Föreläsning 2: A/ modellera och lösa LP-problem. TAOP52: Föreläsning 2. Att modellera och lösa LP-problem
|
|
- Sofia Hedlund
- för 6 år sedan
- Visningar:
Transkript
1 TAOP52: Föreläsning 2 Att modellera och lösa LP-problem TAOP52: Föreläsning 2 2 Föreläsning 2: A/ modellera och lösa LP-problem Problemställning i ord matema=sk modell AMPL-modell CPLEX resultatutskrid svar på den givna problemställningen 1
2 TAOP52: Föreläsning 2 3 Verkligt problem Iden=fiering, avgränsningar, förenklingar, antaganden Verifiering Validering Förenklat problem Op=meringsmodell Lösning Formulering Lösningsmetod Resultat TAOP52: Föreläsning 2 4 Problemställning i ord matematisk modell Beslut Variabler Mål Målfunk=on Begränsningar Bivillkor 2
3 TAOP52: Föreläsning 2 5 Exempel: Produk=onsplanering Produk=on av två olika produkter. Maximera den totala vinsten. Resurs=llgång vid de två =llverkningsavdelningarna: avd 1: 240h avd 2: 140h Produkt 1 vinst/enhet: 30 kr resursåtgång avd 1: 4h resursåtgång avd 2: 2h begränsad ederfrågan: 40 st Produkt 2 vinst/enhet: 20 kr resursåtgång avd 1: 3h resursåtgång avd 2: 2h TAOP52: Föreläsning 2 6 Modellformulering Variabeldefini=on: x i = antalet =llverkade av produkt i, i = 1, 2 Matema=sk modell: max z = 30x x 2 då 4x 1 + 3x 2 apple 240 2x 1 + 2x 2 apple 140 x 1 apple 40 x 1, x 2 0 [målfunk)on] [resurs, avd. 1] [resurs, avd. 2] [maxproduk)on] [variabelbegränsningar] 3
4 TAOP52: Föreläsning 2 7 Vid modellering Parametrar: Givna data, beskriver problemet. Resursbegränsningar, priser, =llgångar, ederfrågan Variabler: Det man ska fa/a e/ beslut om / vill ha svar på. Produk=on, försäljning, inköp, lager, transport, blandning Bivillkor: Kopplar samman variabler och parametrar som behöver kommunicera med varandra. Resursbegränsningar, lagerbalans, ederfrågekrav Målfunk=on: Maximera vinst / minimera kostnader Försäljning gånger intäkt minus inköp gånger inköpspris TAOP52: Föreläsning 2 8 Parametrar Alla siffror som är kända, givna från början, beskriver förutsä/ningarna för problemet. Till exempel: Resurser - Tillgångar b kt ( råvara k, =d t ) - Åtgång a kj ( råvara k, produkt j ) Priser - Inköpspriser p kt ( råvara k, =d t ) - Försäljningspriser c jt ( produkt j, =d t ) EDerfrågan - Krav på produk=on d jt ( produkt j, =d t ) Kan vara minimumkrav ( ), maximumkrav ( ) eller exakt ederfrågan (=). 4
5 TAOP52: Föreläsning 2 9 Variabler Det man ska bestämma / kan påverka / vill ha svar på: Produk=on x jt hur mycket ska produceras av produkt j under =dsperiod t Inköp y kt hur mycket ska köpas in av råvara k under =dsperiod t Lager L kt hur mycket finns i lager av råvara k i slutet (början) av =dsperiod t Transport T mnt hur mycket ska transporteras från plats m =ll plats n under =dsperiod t TAOP52: Föreläsning 2 10 Bivillkor Reglerar så a/ ställda krav tvingas a/ uppfyllas : Resursbegränsningar Lagerbalans j J a kj x jt b kt k, t Lk, t 1 + ykt akj x jt = Lkt k, t j J Transportkrav (från varje m) Variabelbegränsningar (=ll varje n) n N T T mnt mnt m M x jt s d mt nt m, t n, t 0 j, t 5
6 TAOP52: Föreläsning 2 11 Målfunk=on Ska minimeras eller maximeras Kan bestå av flera komponenter (intäkter / kostnader). Ska bestå av all=ng som man tjänar på, och allt som kostar Koppla samman varje kostnad / intäkt med en lämplig variabel. Exempelvis: Inköpskostnad (parameter) & inköpsmängd (variabel) p kt * y kt Försäljningspris (parameter) & försäljning (variabel) c jt * x jt Om en viss intäkt / kostnad inte verkar passa ihop med någon av variablerna: Fundera över om någon variabel saknas! TAOP52: Föreläsning 2 12 Formulering av bivillkor Produk=onsplaneringsproblem: I produkter som =llverkas ( i = 1,,20 ) K kunder som beställer ( k = 1,...,10 ) T =dsperioder ( t = 1,...,5 ) Förutsä/ningar: Daglig transportbegränsning: b ikt Vecko=llgång av varje enskild produkt: s i Fabrikens totala =llverkningskapacitet: C Daglig =llverkningskapacitet: M EDerfrågekrav (som minst) från varje kund: d ik 6
7 TAOP52: Föreläsning 2 13 Formulering av bivillkor Variabeldefini=on: x ikt = Antal produkter i som =llverkas och skickas =ll kund k under arbetsdag t, i = 1,,20 k = 1,...,10 t = 1,...,5 Formulera följande bivillkor: a) Det går inte a/ transportera fler än b ikt enheter av produkt i =ll kund k en viss dag t b) Fabriken kan =llverka som mest s i enheter av produkt i varje vecka c) Den totala =llverkningen av produkter i fabriken under en vecka kan inte övers=ga C enheter T 2.1 TAOP52: Föreläsning 2 14 Formulering av bivillkor d) Fabriken har en daglig =llverkningskapacitet på totalt M enheter (oavse/ vilka produkter som =llverkas) e) Varje kund k kräver a/ minst d ik enheter av produkt i skickas =ll dem varje vecka f) Kund k = 5 vill a/ fabriken skickar lika många enheter av produkt 3 och produkt 7 under dag t = 2 g) Som mest 30% av den totala dagsproduk=onen får utgöras av produkt i = 8 7
8 TAOP52: Föreläsning 2 15 Exempel: produk=onsplanering II De kommande tre veckorna, t = 1,2,3, är ederfrågan av en viss produkt d 1, d 2, respek=ve d 3. EDerfrågan i vecka t =llgodoses an=ngen genom produk=on eller a/ ta från befintligt lager. Kostnaden a/ =llverka en enhet i vecka t är c t. Vid produk=on används en maskin vars kapacitet är M =mmar varje vecka. För a/ =llverka en enhet vecka t så går det åt h t =mmar. Behöver man y/erligare maskin=mmar kan man leasa en maskin för k kr/=mme. Lagret har en kapacitet på S produkter och det kostar p kronor a/ lagra en enhet från en vecka =ll nästa. Ini=allagret (det som finns kvar i slutet av vecka t=0) betecknas L_init. Formulera problemet a/ minimera de totala kostnaderna som e/ linjärt op=meringsproblem. T 2.2 TAOP52: Föreläsning 2 16 LP-modell, produk=onsplanering II min z = 3 c t x t + p L t + k t=1 t=1 t=1 3 3 y t då L t S, t =1,2,3 h t x t M + y t, t =1,2,3 L t 1 + x t d t = L t, t =1,2,3 L 0 = L _init x t, y t 0, t = 1,2,3 L t 0, t = 0,1,2,3 8
9 TAOP52: Föreläsning 2 17 LP-modell, matrisform max z = c T x då Ax b x 0 OBS: I denna modell finns både = - villkor och - villkor x = ( x 1 x 2 x 3 L 0 L 1 L 2 L 3 y 1 y 2 y 3 ) T c = ( c 1 c 2 c 3 0 p p p k k k ) T b = ( S S S M M M d 1 d 2 d 3 L _init ) T TAOP52: Föreläsning 2 18 LP-modell, matrisform A = h h h
10 TAOP52: Föreläsning 2 19 Kom ihåg! Skilj på parametrar (numerisk data) och variabler (det vi ska fa>a beslut om). I en LP-modell får variabler inte mul=pliceras eller divideras med varandra! I bivillkoren, skilj på: - e/ villkor för varje index ( ) - summera över index ( ) TAOP52: Föreläsning 2 20 Matema=sk modell AMPL-modell AMPL = modelleringsspråk som används för a/ formulera en matema=sk modell så a/ e/ datorprogram, tex CPLEX, kan förstå den. Skrivs i en vanlig texpil. Två strategier: Alterna=v 1: Modell och data =llsammans Alterna=v 2: Modell och data var för sig 10
11 TAOP52: Föreläsning 2 21 AMPL Alterna=v 1: Alterna=v 2: max z = 30x x 2 max z = X j2j c j x j då 4x 1 + 3x 2 apple 240 2x 1 + 2x 2 apple 140 x 1 apple 40 x 1, x 2 0 då X a ij x j apple b i, i 2 I j2j x j 0, j 2 J Modell och data =llsammans. Enkelt för små problem. Modell och data var för sig. Smidigare för stora problem, mer generellt. TAOP52: Föreläsning 2 22 AMPL-modell, alt. 1 # Variabeldefinition var x1 >= 0; var x2 >= 0; Tecknet # används framför kommentarer # Målfunktion maximize z : 30*x1 + 20*x2; # Bivillkor subject to Avd_tid1 : 4*x1 + 3*x2 <= 240; Avd_tid2 : 2*x1 + 2*x2 <= 140; Maxproduktion : x1 <= 40; 11
12 TAOP52: Föreläsning 2 23 AMPL-modell, alt. 2, modell set PRODUKTER; set AVDELNING; # Har olika produkter # Har olika avdelningar param Vinst{ PRODUKTER }; # Täckningsbidraget param Maxtid{ AVDELNING }; # Tidstillgång, avd. param a{ PRODUKTER, AVDELNING }; # Tidsåtgång param Maxprod{ PRODUKTER }; # Maxtillverkning var x{ PRODUKTER } >= 0; # Variabeldefinition TAOP52: Föreläsning 2 24 AMPL-modell, alt. 2, modell maximize z : sum{ i in PRODUKTER } Vinst[i]*x[i]; subject to Namn på villkoret För varje... Avd_tid{ j in AVDELNING }: sum{ i in PRODUKTER } a[i,j]*x[i] <= Maxtid[j]; Maxproduktion{i in PRODUKTER}: x[i] <= Maxprod[i]; Summera över... 12
13 TAOP52: Föreläsning 2 25 AMPL-modell, alt. 2, data set PRODUKTER := p1 p2; set AVDELNING := m1 m2; param : Vinst Maxprod := p p ; param : Maxtid := m1 240 m2 140 ; Här specificeras: 2 produkter 2 avdelningar M=1000, ett tillräckligt stort tal param a : m1 m2 := p1 4 2 p2 3 2 ; TAOP52: Föreläsning 2 26 AMPL-modell CPLEX Vi har en modell- och en datafil som beskriver vårt problem. Hur få datorn a/ lösa det? modellfil: mi/problem.mod kommandofil: mi/problem.run datafil: mi/problem.dat 13
14 TAOP52: Föreläsning 2 27 Kommandofil reset; # nollställer tidigare beräkningar options solver cplex ; # väljer lösare model exempel1.mod ; # väljer modell data exempel1.dat ; # väljer data solve; # löser problemet # skriver resultatet till fil display x > exempel1.res; display Avd_tid.slack > exempel1.res; TAOP52: Föreläsning 2 28 CPLEX resultatutskrid Alt. 1, modell och data i samma fil z = x1 = 40 x2 = Avd_tid1.slack = 0 Avd_tid2.slack = 6.67 Alt. 2, separata filer z = x [ * ] := p1 40 p ; Avd_tid.slack [ * ] := m1 0 m2 6.67; 14
15 TAOP52: Föreläsning 2 29 resultatutskrid svar på den givna problemställningen Läs av resultatet och gör en rimlighetsbedömning: Är variabelvärdena rimliga i rela=on =ll vad som är lönsamt?... i rela=on =ll de villkor och krav som finns? Är målfunk=onsvärdet rimligt? Om möjligt, gör en överslagsräkning Jämför med en op=mis=sk ska/ning Jämför med en pessimis=sk ska/ning TAOP52: Föreläsning 2 30 Op=mis=sk ska/ning Måste all=d, med säkerhet, ge e/ värde som är bä/re än det op=mala målfunk=onsvärdet. Strategi: Använd enkel papper och penna räkning Ska/a variablerna så a/ de blir för bra Förenkla målfunk=onen så a/ den ger e/ för bra värde max z = 30x x 2 då 4x 1 + 3x 2 apple 240 2x 1 + 2x 2 apple 140 x 1 apple 40 x 1, x 2 0 T
16 TAOP52: Föreläsning 2 31 Op=mis=sk ska/ning Finns flera olika ska/ningar. Ju fler villkor man tar hänsyn =ll, desto bä/re (starkare) blir ska/ningen. En möjlighet: Ändra c 2 från 20 =ll 30, nu är x 1 och x 2 likvärdiga. Dessutom kräver x 2 mindre resurser än x 1.. Tillverka endast x 2 => x = (0,70) T, z opt = 30*70 = 2100 :- Eller: Ändra koefficient 4 =ll 3 i första bivillkoret: 3x 1 + 3x 2 <= 240 Bivillkoren 3*(x 1 +x 2 ) <= 240 och 2*(x 1 +x 2 ) <= 140 ger a/ vi kan =llverka totalt 70 enheter, och som mest 40 st av x 1 Ger en ska/ning: x = (40,30) T, z opt = 30* *30 = 1800 :- TAOP52: Föreläsning 2 32 Pessimis=sk ska/ning Måste all=d, med säkerhet, ge en lösning som är =llåten med avseende på bivillkoren. Strategi: Använd enkel papper och penna räkning Förenkla problemet utan a/ fler lösningar än de ursprungliga blir =llåtna, troligen fås då färre =llåtna lösningar max z = 30x x 2 då 4x 1 + 3x 2 apple 240 2x 1 + 2x 2 apple 140 x 1 apple 40 x 1, x 2 0 Förenkla målfunk=onen så a/ den ger e/ för dåligt värde T
17 TAOP52: Föreläsning 2 33 Pessimis=sk ska/ning De finns återigen olika ska/ningar. Kom ihåg a/ varje =llåten lösning all=d ger en pessimis=sk ska/ning: x = ( 0, 0) T, z pess = 30*0 + 20*0 = 0 :- x = (40,0) T, z pess = 30* *0 = 1200 :- Eller: Ändra koefficient 3 =ll 4 i första bivillkoret: 4x 1 + 4x 2 <= 240 Bivillkoren 4*(x 1 +x 2 ) <= 240 och 2*(x 1 +x 2 ) <= 140 ger a/ vi kan =llverka totalt 60 enheter, och som mest 40 st av x 1 Ger en ska/ning: x = (40,20) T, z pess = 30* *20 = 1600 :- Slutsats: 1600 <= z* <= 1800 TAOP52: Föreläsning 2 34 Labora=on 1 SyDar =ll a/ ni ska komma igång med AMPL Gå från problemställning i ord =ll resultatutskrid Byggs upp stegvis Förberedelse inför projektuppgiden där ni ska lösa e/ något större problem 17
18 TAOP52: Föreläsning 2 35 Uppsummering Fö. 2 Modellering Parametrar, variabler, bivillkor, målfunk=on AMPL, modelleringsspråk för op=meringsproblem Sista sidorna på dagens föresläsning visar AMPLmodellen för problemet Produk=onsplanering II Upörliga exempel Modellering på Lisam: E/ dokument som försöker beskriva vad man bör tänka på vid modellering Work in progress, kom gärna med feedback och förslag på förbä/ringar TAOP52: Föreläsning 2 36 Produk=onsplanering II min z = 3 c t x t + p L t + k t=1 t=1 t=1 3 3 y t då L t S, t =1,2,3 h t x t M + y t, t =1,2,3 L t 1 + x t d t = L t, t =1,2,3 L 0 = L _init x t, y t 0, t = 1,2,3 L t 0, t = 0,1,2,3 Behöver skapa tre filer. kommandofil: exempel2.run modellfil: exempel2.mod datafil: exempel2.dat 18
19 TAOP52: Föreläsning 2 37 modellfil, del 1 set produkter; # Olika produkter param T; # Antal veckor param c{produkter}; # Produktionskostnad param Efterfrågan{1..T} # Efterfrågan varje vecka param p; # Lagerkostnad param k; # Leasingkostnad param M; # Maskinkapacitet param h{1..t}; # Åtgång vid tillverkning param S; # Lagerkapacitet param L_init; # Initiallager TAOP52: Föreläsning 2 38 modellfil, del 2 # Antal producerade produkter vecka t: var x{1..t} >= 0; # Antal produkter i lager vecka t: var L{0..T} >= 0; # Antal leasingtimmar vecka t: var y{1..t} >=0; 19
20 TAOP52: Föreläsning 2 39 modellfil, del 3 minimize z: sum{t in 1..T} c[t]*x[t] + p*sum{t in 1..T} L[t] + k*sum{t in 1..T} y[t]; subject to Lagerkapacitet{t in 1..T} : L[t] <= S; Maskintid{t in 1..T} : h[t]*x[t] <= M + y[t]; Lagerbalans{t in 1..T}: L[t-1] + x[t] - d[t] = L[t]; Init_lager : L[0] = L_init; 20
Föreläsning 2: A/ modellera och lösa LP-problem
TAOP52: Föreläsning 2 Att modellera och lösa LP-problem TAOP52: Föreläsning 2 2 Föreläsning 2: A/ modellera och lösa LP-problem Problemställning i ord matema=sk modell AMPL-modell CPLEX resultatutskrid
Föreläsning 2: A/ modellera och lösa LP-problem. TAOP14: Föreläsning 2
TAOP14: Föreläsning 2 Problemställning i ord matematisk modell AMPL-modell CPLEX resultatutskrift svar på den givna problemställningen TAOP14: Föreläsning 2 2 Föreläsning 2: A/ modellera och lösa LP-problem
Föreläsning 2: A/ modellera och lösa LP-problem
TAOP14: Föreläsning 2 Problemställning i ord matematisk modell AMPL-modell CPLEX resultatutskrift svar på den givna problemställningen TAOP14: Föreläsning 2 2 Föreläsning 2: A/ modellera och lösa LP-problem
TAOP52: Optimeringslära grundkurs
TAOP2: Optimeringslära grundkurs Nils-Hassan Quttineh Optimeringslära, MAI TAOP2: Föreläsning 1 2 Föreläsning 1: Kurspresenta3on och introduk3on 3ll op3meringslära Vad är op3meringslära och vad kan det
TAOP14: Optimeringslära grundkurs
TAOP14: Optimeringslära grundkurs Nils-Hassan Quttineh Optimeringslära, MAI TAOP14: Föreläsning 1 2 Föreläsning 1: Kurspresenta3on och introduk3on 3ll op3meringslära Vad är op3meringslära och vad kan det
TAOP14: Optimeringslära grundkurs
TAOP14: Optimeringslära grundkurs Nils-Hassan Quttineh Optimeringslära, MAI TAOP14: Föreläsning 1 2 Föreläsning 1: Kurspresenta3on och introduk3on 3ll op3meringslära Vad är op3meringslära och vad kan det
TAOP52: Optimeringslära grundkurs
TAOP2: Optimeringslära grundkurs Nils-Hassan Quttineh Optimeringslära, MAI TAOP2: Föreläsning 1 2 Föreläsning 1: Kurspresenta3on och introduk3on 3ll op3meringslära Vad är op3meringslära och vad kan det
Introduktion till modelleringsspråket Ampl
1 Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Introduktion till Ampl Optimeringslära 3 februari 2019 Introduktion till modelleringsspråket Ampl Ampl är ett modelleringsspråk
Laboration 1 - Simplexmetoden och modellformulering
Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Laboration 1 Optimeringslära 29 januari 2017 Laboration 1 - Simplexmetoden och modellformulering Den första delen av laborationen
Laboration 1 - Simplexmetoden och Modellformulering
Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Laboration 1 Optimeringslära 30 januari 2013 Laboration 1 - Simplexmetoden och Modellformulering Den första delen av laborationen
TNSL05 Optimering, Modellering och Planering. Föreläsning 4
TNSL05 Optimering, Modellering och Planering Föreläsning 4 2018-11-14 2 Kursmål: idag Studenten ska efter avslutad kurs kunna: Analysera och formulera optimeringsmodeller inom ekonomiska tillämpningsområden
Optimering med hjälp av Lego. Mathias Henningsson
Optimering med hjälp av Lego Mathias Henningsson Vem är jag? Mathias Henningsson Lärare Optimeringslära 1996-2007 Produktionsekonomi 2008- Bokförfattare Optimeringslära övningsbok (Studentlitteratur) Arbetar
Speciell användning av heltalsvariabler. Heltalsprogrammering. Antingen-eller-villkor: Exempel. Speciell användning av heltalsvariabler
Heltalsprogrammering Speciell användning av heltalsvariabler max z = då c j x j j= a ij x j b i j= x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland
Tentamensinstruktioner
TNSL05 1(9) TENTAMEN Datum: 6 april 2018 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,
TNK049 Optimeringslära
TNK09 Optimeringslära Clas Rydergren ITN Föreläsning Simplemetoden på tablåform och algebraisk form Fas I (startlösning) Känslighetsanalys Tolkning av utdata Agenda Halvtidsutvärdering Simplemetoden (kap..8)
Laborationsinformation
Linköpings Tekniska Högskola 2017 03 16 Matematiska institutionen/optimeringslära Kaj Holmberg Laborationsinformation 1 Information om GLPK/glpsol 1.1 Introduktion till GLPK GLPK (GNU Linear Programming
Tentamensinstruktioner
TNSL05 (6) TENTAMEN Datum: augusti 07 Tid: 8- Provkod: TEN Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt p, betyg kräver
De optimeringsproblem som kommer att behandlas i denna kurs kan alla (i princip) skrivas. 1 2 xt Hx + c T x. minimera
Krister Svanberg, mars 2012 1 Introduktion De optimeringsproblem som kommer att behandlas i denna kurs kan alla (i princip) skrivas på följande allmänna form: f(x) (1.1) x F, där x = (x 1,..., x n ) T
MIO310 OPTIMERING OCH SIMULERING, 4 p
Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO0 OPTIMERING
Optimering. Optimering av transportproblem. Linköpings universitet SL. Campusveckan VT2013
Optimering Optimering av transportproblem Campusveckan VT2013 Linköpings universitet SL 1 Optimering - Distributionsproblem Företaget Kulprodukter AB producerar sina kulor vid fyra olika fabriksanläggningar
min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ:
Heltalsprogrammering Speciell användning av heltalsvariabler max z = då n c j x j j= n a ij x j b i j= x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland
LP-problem. Vårt första exempel. Baslösningar representerar extrempunkter. Baslösningar representerar extrempunkter
LP-problem Vårt första exempel Ett LP-problem: max z = c T x då Ax b, x 0. Den tillåtna mängden är en polyeder och konvex. Målfunktionen är linjär och konvex. Så problemet är konvext. Var ligger optimum?
Laboration 2 - Heltalsoptimering
Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Laboration 2 Optimeringslära 4 februari 203 Laboration 2 - Heltalsoptimering Problemställning Synande av cellprover När
TENTAMEN. Tentamensinstruktioner. Datum: 30 augusti 2018 Tid: 8-12
1( 9) TENTAMEN Datum: 30 augusti 2018 Tid: 8-12 Provkod: TEN1 Kursnamn: Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p, betyg kräver
TNSL05 Övningsuppgifter modellering
TNSL05 Övningsuppgifter modellering 1) Ett företag tillverkar och säljer två olika typer av bord. Grundversionen, med skiva i trä, tar 0.6 timmar att sätta ihop, har fyra ben och säljs med 1500 kr i vinst.
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 19 april 2017 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:
Linjärprogramming. EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin
Linjärprogramming EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin 1 Kursmål Formulera korttidsplaneringsproblem för vatten- och värmekraftsystem. 2 Tillämpad matematisk programming Korttidsplanering
min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ:
Heltalsprogrammering Speciell användning av heltalsvariabler max z = då c j x j a ij x j b i x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland u j
Tentamensinstruktioner
TNSL05 1(8) TENTAMEN Datum: 1 april 2016 Tid: XXX Sal: XXX Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt
Tentamensinstruktioner
TNSL05 1(9) TENTAMEN Datum: augusti 017 Tid: 8-1 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 1 p, betyg
1(8) x ijt = antal mobiltelefoner av typ i=1,,m, Som produceras på produktionslina 1,, n, Under vecka t=1,,t.
1(8) (5p) Uppgift 1 Företaget KONIA tillverkar mobiltelefoner I en stor fabrik med flera parallella produktionslinor. För att planera produktionen de kommande T veckorna har KONIA definierat följande icke-negativa
Vårt första exempel. LP-dualitet: Exempel. LP-dualitet: Generellt. LP-dualitet: Relationer
Vårt första exempel Variabeldefinition: x 1 = antal enheter Optimus som görs varje timme. x 2 = antal enheter Rullmus som görs varje timme. Matematisk modell: max z = 4x 1 + 3x 2 då 2x 1 + 3x 2 30 (1)
Optimering och simulering: Hur fungerar det och vad är skillnaden?
Optimering och simulering: Hur fungerar det och vad är skillnaden? Anders Peterson, Linköpings universitet Andreas Tapani, VTI med inspel från Sara Gestrelius, RIS-SIS n titt i KAJTs verktygslåda Agenda
Tentamensinstruktioner
TNSL05 1(7) TENTAMEN Datum: 1 april 2016 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping TAOP88 Matematiska Institutionen Lösning till tentamen Optimeringslära 9--7 Kaj Holmberg Lösningar Uppgift a: Inför slackvariabler x 5, x 6 och x 7 Starta med slackvariablerna
Optimeringslara = matematik som syftar till att analysera och. Optimeringslara ar en gren av den tillampade matematiken.
Optimal = basta mojliga. Optimeringslara = matematik som syftar till att analysera och nna det basta mojliga. Anvands oftast till att nna ett basta handlingsalternativ i tekniska och ekonomiska beslutsproblem.
LP-dualitet: Exempel. Vårt första exempel. LP-dualitet: Relationer. LP-dualitet: Generellt
Vårt första exempel Variabeldefinition: x 1 = antal enheter Optimus som görs varje timme. x 2 = antal enheter Rullmus som görs varje timme. Matematisk modell: max z = 4x 1 + 3x 2 då 2x 1 + 3x 2 30 (1)
1 LP-problem på standardform och Simplexmetoden
Krister Svanberg, mars 202 LP-problem på standardform och Simplexmetoden I detta avsnitt utgår vi från LP-formuleringen (2.2) från föreläsning. Denna form är den bäst lämpade för en strömlinjeformad implementering
TNSL05 Optimering, Modellering och Planering. Föreläsning 6
TNSL05 Optimering, Modellering och Planering Föreläsning 6 Agenda Kursens status Tolkning av utdata Intro lösningsmetoder Linjära optimeringsproblem (LP) på standardform Algebraisk formulering av LP Konveitet
Tentamensinstruktioner. Vid skrivningens slut
Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN1 OPTIMERINGSLÄRA GRUNDKURS för I och Ii Datum: 13:e januari 2011 Tid: 8.00 13.00 Hjälpmedel: Kurslitteratur av Lundgren m fl: Optimeringslära
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 17 januari 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering.
Vinsten (exklusive kostnaden för inköp av kemikalier) vid försäljning av 1 liter fönsterputs är 2 kr för F1 och 3 kr för F3.
TNSL05 (10) (5p) Uppgift 1 Företaget XAJA tillverkar två olika sorters rengöringsprodukter för fönsterputsning, benämnda F1 och F. Förutom vatten, som ingår i båda produkterna är, innehållet ett antal
1 Duala problem vid linjär optimering
Krister Svanberg, april 2012 1 Duala problem vid linjär optimering Detta kapitel handlar om två centrala teoretiska resultat för LP, nämligen dualitetssatsen och komplementaritetssatsen. Först måste vi
Eulercykel. Kinesiska brevbärarproblemet. Kinesiska brevbärarproblemet: Metod. Kinesiska brevbärarproblemet: Modell. Definition. Definition.
Eulercykel Definition En Eulercykel är en cykel som använder varje båge exakt en gång. Definition En nods valens är antalet bågar som ansluter till noden. Kinesiska brevbärarproblemet En brevbärartur är
Vinsten (exklusive kostnaden för inköp av kemikalier) vid försäljning av 1 liter fönsterputs är 2 kr för F1 och 3 kr för F3.
TNSL05 2(8) (5p) Uppgift 1 Företaget XAJA tillverkar två olika sorters rengöringsprodukter för fönsterputsning, benämnda F1 och F2. Förutom vatten, som ingår i båda produkterna är, innehållet ett antal
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: juni 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken får
Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet
Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:
TNSL05 Optimering, Modellering och Planering. Föreläsning 5
TNSL5 Optimering, Modellering och Planering Föreläsning 5 Dagordning Kort repetition Graf/nätverk: Begrepp Representation Exempel: Minkostnadsflödeproblem Billigastevägproblem 28--5 4 Hittills Föreläsning
Lösningar till SF1861 Optimeringslära, 28 maj 2012
Lösningar till SF86 Optimeringslära, 28 maj 202 Uppgift.(a) Då det primala problemet P är så är det motsvarande duala problemet D minimera 3x + x 2 då 3x + 2x 2 6 x + 2x 2 4 x j 0, j =, 2. maximera 6 +
Lösningar till 5B1762 Optimeringslära för T, 24/5-07
Lösningar till 5B76 Optimeringslära för T, 4/5-7 Uppgift (a) Först använder vi Gauss Jordans metod på den givna matrisen A = Addition av gånger första raden till andra raden ger till resultat matrisen
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: januari 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 19 oktober 2017 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: januari 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: januari 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
MIO310 OPTIMERING OCH SIMULERING, 4 p
Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO0 OPTIMERING
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 10 januari 201 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:
Optimalitetsvillkor. Optimum? Matematisk notation. Optimum? Definition. Definition
Optimum? När man har formulerat sin optimeringsmodell vill man lösa den Dvs finna en optimal lösning, x, till modellen Nästan alltid: Sökmetoder: Stå i en punkt, gå till en annan (bättre Upprepa, tills
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN 1 OPTIMERINGSLÄRA GRUNDKURS för I, Ii och TB Datum: 24 augusti 2009 Tid: 8.00-13.00 Hjälpmedel: Lundgren m fl: Optimeringslära och/eller Lundgren
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: januari 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
Optimering med bivillkor
Optimering med bivillkor Vi ska nu titta på problemet att hitta max och min av en funktionen f(x, y), men inte över alla möjliga (x, y) utan bara för de par som uppfyller ett visst bivillkor g(x, y) =
MIO310 OPTIMERING OCH SIMULERING, 4 p
Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO310 OPTIMERING
TNK047 [TEN1] OPTIMERING OCH SYSTEMANALYS
TNK047 [TEN1] OPTIMERING OCH SYSTEMANALYS Datum: 22 maj 2012 Tid: 8 12, TP56 Hjälpmedel: Ett A4-blad med text/anteckningar (båda sidor) samt miniräknare. Antal uppgifter: 5; Vardera uppgift kan ge 5p.
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 8 januari 201 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
MIO310 OPTIMERING OCH SIMULERING, 4 p
Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO310 OPTIMERING
Lösningar till SF1861/SF1851 Optimeringslära, 24/5 2013
Lösningar till SF86/SF85 Optimeringslära, 4/5 03 Uppgift (a) Inför de 3 variablerna x ij = kvantitet (i sorten ton) som fabrik nr i åläggs att tillverka av produkt nr j, samt t = tiden (i sorten timmar)
Examinator: Torbjörn Larsson Jourhavande lärare: Torbjörn Larsson, tel Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y Datum: 21 augusti 2012 Tid: 14-19 Hjälpmedel: Inga Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM. Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 11 januari 2017 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:
General Algebraic Modeling System Översätter direkt från modell till algoritm.
Vad är GAMS? General Algebraic Modeling System Översätter direkt från modell till algoritm. Fördelar: Effektivt Skapa mängd ekvationer med en enda sats Lägg in data en och endast en gång Snabbt skapa prototyper
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: januari 2013 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Tentamensinstruktioner
TNSL05 1(7) TENTAMEN Datum: 21 april 2017 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping TAOP88 Matematiska Institutionen Lösning till tentamen Optimeringslära 28--24 Kaj Holmberg Uppgift Lösningar a: Målfunktionen är summan av konvexa funktioner (kvadrater och
Laborationsuppgift 1 Tillämpad optimeringslära för MMT (5B1722)
Laborationsuppgift 1 Tillämpad optimeringslära för MMT (5B1722) Februari 2004 Avdelningen för Optimeringslära och Systemteori Institutionen för Matematik Kungliga Tekniska Högskolan Stockholm Allmän information
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för EMM Datum: 2 augusti 2011 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Dynamisk programmering. Dynamisk programmering. Dynamisk programmering. Dynamisk programmering
Betrakta ett lagerhållningsproblem i flera tidsperioder. Vi har tillverkning och försäljning av produkter i varje tidsperiod. Dessutom kan vi lagra produkter mellan tidsperioder, för att utnyttja stordriftsfördelar
Tekniska Högskolan i Linköping Optimering av realistiska sammansatta system. Optimeringslära Kaj Holmberg.
Tekniska Högskolan i Linköping Optimering av realistiska sammansatta system Matematiska Institutionen Lösning till tentamen Optimeringslära 2015-01-14 Kaj Holmberg Lösningar/svar Uppgift 1 1a: Givna data:
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 23 augusti 2016 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:
TNK049 Optimeringslära
TNK049 Optimeringslära Clas Rydergren, ITN Föreläsning 6 Det duala problemet Relationer primal dual Optimalitetsvillkor Nätverksoptimering (introduktion) Agenda Motivering av det duala problemet (kap 6.)
Föreläsning 2: Simplexmetoden. 1. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform.
Föreläsning 2: Simplexmetoden. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform. 3. Simplexalgoritmen. 4. Hur bestämmer man tillåtna startbaslösningar? Föreläsning
Lösningar/svar. Uppgift 1. Tekniska Högskolan i Linköping Optimering av realistiska sammansatta system. Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering av realistiska sammansatta system Matematiska Institutionen Lösning till tentamen Optimeringslära 2017-08-22 Kaj Holmberg Lösningar/svar Uppgift 1 1a: Variabeldefinition:
Föreläsning 13: Multipel Regression
Föreläsning 13: Multipel Regression Matematisk statistik Chalmers University of Technology Oktober 9, 2017 Enkel linjär regression Vi har gjort mätningar av en responsvariabel Y för fixerade värden på
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: 0 oktober 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i
Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition
Grafdefinitioner Träd N = {i}: noder (hörn) = {(i, j)}, i N, j N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar och slutar i samma nod. En enkel väg
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 28-5-3 Kaj Holmberg Lösningar Uppgift a: P: Grafisk lösning ger x = 2/7 = 2 6/7,
TNSL05 Optimering, Modellering och Planering. Föreläsning 2: Forts. introduktion till matematisk modellering
TNSL05 Optimering, Modellering och Planering Föreläsning 2: Forts. introduktion till matematisk modellering 2017-11-01 2 Dagordning Matematisk modellering, Linjära Problem (LP) Terminologi Målfunktion
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 0 augusti 201 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C. Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 1 januari 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 2 oktober 2013 Tid:.00-13.00 Hjälpmedel: Miniräknare Kaj Holmberg: Optimering.
SF1545 Laboration 1 (2015): Optimalt sparande
Avsikten med denna laboration är att: SF1545 Laboration 1 (215: Optimalt sparande - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda laborationstillfällen, - lösa
5B1817 Tillämpad ickelinjär optimering. Kvadratisk programmering med olikhetsbivillkor Active-set metoder
5B1817 Tillämpad ickelinjär optimering Föreläsning 7 Kvadratisk programmering med olikhetsbivillkor Active-set metoder A. Forsgren, KTH 1 Föreläsning 7 5B1817 2006/2007 Kvadratisk programmering med olikhetsbivillkor
TNK049 Optimeringslära
TNK049 Optimeringslära Clas Rydergren, ITN Föreläsning 1 Kursintroduktion Ämnesintroduktion Terminologi Tillämpningar Agenda Vilka personer medverkar i kursen? Kursupplägg Lärobok Laborationer Återkoppling
Optimering på dator. Laborationsinstruktion Systemanalysgruppen, 1998 Uppsala universitet. Handledarens kommentarer.
Laborationsinstruktion Systemanalysgruppen, 1998 Uppsala universitet Optimering på dator Namn Handledarens kommentarer Grupp Inskrivningsår Utförd den Godkänd den Signum Leif Gustafsson 1985 Thomas Persson
Optimering med bivillkor
Kapitel 9 Optimering med bivillkor 9.1. Optimering med bivillkor Låt f(x) vara en funktion av x R. Vi vill optimera funktionen f under bivillkoret g(x) =C (eller bivllkoren g 1 (x) =C 1,..., g k (x) =C
TAOP61 Projekt 2. Kaj Holmberg (LiU) TAOP61 Optimering 28 oktober / 14
TAOP61 Projekt 2 Kaj Holmberg (LiU) TAOP61 Optimering 28 oktober 2016 1 / 14 TAOP61 Projekt 2 Optimering av elmotorutnyttjandet i en laddhybrid med hjälp av dynamisk programmering. Kaj Holmberg (LiU) TAOP61
Optimeringslära 2013-11-01 Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 23-- Kaj Holmberg Uppgift a: Problemet skrivet i standardform är: Lösningar min
Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet
Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
TNSL05, Optimering, Modellering och Planering Gruppuppgift 3
ITN/KTS Joakim Ekström/Marcus Posada Gruppuppgift 3 TNSL05, Optimering, Modellering och Planering, HT2018 TNSL05, Optimering, Modellering och Planering Gruppuppgift 3 1 Gruppspecifika uppgifter 1.1 Kursmomentet
Hemuppgift 2, SF1861 Optimeringslära för T, VT-10
Hemuppgift 2, SF1861 Optimeringslära för T, VT-1 Kursansvarig: Per Enqvist, tel: 79 6298, penqvist@math.kth.se. Assistenter: Mikael Fallgren, werty@kth.se, Amol Sasane, sasane@math.kth.se. I denna uppgift
Optimering av olika slag används inom så vitt skilda områden som produktionsplanering,
Anders Johansson Linjär optimering Exempel på användning av analoga och digitala verktyg i undervisningen Kursavsnittet linjär optimering i Matematik 3b kan introduceras med såväl analoga som digitala