70-talet. Knuth var missnöjd med förlagets typsättning av hans opus magnum: The Art of Computer Programming. Knuth programmerade själv ett system (TEX ), inklusiva typsnitt, som gör det möjligt att själv skapa dokument med matematisk text. Leslie Lamport skrev 1984 ett makropaket till TEX som gör det enklare att använda. Detta paket kallas L A TEX N. Chr. Overgaard Intro. LATEX / 12
7 Ett exempel Den aritmetiska-geometriska olikheten Talen (a + b)/2 och ab kallas det aritmetiska respektive det geometriska medelvärdet av a och b. Det finns följande relation mellen dem: Sats För godtyckliga reella tal a, b 0 gäller ab a + b 2. Det gäller likhet i olikheten om och endast om a = b. N. Chr. Overgaard Intro. LATEX / 12
8 Bevis. Observera först den elementära olikheten ( a b) 2 0. Utvecklar man kvadraten får man 0 ( a b) 2 = ( a) 2 2 a b + ( b) 2 = a 2 ab + b varav olikheten följer om man flyttar ab till vänsterledet. Observera att likhet gäller i (1) om och endast om 0 = ( a b) 2, dvs. om a b = 0 eller a = b. Därmed är satsen bevisad. N. Chr. Overgaard Intro. LATEX / 12
9 Bevis. Observera först den elementära olikheten ( a b) 2 0. Utvecklar man kvadraten får man 0 ( a b) 2 = ( a) 2 2 a b + ( b) 2 = a 2 ab + b varav olikheten följer om man flyttar ab till vänsterledet. Observera att likhet gäller i (1) om och endast om 0 = ( a b) 2, dvs. om a b = 0 eller a = b. Därmed är satsen bevisad. N. Chr. Overgaard Intro. LATEX / 12
10 Bevis. Observera först den elementära olikheten ( a b) 2 0. Utvecklar man kvadraten får man 0 ( a b) 2 = ( a) 2 2 a b + ( b) 2 = a 2 ab + b varav olikheten följer om man flyttar ab till vänsterledet. Observera att likhet gäller i (1) om och endast om 0 = ( a b) 2, dvs. om a b = 0 eller a = b. Därmed är satsen bevisad. N. Chr. Overgaard Intro. LATEX / 12
11 Bevis. Observera först den elementära olikheten ( a b) 2 0. Utvecklar man kvadraten får man 0 ( a b) 2 = ( a) 2 2 a b + ( b) 2 = a 2 ab + b varav olikheten följer om man flyttar ab till vänsterledet. Observera att likhet gäller i (1) om och endast om 0 = ( a b) 2, dvs. om a b = 0 eller a = b. Därmed är satsen bevisad. N. Chr. Overgaard Intro. LATEX / 12
12 L A TEX struktur: Preamble Innan man börjar skriva sin text behövs följande preamble: Kod: \documentclass[a4paper, 12pt]{article} \usepackage[swedish]{babel} \usepackage[t1]{fontenc} \begin{document}... här kommer den text man vill skriva. \end{document} N. Chr. Overgaard Intro. LATEX / 12
13 L A TEX struktur: Skriva löpande text kod: \documentclass[a4paper, 12pt]{article} \usepackage[swedish]{babel} \usepackage[t1]{fontenc} \begin{document} Mellanslag saknar betydelse. Radbrytning\\ görs med två backslash-tecken. \end{document} Resultat: Mellanslag saknar betydelse. Radbrytning görs med två backslash-tecken. N. Chr. Overgaard Intro. LATEX / 12
14 L A TEX struktur: Skriva löpande text kod: \documentclass[a4paper, 12pt]{article} \usepackage[swedish]{babel} \usepackage[t1]{fontenc} \begin{document} Mellanslag saknar betydelse. Radbrytning\\ görs med två backslash-tecken. \end{document} Resultat: Mellanslag saknar betydelse. Radbrytning görs med två backslash-tecken. N. Chr. Overgaard Intro. LATEX / 12
15 L A TEX struktur: Formler i löpande text I löpande text markeras formler med dollartecken: Kod: Fermat påstod att det för $n>2$ saknas (icke-triviala) heltalslösningar till ekvationen $x^n+y^n = z^n$. Resultat: Fermat påstod att det för n > 2 saknas (icke-triviala) heltalslösningar till ekvationen x n + y n = z n. N. Chr. Overgaard Intro. LATEX / 12
16 L A TEX struktur: Formler i löpande text I löpande text markeras formler med dollartecken: Kod: Fermat påstod att det för $n>2$ saknas (icke-triviala) heltalslösningar till ekvationen $x^n+y^n = z^n$. Resultat: Fermat påstod att det för n > 2 saknas (icke-triviala) heltalslösningar till ekvationen x n + y n = z n. N. Chr. Overgaard Intro. LATEX / 12
17 L A TEX struktur: Formler i fristående läge I Kod: Följande är självklart \[ \int_{-1}^1\frac{1}{x^2+1}\,dx = \frac{\pi}{2} \] när man har läst analys i en variabel. Resultat: Följande är självklart 1 1 när man har läst analys i en variabel. 1 x dx = π 2 N. Chr. Overgaard Intro. LATEX / 12
18 L A TEX struktur: Formler i fristående läge I Kod: Följande är självklart \[ \int_{-1}^1\frac{1}{x^2+1}\,dx = \frac{\pi}{2} \] när man har läst analys i en variabel. Resultat: Följande är självklart 1 1 när man har läst analys i en variabel. 1 x dx = π 2 N. Chr. Overgaard Intro. LATEX / 12
19 L A TEX struktur: Formler i fristående läge II Kod: Följande är också självklart: \begin{equation}\label{huvudsats} \frac{d}{dt}\int_0^x f(t)\,dt = f(x) \end{equation} Ekvationen i (\ref{huvudsats}) kallas {\em analysens huvudsats}. Resultat: Följande är också självklart: Ekvationen i (1) kallas analysens huvudsats. d x f (t) dt = f (x) (1) dt 0 N. Chr. Overgaard Intro. LATEX / 12
20 L A TEX struktur: Formler i fristående läge II Kod: Följande är också självklart: \begin{equation}\label{huvudsats} \frac{d}{dt}\int_0^x f(t)\,dt = f(x) \end{equation} Ekvationen i (\ref{huvudsats}) kallas {\em analysens huvudsats}. Resultat: Följande är också självklart: Ekvationen i (1) kallas analysens huvudsats. d x f (t) dt = f (x) (1) dt 0 N. Chr. Overgaard Intro. LATEX / 12
21 Miktex och WinShell N. Chr. Overgaard Intro. LATEX / 12
22 Mer om L A TEX L A TEX-lab ons 19/9 kl Per Forebys kompendium Mer info på kurshemsidan Efter rasten: föreläsning om primtal TEX-lejonet med familj (av Duane Bibby). N. Chr. Overgaard Intro. LATEX / 12
23 Mer om L A TEX L A TEX-lab ons 19/9 kl Per Forebys kompendium Mer info på kurshemsidan Efter rasten: föreläsning om primtal TEX-lejonet med familj (av Duane Bibby). N. Chr. Overgaard Intro. LATEX / 12
24 Mer om L A TEX L A TEX-lab ons 19/9 kl Per Forebys kompendium Mer info på kurshemsidan Efter rasten: föreläsning om primtal TEX-lejonet med familj (av Duane Bibby). N. Chr. Overgaard Intro. LATEX / 12
25 Mer om L A TEX L A TEX-lab ons 19/9 kl Per Forebys kompendium Mer info på kurshemsidan Efter rasten: föreläsning om primtal TEX-lejonet med familj (av Duane Bibby). N. Chr. Overgaard Intro. LATEX / 12
Introduktion till L A TEX
Introduktion till L A TEX Niels Chr. Overgaard 2018-09-17 N. Chr. Overgaard Intro. LATEX 2018-09-17 1 / 14 Varför L A TEX? Syftet med dokumentpreparationssystemet L A TEX är att generera välstrukturerade
Projektrapporten: Format och L A TEX -tricks
Projektrapporten: Format och L A TEX -tricks Niels Chr. Overgaard 2016-04-04 N. Chr. Overgaard Projektrapporten 2016-04-04 logoonly 1 / 26 Krav till projektrapporten Populärvetenskaplig rapport och presentation
Projektrapporten: Format och L A TEX -tricks
Projektrapporten: Format och L A TEX -tricks Niels Chr. Overgaard 2017-03-30 N. Chr. Overgaard Projektrapporten 2017-03-030 logoonly 1 / 27 Krav till projektrapporten Populärvetenskaplig rapport och presentation
Projektrapporten: Format och L A TEX -tekniker
Projektrapporten: Format och L A TEX -tekniker Niels Chr. Overgaard 2019-03-26 N. Chr. Overgaard Projektrapporten 2019-03-26 1 / 31 Krav till projektrapporten Populärvetenskaplig rapport och presentation
Matematisk kommunikation för Π Problemsamling
Problemsamling Charlotte Soneson & Niels Chr. Overgaard september 200 Problem. Betrakta formeln n k = k= n(n + ). 2 Troliggör den först genom att exempelvis i summan +2+3+4+5+6 para ihop termer två och
Matematisk kommunikation för Π Problemsamling
Problemsamling Niels Chr. Overgaard & Johan Fredriksson 3 september 205 Problem 0. Skriv följande summor mha summationstecken. ( Dvs på formen q k=p a k där k är en räknare som löper med heltalssteg mellan
Introduktion till L A TEX
Introduktion till L A TEX Marlena Nowaczyk, Martin Tamm Oktober 2014 1 Att komma igång L A TEX är ett typsättningssystem som skapats av Leslie Lamport och som i sin tur bygger på TEX som skapats av Donald
Matematisk Modellering
Matematisk Modellering Föreläsning 1 Anders Heyden Matematikcentrum Lunds Universitet Matematisk Modellering p.1/37 Denna föreläsning (läsvecka 1) Vad handlar kursen om, mål, kurskrav, ide. Matematisk
Ordbehandling. Föreläsning 4 L A TEX. Layout av text. Förberedelse inför laboration 3.
Ordbehandling Förberedelse inför laboration 3. Ordbehandling L A TEX Mall för rapport Föreläsning 4 L A TEX Dokumentstruktur: dokumentklasser, omgivningar, text, stycken, listor, tabeller,... Programlistor
Hur man skriver matematik
Hur man skriver matematik Niels Chr. Overgaard 2018-10-01 N. Chr. Overgaard Skriva matematik 2018-10-01 1 / 12 Information: Opposition och kompisgranskning En del av inlämningsuppgift går ut på att man
INDUKTION OCH DEDUKTION
Explorativ övning 3 INDUKTION OCH DEDUKTION Syftet med övningen är att öka Din problemlösningsförmåga och bekanta Dig med olika bevismetoder. Vårt syfte är också att öva skriftlig framställning av matematisk
Ordbehandling. Föreläsning 4 L A TEX. Layout av text. Förberedelse inför laboration 3.
Ordbehandling Förberedelse inför laboration 3. Ordbehandling L A TEX Mall för rapport Föreläsning 4 L A TEX Dokumentstruktur: dokumentklasser, omgivningar, text, stycken, listor, tabeller,... Programlistor
Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.
Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.
Föreläsning 8 för TNIU23 Integraler och statistik
Föreläsning 8 för TNIU Integraler och statistik Krzysztof Marciniak ITN, Campus Norrköping, krzma@itn.liu.se www.itn.liu.se/ krzma ver. - 9--6 Inledning - lite om statistik Statistik är en gren av tillämpad
Matematisk Modellering
Matematisk Modellering Föreläsning 1 Magnus Oskarsson Matematikcentrum Lunds Universitet Matematisk Modellering p.1/34 Denna föreläsning (läsvecka 1) Vad handlar kursen om, mål, kurskrav, ide. Matematisk
Svar till vissa uppgifter från första veckan.
Svar till vissa uppgifter från första veckan. Svar till kortuppgifter F:. Ja! Förhoppningsvis så ser man direkt att g fx) är ett polynom. Vidare så gäller det att g fα) = gfα)) = gβ) = 0. Använd faktorsatsen!
TSKS06 - Rapportskrivning
TSKS06 - Rapportskrivning Hannes Ovrén Institutionen för systemteknik, ISY Computer Vision Laboratory Linköpings Universitet 8 februari 2016 Hannes Ovrén (Linköpings Universitet) TSKS06 - Rapportskrivning
RIEMANNSUMMOR. Den bestämda integralen definieras med hjälp av Riemannsummor. Låt vara en begränsad funktion,, reella tal och. lim.
RIEMANNSUMMOR Låt vara en begränsad funktion,, reella tal och. Den bestämda integralen definieras med hjälp av ä ä, ; lim. Om funktionen har en elementär primitivfunktion då är insättningsformeln (Newton-
SF1625 Envariabelanalys
Kursmål och pluggtips Institutionen för matematik KTH Kursmål Kursmålen står på sidan Kursplan mm (länk i menyn). De anger vad man ska kunna för att bli godkänd på kursen. I den här pdf:en går jag igenom
MÖNSTER OCH TALFÖLJDER
MÖNSTER OCH TALFÖLJDER FÖRELÄSNINGENS INNEHÅLL OCH SYFTE Genomgång av viktiga matematiska begrepp, uttryck och symboler med anknytning till mönster och talföljder. Skälet till att välja detta innehåll
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 4 7 november 2017 1 / 29 Idag Förra gången Viktiga kontinuerliga fördelningar (Kap. 3.6) Fördelningsfunktion (Kap. 3.7) Funktioner av stokastiska
Utsagor (Propositioner) sammansatta utsagor sanningstabeller logisk ekvivalens predikat (öppna utsagor) kvantifierare Section
Föreläsning 1 Utsagor (Propositioner) sammansatta utsagor sanningstabeller logisk ekvivalens predikat (öppna utsagor) kvantifierare Section 1.1-1.3 i kursboken Definition En utsaga (proposition) är ett
Tentamen i Envariabelanalys 2
Linköpings universitet Matematiska institutionen Kurskod: TATA42 Provkod: TEN Tentamen i Envariabelanalys 2 206 0 8, 4 9 Inga hjälpmedel. Lösningarna ska vara fullständiga, välmotiverade, ordentligt skrivna
TATA42: Föreläsning 5 Serier ( generaliserade summor )
TATA42: Föreläsning 5 Serier ( generaliserade summor ) Johan Thim 0 januari 207 En funktion s: N R brukar kallas talföljd, och vi skriver ofta s n i stället för s(n). Detta innebär alltså att för varje
Något om medelvärden
350 Något om medelvärden Pepe Winkler Uppsala Universitet Om a och a är två reella, positiva tal så kallas talet A = a + a för det aritmetiska medelvärdet och talet G = a a för det geometriska medelvärdet
SF1911: Statistik för bioteknik
SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion
Linköpings Universtitet. Ett projekt om LA TE X
Linköpings Universtitet Ett projekt om LA TE X Johannes Dahlberg, johda058@student.liu.se Henrik Risberg, henri407@student.liu.se André Teintang, andte949@student.liu.se Joacim Wiell, joavi869@student.liu.se
TAMS79: Föreläsning 10 Markovkedjor
TAMS79: Föreläsning 0 Markovkedjor Johan Thim december 08 0. Markovkedjor Vi ska nu betrakta en speciell tidsdiskret diskret stokastisk process, nämligen Markovkedjan. Vi börjar med en definition Definition.
TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar
TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar Johan Thim 9 januari 27 Entydighet Om vi har ett polynom som approximerar en snäll funktion bra, kan vi då vara säkra på att koefficienterna
TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar
TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar Johan Thim 24 mars 29 Entydighet Om vi har ett polynom som approimerar en snäll funktion bra, kan vi då vara säkra på att koefficienterna i
TATA42: Föreläsning 10 Serier ( generaliserade summor )
TATA42: Föreläsning 0 Serier ( generaliserade summor ) Johan Thim 5 maj 205 En funktion s: N R brukar kallas talföljd, och vi skriver ofta s n i stället för s(n). Detta innebär alltså att för varje heltal
Serier. egentligen är ett gränsvärde, inte en summa: s n, där s n =
Serier Serier eller oändliga summor har flyktigt behandlats redan i tidigare kurser. Vi ska nu gå igenom teorin på ett lite mer systematiskt sätt. I många fall spelar det ingen roll om termerna a k är
TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer
TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både
Chalmers tekniska högskola Datum: kl Telefonvakt: Jonny Lindström MVE475 Inledande Matematisk Analys
MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 1715 kl. 14. - 18. Tentamen Telefonvakt: Jonny Lindström 733 674 MVE475 Inledande Matematisk Analys Tentan rättas och bedöms anonymt. Skriv
Lösningar till MVE017 Matematisk analys i en variabel för I x 3x y = x. 3x2 + 4.
Lösningar till MVE07 Matematisk analys i en variabel för I 8-0-0. (a Division ger y + 5x x 2 + 4 y x x2 + 4. 5x x 2 + 4 dx 5 2 ln(x2 + 4, vilket ger den integrerande faktorn (x 2 + 4 5/2. Ekvationen multipliceras
FÖ: MVE045, Riemann integral, tekniker Zoran Konkoli, HT 2018
FÖ: MVE045, Riemann integral, tekniker Zoran Konkoli, HT 2018 VIKTIG: Vi hinner inte gå igenom allt som ni skall kunna under föreläsningar. Varje föreläsning är alltid en tolkning av ADAMS boken, och ibland
TSKS06 - Rapportskrivning
TSKS06 - Rapportskrivning Hannes Ovrén & Lasse Alfredsson Institutionen för systemteknik, ISY Computer Vision Laboratory Linköpings Universitet Hannes Ovrén & Lasse Alfredsson (Linköpings Universitet)
Hur man skriver matematik
Hur man skriver matematik Niels Chr. Overgaard 2015-09-28 1 / 8 Opposition och kompisgranskning En del av inlämningsuppgift går ut på att man granskar och opponerar på en annan kursdeltagares lösning.
Chalmers tekniska högskola Datum: kl Telefonvakt: Christoffer Standar LMA033a Matematik BI
MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 443 kl. 8.3.3 Tentamen Telefonvakt: Christoffer Standar 73 88 34 LMA33a Matematik BI Tentan rättas och bedöms anonymt. Skriv tentamenskoden
SF1625 Envariabelanalys Tentamen Lördagen den 11 januari, 2014
SF65 Envariabelanalys Tentamen Lördagen den januari, 04 Skrivtid: 9:00-4:00 Tillåtna hjälpmedel: inga Examinator: Bengt Ek, Maria Saprykina Tentamen består av nio uppgifter som vardera ger maximalt fyra
gränsvärde existerar, vilket förefaller vara en naturlig definition (jämför med de generaliserade integralerna). I exemplet ovan ser vi att 3 = 3 n n
TATA42: Föreläsning 5 Serier ( generaliserade summor ) Johan Thim 5 mars 208 En funktion s: N R brukar kallas talföljd, och vi skriver ofta s n i stället för s(n). Detta innebär alltså att för varje heltal
x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a
Elementa Årgång 50, 967 Årgång 50, 967 Första häftet 2603. Låt ξ, ξ 2,..., ξ n vara stokastiska variabler med väntevärden E[ξ i ], i =, 2,..., n. Visa att E[max(ξ, ξ 2,..., ξ n )] max(e[ξ ], E[ξ 2 ],...,
Resträkning och ekvationer
64 Resträkning och ekvationer Torsten Ekedahl Stockholms Universitet Beskrivning av uppgiften. Specialarbetet består i att sätta sig in i hur man räknar med rester vid division med primtal, hur man löser
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 6 Väntevärden Korrelation och kovarians Stora talens lag. Jörgen Säve-Söderbergh
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 6 Väntevärden Korrelation och kovarians Stora talens lag Jörgen Säve-Söderbergh Väntevärde för en funktion av en stokastisk variabel Om
Svängningar - laborationsrapport + L A TEX-nyttigheter Fysik - mekanik och vågor (FAFA01) Första utkastet 12 maj 2014
Svängningar - laborationsrapport + L A TEX-nyttigheter Fysik - mekanik och vågor (FAFA01) Första utkastet 12 maj 2014 Trula Teknolog, ael10fft Truls Teknolog, ael10ftd Handledare: Magnus Håkansson Utförandedatum:
ÖVN 6 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF Nyckelord och innehåll. a n (x x 0 ) n.
ÖVN 6 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF683 HTTP://KARLJODIFFTRANS.WORDPRESS.COM KARL JONSSON Nyckelord och innehåll Potensserielösningar Analytiska funktioner Konvergensradie Rot- och
DERIVATA. = lim. x n 2 h h n. 2
DERIVATA Läs avsnitten 6.-6.5. Lös övningarna 6.cd, 6.2, 6.3bdf, 6.4abc, 6.5bcd, 6.6bcd, 6.7, 6.9 oc 6.. Läsanvisningar Allmänt gäller som vanligt att bevisen inte ingår i kursen, men det är mycket nyttigt
TEX och L A TEX i desktop publishing
TEX och L A TEX i desktop publishing Anders Källström 01 11 20 Innehåll 1 Vad är TEX och L A TEX? 1 2 Att skriva text 2 2.1 Typsnitt....................................... 3 2.2 Miljöer.......................................
Tentamen i matematik. f(x) = ln(ln(x)),
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 6. Normalfördelning, Centrala gränsvärdessatsen, Approximationer Jan Grandell & Timo Koski 06.02.2012 Jan Grandell & Timo Koski () Matematisk statistik
Anteckningar för kursen "Analys i en Variabel"
Anteckningar för kursen "Analys i en Variabel" Simone Calogero Vecka 4 Viktig information. Dessa anteckningar är inte avsedda som en ersättning för kurs litteratur men bara som en kort sammanfattning av
Explorativ övning 7 KOMPLEXA TAL
Explorativ övning 7 KOMPLEXA TAL Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet då man försökte lösa kvadratiska
Övningshäfte 2: Induktion och rekursion
GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2017 INLEDANDE ALGEBRA Övningshäfte 2: Induktion och rekursion Övning D Syftet är att öva förmågan att utgående från enkla samband, aritmetiska och geometriska,
Fö relä sning 1, Kö system vä ren 2014
Fö relä sning 1, Kö system vä ren 2014 Här följer en mycket kort sammanfattning av det viktigaste i Föreläsning 1. Observera att dessa anteckningar inte kan ersätta läroboken, de är alltför kortfattade
Meningslöst nonsens. December 14, 2014
December 4, 204 Fråga. Hur visar man att sin(x) x tan(x)? Fråga. Hur visar man att sin(x) x tan(x)? Fråga 2. Hur visar man att a > lim n a n =? Fråga 2. Hur visar man att a > lim n a n =? Röd: Det är ett
Lösningar till MVE016 Matematisk analys i en variabel för I yy 1 + y 2 = x.
Lösningar till MVE6 Matematisk analys i en variabel för I 7-4-. a Division ger yy + y x. Ekvationen är alltså separabel. Integration av vänstra ledet ger y + y dy ln + y Efter integration blir det alltså
Armin Halilovic: EXTRA ÖVNINGAR
ABSOLUTBELOPP Några exempel som du har gjort i gymnasieskolan: a) = b) 0 =0 c) 5 = 5 Alltså x 0 et av ett tal x är lika med själva talet x om talet är positivt eller lika med 0 et av x är lika med det
Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
Typsättning med TEX och L A TEX
Typsättning med TEX och L A TEX Lektion 1 Viktor Ahlqvist http://www.texempelvis.se E-sektionens teletekniska avdelning 27 mars 2014 Kursinnehåll Syfte Kunna skriva rapporter och inlämningar i Latex Kunna
SF1661 Perspektiv på matematik Tentamen 20 oktober 2011 kl Svar och lösningsförslag
Hans Thunberg KTH Matematik SF66 Perspektiv på matematik Tentamen 0 oktober 0 kl 08.00.00 Svar och lösningsförslag () Bestäm ekvationen för den cirkel som passerar genom punkten (, 4) och har sin medelpunkt
Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000
2011-12-21 Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000 Kurs 1a och 2a i Gy 2011 jämfört med kurs A och B i Gy 2000 Poängomfattningen har ökat från 150 poäng
ENDIMENSIONELL ANALYS B1 FÖRELÄSNING XII. Föreläsning XII. Mikael P. Sundqvist
Föreläsning XII Mikael P. Sundqvist Vad handlar gränsvärden om? Det är en kamp mellan epsilon (ε) och delta (δ) analystens främsta verktyg! Klicka här för bild på Barry Simon Gränsvärde av f (x) då x +
Läsanvisningar till Analys B, HT 15 Del 1
Läsanvisningar till Analys B, HT 15 Del 1 Dag 1 Avsnitt 6.1 Definition av trappfunktion och integral av en trappfunktion. Räkneregler (de är mer eller mindre uppenbara). Definition av Riemannintegralen
Lösningsförslag till tentamensskrivning i SF1610 Diskret Matematik för CINTE 30 maj 2018, kl
1 Matematiska Institutionen KTH Lösningsförslag till tentamensskrivning i SF1610 Diskret Matematik för CINTE 30 maj 2018, kl 08.00 13.00. Examinator: Petter Brändén Kursansvarig: Olof Sisask Hjälpmedel:
Meningslöst nonsens. November 19, 2014
November 19, 2014 Fråga 1. Om f (x) är begränsad kommer F(x) = x 0 f (t)dt att vara kontinuerlig? Deriverbar? Fråga 1. Om f (x) är begränsad kommer F(x) = x 0 f (t)dt att vara kontinuerlig? Deriverbar?
Lösningsförslag envariabelanalys
Lösningsförslag envariabelanalys 09-06-05. Ekvationen är linjär och har det karakteristiska polynomet pr) = r 4 + r 3 + 5r = r r + r + 5) = r r + i)r + + i). Således ges lösningarna till den homogena ekvationen
HEM KURSER SKRIV UT HEM ÄMNE SKRIV UT
Matematik HEM KURSER SKRIV UT MA200 - Matematik A 110 poäng inrättad 1994-07 SKOLFS: 1994:9 et för kursen är att ge de matematiska kunskaper som krävs för att ta ställning i vardagliga situationer i privatliv
Studietips inför kommande tentamen TEN1 inom kursen TNIU23
Studietips inför kommande tentamen TEN1 inom kursen TNIU23 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande
Övningshäfte 6: 2. Alla formler är inte oberoende av varandra. Försök att härleda ett par av de formler du fann ur några av de övriga.
GÖTEBORGS UNIVERSITET MATEMATIK 1, MAM100, HT2005 MATEMATISK BASKURS Övningshäfte 6: Syftet med övningen är att utforska strukturen hos talsystemen under addition respektive multiplikation samt sambandet
TENTAMEN 8 jan 2013 Tid: Kurs: Matematik 1 HF1901 (6H2901) 7.5p Lärare:Armin Halilovic
TENTAMEN 8 jan 0 Tid: 08.5-.5 Kurs: Matematik HF90 (6H90) 7.5p Lärare:Armin Halilovic Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat formelblad.) Fullständiga lösningar skall presenteras
Inlämning 1: Bedömning och kommentarer
Inlämning 1: Bedömning och kommentarer Inledning. Här är vår bedömning av era lösningar till inlämningsuppgift 1. Därmed kommer vi till en viktig del av kursen återkopplingen. De som inte har fått godkänd
Inledande matematik M+TD
Introduktionsföreläsning p. 1/13 Introduktionsföreläsning Inledande matematik M+TD Stig Larsson http://www.math.chalmers.se/ stig Matematiska vetenskaper Chalmers tekniska högskola Göteborgs universitet
Repetitionsfrågor i Flervariabelanalys, Ht 2009
Repetitionsfrågor i Flervariabelanalys, Ht 2009 Serier 1. Visa att för en positiv serie är summan oberoende av summationsordningen. 2. Visa att för en absolutkonvergent serie är summan oberoende av summationsordningen.
TAMS79: Föreläsning 6. Normalfördelning
TAMS79: Föreläsning 6 Normalfördelningen Johan Thim (johan.thim@liu.se 3 november 018 Normalfördelning Definition. Låt µ R och > 0. Om X är en stokastisk variabel med täthetsfunktion f X ( = 1 ( ep ( µ,
Crash Course Envarre2- Differentialekvationer
Crash Course Envarre2- Differentialekvationer Mattehjälpen Maj 2018 Contents 1 Introduktion 2 2 Integrerande faktor 2 3 Separabla diffekvationer 3 4 Linjära diffekvationer 4 4.1 Homogena lösningar till
Kurvlängd och geometri på en sfärisk yta
325 Kurvlängd och geometri på en sfärisk yta Peter Sjögren Göteborgs Universitet 1. Inledning. Geometrin på en sfärisk yta liknar planets geometri, med flera intressanta skillnader. Som vi skall se nedan,
Dugga 2 i Matematisk grundkurs
Linköpings tekniska högskola Matematiska institutionen Tillämpad matematik Kurskod: TATA68 Provkod: TEN Inga hjälpmedel är tillåtna. Dugga i Matematisk grundkurs 013 16 kl 8.00 1.00 Lösningarna skall vara
Kommentarer till inlämningsuppgift 1.
Kommentarer till inlämningsuppgift 1. Inledning. Inlämningsuppgift 1 i Matematisk kommunikation rättas genom att ge ut en lista med typfel. Har man fått godkänt sin lösning, får man tillbaka pappersversionen
Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.
Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF644) /6 29. Bestäm med derivatans definition d dx ex. Derivatans definition är f (x) = lim h h ( f(x + h)
Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs.
Uppföljning av diagnostiskt prov 06-0- Repetition av kursmoment i TNA00-Matematisk grundkurs. Reella tal, intervall, räta linjer, cirklar Faktorsatsen, faktoriseringar, polynomekvationer Olikheter Ekvationer
Undersökande arbetssätt i matematik 1 och 2
Matematik Gymnasieskola Modul: Matematikundervisning med digitala verktyg Del 6: Undersökande arbetssätt med matematisk programvara Undersökande arbetssätt i matematik 1 och 2 I texten Undersökande arbetssätt
Övningshäfte 3: Polynom och polynomekvationer
LMA100 VT2005 ARITMETIK OCH ALGEBRA DEL 2 Övningshäfte 3: Polynom och polynomekvationer Syftet med denna övning är att repetera gymnasiekunskaper om polynom och polynomekvationer samt att bekanta sig med
LaTeX. Grunderna till dokumentsystemet LaTeX. Eric Elfving Institutionen för Datavetenskap (IDA)
LaTeX Grunderna till dokumentsystemet LaTeX Eric Elfving Institutionen för Datavetenskap (IDA) LaTeX LaTeX är ett document preperation system Vanliga ordbehandlare (t.ex. Word och OpenOffice) fungerar
Kapitel 3. Datorprogram för fysiker
Kapitel 3. Datorprogram för fysiker Inom fysiken är datorerna mycket viktiga, och de första elektroniska datorerna byggdes just för att lösa fysikproblem. Nuförtiden används datorer också för mycket annat
Tentamen TMA044 Flervariabelanalys E2
Tentamen TMA044 Flervariabelanalys E2 205-0-05 kl. 4.00-8.00 Examinator: Peter Hegarty, Matematiska vetenskaper, Chalmers Telefonvakt: Dawan Mustafa, telefon: 0703 088 304 Hjälpmedel: bifogat formelblad,
Instuderingsfrågor i Funktionsteori
Instuderingsfrågor i Funktionsteori Anvisningar. Avsikten med dessa instuderingsfrågor är att ge Dig möjlighet att fortlöpande kontrollera att Du någorlunda behärskar kursens teori. Om Du märker att Du
Grundläggande matematisk statistik
Grundläggande matematisk statistik Väntevärde, varians, standardavvikelse, kvantiler Uwe Menzel, 28 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Väntevärdet X : diskret eller kontinuerlig slumpvariable
Föreläsning 5: Summor (forts) och induktionsbevis
ht01 Föreläsning 5: Summor (forts) och induktionsbevis Några viktiga summor Det är inte alltid möjligt att hitta uttryck för summor beskriva med summanotation, men vi tar här upp tre viktiga fall: Sats:
A1:an Repetition. Philip Larsson. 6 april Kapitel 1. Grundläggande begrepp och terminologi
A1:an Repetition Philip Larsson 6 april 013 1 Kapitel 1. Grundläggande begrepp och terminologi 1.1 Delmängd Om ändpunkterna ska räknas med används symbolerna [ ] och raka sträck. Om ändpunkterna inte skall
Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik
Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 2-5-5 kl 8.3-3.3 Hjälpmedel : Inga hjälpmedel utöver bifogat
Institutionen för Matematik, KTH Torbjörn Kolsrud
Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 6, Differential- och integralkalkyl II, del, envariabel, för F. Tentamen torsdag 3 maj 7, 8.-3. Förslag till lösningar.. Ange definitions- och värdemängderna
SF1625 Envariabelanalys
Föreläsning 18 Institutionen för matematik KTH 12 december 2017 Idag Talföljder Serier Jämförelse med integraler (Cauchy s integralkriterium) Andra konvergenskriterier (jämförelsekriterier) Mer i morgon
Läsanvisningar Henrik Shahgholian
Institutionen för matematik SF1626 Flervariabelanalys Läsanvisningar Henrik Shahgholian Läsanvisningarna nedan är har tagits fram som hjälpmedel för de studenter som vill helst ha en snabb tillgång till
Tillämpningar av integraler: Area, skivformeln för volymberäkning, båglängd, rotationsarea, integraler och summor
Tillämpningar av integraler: Area, skivformeln för volymberäkning, båglängd, rotationsarea, integraler och summor Areaberäkningar En av huvudtillämpningar av integraler är areaberäkning. Nedan följer ett
Lokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 3. Ekvationer och geometri. Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
Generaliserade integraler. Definitionen. J amf orelsesatser. Vad skall vi j amf ora med? Absolutkonvergens Dagens amnen 1 / 10
Dagens ämnen 1 / 10 Dagens ämnen Generaliserade integraler. 1 / 10 Dagens ämnen Generaliserade integraler. Definitionen. 1 / 10 Dagens ämnen Generaliserade integraler. Definitionen. Jämförelsesatser. 1
Fö relä sning 1, Kö system 2015
Fö relä sning 1, Kö system 2015 Här följer en kort sammanfattning av det viktigaste i Föreläsning 1. Kolla kursens hemsida minst en gång per vecka. Övningar kommer att läggas ut där, skriv ut dem och ha
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har
POLYNOM OCH POLYNOMEKVATIONER
Explorativ övning 8 POLYNOM OCH POLYNOMEKVATIONER Syftet med denna övning är att repetera gymnasiekunskaper om polynom och polynomekvationer samt att bekanta sig med en del nya egenskaper hos polynom.
Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 10 januari 2017 kl. 14:00-19:00. a+bx e x 2 dx
KTH, Matematik Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 10 januari 2017 kl. 14:00-19:00 Tentamen består av åtta uppgifter där vardera uppgift ger maximalt fyra poäng. Preliminära