Föreläsning 2: A/ modellera och lösa LP-problem
|
|
- Ann-Marie Sandström
- för 8 år sedan
- Visningar:
Transkript
1 TAOP14: Föreläsning 2 Problemställning i ord matematisk modell AMPL-modell CPLEX resultatutskrift svar på den givna problemställningen TAOP14: Föreläsning 2 2 Föreläsning 2: A/ modellera och lösa LP-problem Problemställning i ord matema=sk modell AMPL-modell CPLEX resultatutskrid svar på den givna problemställningen TAOP14: Föreläsning 2 Verkligt problem Iden=fiering, avgränsningar, förenklingar, antaganden Verifiering Validering Förenklat problem Op=meringsmodell Lösning Formulering Lösningsmetod Resultat 1
2 TAOP14: Föreläsning 2 4 Problemställning i ord matematisk modell Beslut Variabler Mål Målfunk=on Begränsningar Bivillkor TAOP14: Föreläsning 2 5 Exempel: Produk=onsplanering Produk=on av två olika produkter. Maximera den totala vinsten. Resurs=llgång vid de två =llverkningsavdelningarna: avd 1: 240h; avd 2: 140h Produkt 1 vinst/enhet: 0 kr resursåtgång avd 1: 4h resursåtgång avd 2: 2h begränsad ederfrågan: 40 st Produkt 2 vinst/enhet: 20 kr resursåtgång avd 1: h resursåtgång avd 2: 2h TAOP14: Föreläsning 2 6 Modellformulering Variabeldefini=on: x i = antalet =llverkade av produkt i, i = 1, 2 Matema=sk modell: max z = 0x x 2 då 4x 1 + x 2 apple 240 2x 1 + 2x 2 apple 140 x 1 apple 40 x 1, x 2 0 [målfunk)on] [resurs, avd. 1] [resurs, avd. 2] [maxproduk)on] [variabelbegränsningar] 2
3 TAOP14: Föreläsning 2 7 Vid modellering Parametrar: Givna data, beskriver problemet. Resursbegränsningar, priser, =llgångar, ederfrågan Variabler: Det man ska fa/a e/ beslut om / vill ha svar på. Produk=on, försäljning, inköp, lager, transport, blandning Bivillkor: Kopplar samman variabler och parametrar som behöver kommunicera med varandra. Resursbegränsningar, lagerbalans, ederfrågekrav Målfunk=on: Maximera vinst / minimera kostnader Försäljning gånger intäkt minus inköp gånger inköpspris TAOP14: Föreläsning 2 8 Parametrar Alla siffror som är kända, givna från början, beskriver förutsä/ningarna för problemet. Till exempel: Resurser - Tillgångar b kt ( råvara k, =d t ) - Åtgång a kj ( råvara k, produkt j ) Priser - Inköpspriser p kt ( råvara k, =d t ) - Försäljningspriser c jt ( produkt j, =d t ) EDerfrågan - Krav på produk=on d jt ( produkt j, =d t ) Kan vara minimumkrav ( ), maximumkrav ( ) eller exakt ederfrågan (=). TAOP14: Föreläsning 2 9 Variabler Det man ska bestämma / kan påverka / vill ha svar på: Produk=on x jt hur mycket ska produceras av produkt j under =dsperiod t Inköp y kt hur mycket ska köpas in av råvara k under =dsperiod t Lager L kt hur mycket finns i lager av råvara k i slutet (början) av =dsperiod t Transport T mnt hur mycket ska transporteras från plats m =ll plats n under =dsperiod t
4 TAOP14: Föreläsning 2 10 Bivillkor Reglerar så a/ ställda krav tvingas a/ uppfyllas : Resursbegränsningar Lagerbalans a x b kj j J jt kt k, t Lk, t 1 + ykt akj x jt = Lkt k, t j J Transportkrav (från varje m) Variabelbegränsningar (=ll varje n) T mnt n N T mnt m M x jt s mt d nt m, t n, t 0 j, t TAOP14: Föreläsning 2 11 Målfunk=on Ska minimeras eller maximeras Kan bestå av flera komponenter (intäkter / kostnader). Ska bestå av all=ng som man tjänar på, och allt som kostar Koppla samman varje kostnad / intäkt med en lämplig variabel. Exempelvis: Inköpskostnad (parameter) & inköpsmängd (variabel) p kt * y kt Försäljningspris (parameter) & försäljning (variabel) c jt * x jt Om en viss intäkt / kostnad inte verkar passa ihop med någon av variablerna: Fundera över om någon variabel saknas! TAOP14: Föreläsning 2 12 Formulering av bivillkor Produk=onsplaneringsproblem: I råvaror används ( i = 1,,20 ) J produkter ska =llverkas ( j = 1,...,10 ) T =dsperioder ( t = 1,...,5 ) Förutsä/ningar: Råvarubegränsning: b ijk enheter per vecka Total =llgång av varje enskild råvara: c i Total =llgång av samtliga råvaror: b total EDerfrågekrav på varje produkt: minst d j enheter Total produk=onsmängd: som mest d total enheter 4
5 TAOP14: Föreläsning 2 1 Formulering av bivillkor Variabeldefini=on: x ijt = Mängd råvara i som ska blandas i produkt j i =dsperiod t, i = 1,,20 j = 1,...,10 t = 1,...,5 Formulera följande bivillkor: a) Användningen av råvara i =ll produkt j får inte övers=ga =llgången b ijt enheter per vecka t b) Användningen av råvara i får inte övers=ga den totala =llgången c i enheter c) Den totala användningen av råvaror får inte övers=ga b total enheter T 2.1 TAOP14: Föreläsning 2 14 Formulering av bivillkor d) Den totala mängden av produkt j ska vara minst d j enheter e) Den totala mängden av produkter får högst vara d total under varje vecka t f) Mängden av råvara i = 2 ska vara densamma som råvara i = =ll produkt j under vecka t = 4 g) Varje enskild produkt som =llverkas får innehålla som mest 0% av råvara i = 8 TAOP14: Föreläsning 2 15 Exempel: produk=onsplanering II De kommande tre veckorna, t = 1,2,, är ederfrågan av en viss produkt d 1, d 2, respek=ve d. EDerfrågan i vecka t =llgodoses an=ngen genom produk=on eller a/ ta från befintligt lager. Kostnaden a/ =llverka en enhet i vecka t är c t. Vid produk=on används en maskin vars kapacitet är M =mmar varje vecka. För a/ =llverka en enhet vecka t så går det åt h t =mmar. Behöver man y/erligare maskin=mmar kan man leasa en maskin för k kr/=mme. Lagret har en kapacitet på S produkter och det kostar p kronor a/ lagra en enhet från en vecka =ll nästa. Ini=allagret (det som finns kvar i slutet av vecka t=0) betecknas L_init. Formulera problemet som e/ linjärt op=meringsproblem T 2.2 5
6 TAOP14: Föreläsning 2 16 LP-modell, produk=onsplanering II min z = c t x t + p L t + k t=1 t=1 t=1 y t då L t S, t =1,2, h t x t M + y t, t =1,2, L t 1 + x t d t = L t, t =1,2, L 0 = L _init x t, y t 0, t = 1,2, L t 0, t = 0,1,2, TAOP14: Föreläsning 2 17 LP-modell, matrisform max z = c T x då Ax b x 0 OBS: I denna modell finns både = - villkor och - villkor x = ( x 1 x 2 x L 0 L 1 L 2 L y 1 y 2 y ) T c = ( c 1 c 2 c 0 p p p k k k ) T b = ( S S S M M M d 1 d 2 d L _init ) T TAOP14: Föreläsning 2 18 LP-modell, matrisform A = h h h
7 TAOP14: Föreläsning 2 19 Kom ihåg! Skilj på parametrar (numerisk data) och variabler (det vi ska fa>a beslut om). I en LP-modell får variabler inte mul=pliceras eller divideras med varandra! I bivillkoren, skilj på: - e/ villkor för varje index ( ) - summera över index ( ) TAOP14: Föreläsning 2 20 Matema=sk modell AMPL-modell AMPL = modelleringsspråk som används för a/ formulera en matema=sk modell så a/ e/ datorprogram, tex CPLEX, kan förstå den. Skrivs i en vanlig texpil. Två strategier: Alterna=v 1: Modell och data =llsammans Alterna=v 2: Modell och data var för sig TAOP14: Föreläsning 2 21 AMPL Alterna=v 1: Alterna=v 2: max z = 0x x 2 max z = X c jx j j2j då 4x 1 + x 2 apple 240 2x 1 + 2x 2 apple 140 x 1 apple 40 x 1, x 2 0 då X a ijx j apple b i, i 2 I j2j x j 0, j 2 J Modell och data =llsammans. Enkelt för små problem. Modell och data var för sig. Smidigare för stora problem, mer generellt. 7
8 TAOP14: Föreläsning 2 22 AMPL-modell, alt. 1 # Variabeldefinition var x1 >= 0; var x2 >= 0; Tecknet # används framför kommentarer # Målfunktion maximize z : 0*x1 + 20*x2; # Bivillkor subject to Avd_tid1 : 4*x1 + *x2 <= 240; Avd_tid2 : 2*x1 + 2*x2 <= 140; Maxproduktion : x1 <= 40; TAOP14: Föreläsning 2 2 AMPL-modell, alt. 2, modell set PRODUKTER; set AVDELNING; # Har olika produkter # Har olika avdelningar param Vinst{ PRODUKTER }; # Täckningsbidraget param Maxtid{ AVDELNING }; # Tidstillgång, avd. param a{ PRODUKTER, AVDELNING }; # Tidsåtgång param Maxprod{ PRODUKTER }; # Maxtillverkning var x{ PRODUKTER } >= 0; # Variabeldefinition TAOP14: Föreläsning 2 24 AMPL-modell, alt. 2, modell maximize z : sum{ i in PRODUKTER } Vinst[i]*x[i]; subject to Namn på villkoret För varje... Avd_tid{ j in AVDELNING }: sum{ i in PRODUKTER } a[i,j]*x[i] <= Maxtid[j]; Maxproduktion{i in PRODUKTER}: x[i] <= Maxprod[i]; Summera över... 8
9 TAOP14: Föreläsning 2 25 AMPL-modell, alt. 2, data set PRODUKTER := p1 p2; set AVDELNING := m1 m2; param : Vinst Maxprod := p p ; Här specificeras: 2 produkter 2 avdelningar param : Maxtid := m1 240 m2 140 ; M=1000, ett tillräckligt stort tal param a : m1 m2 := p1 4 2 p2 2 ; TAOP14: Föreläsning 2 26 AMPL-modell CPLEX Vi har en modell- och en datafil som beskriver vårt problem. Hur få datorn a/ lösa det? modellfil: mi/problem.mod kommandofil: mi/problem.run datafil: mi/problem.dat TAOP14: Föreläsning 2 27 Kommandofil reset; # nollställer tidigare beräkningar options solver cplex ; # väljer lösare model exempel1.mod ; # väljer modell data exempel1.dat ; # väljer data solve; # löser problemet # skriver resultatet till fil display x > exempel1.res; display Avd_tid.slack > exempel1.res; 9
10 TAOP14: Föreläsning 2 28 CPLEX resultatutskrid Alt. 1, modell och data i samma fil z = 17. x1 = 40 x2 = Avd_tid1.slack = 0 Avd_tid2.slack = 6.67 Alt. 2, separata filer z = 17. x [ * ] := p1 40 p ; Avd_tid.slack [ * ] := m1 0 m2 6.67; TAOP14: Föreläsning 2 29 resultatutskrid svar på den givna problemställningen Läs av resultatet och gör en rimlighetsbedömning: Är variabelvärdena rimliga i rela=on =ll vad som är lönsamt?... i rela=on =ll de villkor och krav som finns? Är målfunk=onsvärdet rimligt? Om möjligt, gör en överslagsräkning Jämför med en op=mis=sk ska/ning Jämför med en pessimis=sk ska/ning TAOP14: Föreläsning 2 0 Op=mis=sk ska/ning Måste all=d, med säkerhet, ge e/ värde som är bä/re än det op=mala målfunk=onsvärdet. Strategi: Använd enkel papper och penna räkning Ska/a variablerna så a/ de blir för bra Förenkla målfunk=onen så a/ den ger e/ för bra värde max z = 0x x 2 då 4x 1 + x 2 apple 240 2x 1 + 2x 2 apple 140 x 1 apple 40 x 1, x 2 0 T 2. 10
11 TAOP14: Föreläsning 2 1 Op=mis=sk ska/ning Finns flera olika ska/ningar. Ju fler villkor man tar hänsyn =ll, desto bä/re (starkare) blir ska/ningen. En möjlighet: Ändra c 2 från 20 =ll 0, nu är x 1 och x 2 likvärdiga. Dessutom kräver x 2 mindre resurser än x 1.. Tillverka endast x 2 => x = (0,70) T, z opt = 0*70 = 2100 :- Eller: Ändra koefficient 4 =ll i första bivillkoret: x 1 + x 2 <= 240 Bivillkoren *(x 1 +x 2 ) <= 240 och 2*(x 1 +x 2 ) <= 140 ger a/ vi kan =llverka totalt 70 enheter, och som mest 40 st av x 1 Ger en ska/ning: x = (40,0) T, z opt = 0* *0 = 1800 :- TAOP14: Föreläsning 2 2 Pessimis=sk ska/ning Måste all=d, med säkerhet, ge en lösning som är =llåten med avseende på bivillkoren. Strategi: max z = 0x x 2 Använd enkel papper och då 4x 1 + x 2 apple 240 penna räkning 2x 1 + 2x 2 apple 140 Förenkla problemet utan a/ fler x 1 apple 40 lösningar än de ursprungliga blir =llåtna, troligen fås då färre =llåtna lösningar Förenkla målfunk=onen så a/ den ger e/ för dåligt värde x 1, x 2 0 T 2.4 TAOP14: Föreläsning 2 Pessimis=sk ska/ning De finns återigen olika ska/ningar. Kom ihåg a/ varje =llåten lösning all=d ger en pessimis=sk ska/ning: x = ( 0, 0) T, z pess = 0*0 + 20*0 = 0 :- x = (40,0) T, z pess = 0* *0 = 1200 :- Eller: Ändra koefficient =ll 4 i första bivillkoret: 4x 1 + 4x 2 <= 240 Bivillkoren 4*(x 1 +x 2 ) <= 240 och 2*(x 1 +x 2 ) <= 140 ger a/ vi kan =llverka totalt 60 enheter, och som mest 40 st av x 1 Ger en ska/ning: x = (40,20) T, z pess = 0* *20 = 1600 :- Slutsats: 1600 <= z* <=
12 TAOP14: Föreläsning 2 4 Labora=on 1 SyDar =ll a/ ni ska komma igång med AMPL Gå från problemställning i ord =ll resultatutskrid Byggs upp stegvis Förberedelse inför projektuppgiden där ni ska lösa e/ något större problem TAOP14: Föreläsning 2 5 Uppsummering Fö. 2 Modellering Parametrar, variabler, bivillkor, målfunk=on AMPL, modelleringsspråk för op=meringsproblem Sista sidorna på dagens föresläsning visar AMPLmodellen för problemet Produk=onsplanering II Upörliga exempel Modellering på Lisam: E/ dokument som försöker beskriva vad man bör tänka på vid modellering Work in progress, kom gärna med feedback och förslag på förbä/ringar TAOP14: Föreläsning 2 6 Produk=onsplanering II min z = c t x t + p L t + k t=1 t=1 t=1 y t då L t S, t =1,2, h t x t M + y t, t =1,2, L t 1 + x t d t = L t, t =1,2, L 0 = L _init x t, y t 0, t = 1,2, L t 0, t = 0,1,2, Behöver skapa tre filer. kommandofil: exempel2.run modellfil: exempel2.mod datafil: exempel2.dat 12
13 TAOP14: Föreläsning 2 7 modellfil, del 1 set produkter; # Olika produkter param T; # Antal veckor param c{produkter}; # Produktionskostnad param Efterfrågan{1..T} # Efterfrågan varje vecka param p; # Lagerkostnad param k; # Leasingkostnad param M; # Maskinkapacitet param h{1..t}; # Åtgång vid tillverkning param S; # Lagerkapacitet param L_init; # Initiallager TAOP14: Föreläsning 2 8 modellfil, del 2 # Antal producerade produkter vecka t: var x{1..t} >= 0; # Antal produkter i lager vecka t: Var L{0..T} >= 0; # Antal leasingtimmar vecka t: Var y{1..t} >=0; TAOP14: Föreläsning 2 9 modellfil, del minimize z: sum{t in 1..T} (c[t]*x[t] + sum{t in 1..T} p*l[t] + sum{t in 1..T} k*y[t]); subject to Lagerkapacitet{t in 1..T} : L[t] <= S; Maskintid{t in 1..T} : h[t]*x[t] <= M + y[t]; Lagerbalans{t in 1..T}: L[t-1] + x[t] - d[t] = L[t]; Init_lager : L[0] = L_init; 1
Föreläsning 2: A/ modellera och lösa LP-problem. TAOP14: Föreläsning 2
TAOP14: Föreläsning 2 Problemställning i ord matematisk modell AMPL-modell CPLEX resultatutskrift svar på den givna problemställningen TAOP14: Föreläsning 2 2 Föreläsning 2: A/ modellera och lösa LP-problem
Föreläsning 2: A/ modellera och lösa LP-problem
TAOP52: Föreläsning 2 Att modellera och lösa LP-problem TAOP52: Föreläsning 2 2 Föreläsning 2: A/ modellera och lösa LP-problem Problemställning i ord matema=sk modell AMPL-modell CPLEX resultatutskrid
Föreläsning 2: A/ modellera och lösa LP-problem. TAOP52: Föreläsning 2. Att modellera och lösa LP-problem
TAOP52: Föreläsning 2 Att modellera och lösa LP-problem TAOP52: Föreläsning 2 2 Föreläsning 2: A/ modellera och lösa LP-problem Problemställning i ord matema=sk modell AMPL-modell CPLEX resultatutskrid
TAOP52: Optimeringslära grundkurs
TAOP2: Optimeringslära grundkurs Nils-Hassan Quttineh Optimeringslära, MAI TAOP2: Föreläsning 1 2 Föreläsning 1: Kurspresenta3on och introduk3on 3ll op3meringslära Vad är op3meringslära och vad kan det
TAOP14: Optimeringslära grundkurs
TAOP14: Optimeringslära grundkurs Nils-Hassan Quttineh Optimeringslära, MAI TAOP14: Föreläsning 1 2 Föreläsning 1: Kurspresenta3on och introduk3on 3ll op3meringslära Vad är op3meringslära och vad kan det
TAOP14: Optimeringslära grundkurs
TAOP14: Optimeringslära grundkurs Nils-Hassan Quttineh Optimeringslära, MAI TAOP14: Föreläsning 1 2 Föreläsning 1: Kurspresenta3on och introduk3on 3ll op3meringslära Vad är op3meringslära och vad kan det
TAOP52: Optimeringslära grundkurs
TAOP2: Optimeringslära grundkurs Nils-Hassan Quttineh Optimeringslära, MAI TAOP2: Föreläsning 1 2 Föreläsning 1: Kurspresenta3on och introduk3on 3ll op3meringslära Vad är op3meringslära och vad kan det
Introduktion till modelleringsspråket Ampl
1 Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Introduktion till Ampl Optimeringslära 3 februari 2019 Introduktion till modelleringsspråket Ampl Ampl är ett modelleringsspråk
Laboration 1 - Simplexmetoden och modellformulering
Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Laboration 1 Optimeringslära 29 januari 2017 Laboration 1 - Simplexmetoden och modellformulering Den första delen av laborationen
Laboration 1 - Simplexmetoden och Modellformulering
Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Laboration 1 Optimeringslära 30 januari 2013 Laboration 1 - Simplexmetoden och Modellformulering Den första delen av laborationen
TNSL05 Optimering, Modellering och Planering. Föreläsning 4
TNSL05 Optimering, Modellering och Planering Föreläsning 4 2018-11-14 2 Kursmål: idag Studenten ska efter avslutad kurs kunna: Analysera och formulera optimeringsmodeller inom ekonomiska tillämpningsområden
Optimering med hjälp av Lego. Mathias Henningsson
Optimering med hjälp av Lego Mathias Henningsson Vem är jag? Mathias Henningsson Lärare Optimeringslära 1996-2007 Produktionsekonomi 2008- Bokförfattare Optimeringslära övningsbok (Studentlitteratur) Arbetar
Speciell användning av heltalsvariabler. Heltalsprogrammering. Antingen-eller-villkor: Exempel. Speciell användning av heltalsvariabler
Heltalsprogrammering Speciell användning av heltalsvariabler max z = då c j x j j= a ij x j b i j= x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland
MIO310 OPTIMERING OCH SIMULERING, 4 p
Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO0 OPTIMERING
TNK049 Optimeringslära
TNK09 Optimeringslära Clas Rydergren ITN Föreläsning Simplemetoden på tablåform och algebraisk form Fas I (startlösning) Känslighetsanalys Tolkning av utdata Agenda Halvtidsutvärdering Simplemetoden (kap..8)
Tentamensinstruktioner. Vid skrivningens slut
Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN1 OPTIMERINGSLÄRA GRUNDKURS för I och Ii Datum: 13:e januari 2011 Tid: 8.00 13.00 Hjälpmedel: Kurslitteratur av Lundgren m fl: Optimeringslära
Linjärprogramming. EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin
Linjärprogramming EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin 1 Kursmål Formulera korttidsplaneringsproblem för vatten- och värmekraftsystem. 2 Tillämpad matematisk programming Korttidsplanering
Laborationsinformation
Linköpings Tekniska Högskola 2017 03 16 Matematiska institutionen/optimeringslära Kaj Holmberg Laborationsinformation 1 Information om GLPK/glpsol 1.1 Introduktion till GLPK GLPK (GNU Linear Programming
Tentamensinstruktioner
TNSL05 1(9) TENTAMEN Datum: 6 april 2018 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,
Tentamensinstruktioner
TNSL05 (6) TENTAMEN Datum: augusti 07 Tid: 8- Provkod: TEN Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt p, betyg kräver
min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ:
Heltalsprogrammering Speciell användning av heltalsvariabler max z = då n c j x j j= n a ij x j b i j= x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland
Laboration 2 - Heltalsoptimering
Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Laboration 2 Optimeringslära 4 februari 203 Laboration 2 - Heltalsoptimering Problemställning Synande av cellprover När
TNSL05 Övningsuppgifter modellering
TNSL05 Övningsuppgifter modellering 1) Ett företag tillverkar och säljer två olika typer av bord. Grundversionen, med skiva i trä, tar 0.6 timmar att sätta ihop, har fyra ben och säljs med 1500 kr i vinst.
De optimeringsproblem som kommer att behandlas i denna kurs kan alla (i princip) skrivas. 1 2 xt Hx + c T x. minimera
Krister Svanberg, mars 2012 1 Introduktion De optimeringsproblem som kommer att behandlas i denna kurs kan alla (i princip) skrivas på följande allmänna form: f(x) (1.1) x F, där x = (x 1,..., x n ) T
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 19 april 2017 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:
Tentamensinstruktioner
TNSL05 1(8) TENTAMEN Datum: 1 april 2016 Tid: XXX Sal: XXX Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt
Optimering. Optimering av transportproblem. Linköpings universitet SL. Campusveckan VT2013
Optimering Optimering av transportproblem Campusveckan VT2013 Linköpings universitet SL 1 Optimering - Distributionsproblem Företaget Kulprodukter AB producerar sina kulor vid fyra olika fabriksanläggningar
Optimering och simulering: Hur fungerar det och vad är skillnaden?
Optimering och simulering: Hur fungerar det och vad är skillnaden? Anders Peterson, Linköpings universitet Andreas Tapani, VTI med inspel från Sara Gestrelius, RIS-SIS n titt i KAJTs verktygslåda Agenda
MIO310 OPTIMERING OCH SIMULERING, 4 p
Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO0 OPTIMERING
1 Duala problem vid linjär optimering
Krister Svanberg, april 2012 1 Duala problem vid linjär optimering Detta kapitel handlar om två centrala teoretiska resultat för LP, nämligen dualitetssatsen och komplementaritetssatsen. Först måste vi
Tentamensinstruktioner
TNSL05 1(7) TENTAMEN Datum: 1 april 2016 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,
min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ:
Heltalsprogrammering Speciell användning av heltalsvariabler max z = då c j x j a ij x j b i x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland u j
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN 1 OPTIMERINGSLÄRA GRUNDKURS för I, Ii och TB Datum: 24 augusti 2009 Tid: 8.00-13.00 Hjälpmedel: Lundgren m fl: Optimeringslära och/eller Lundgren
Optimeringslara = matematik som syftar till att analysera och. Optimeringslara ar en gren av den tillampade matematiken.
Optimal = basta mojliga. Optimeringslara = matematik som syftar till att analysera och nna det basta mojliga. Anvands oftast till att nna ett basta handlingsalternativ i tekniska och ekonomiska beslutsproblem.
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 10 januari 201 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: juni 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken får
TENTAMEN. Tentamensinstruktioner. Datum: 30 augusti 2018 Tid: 8-12
1( 9) TENTAMEN Datum: 30 augusti 2018 Tid: 8-12 Provkod: TEN1 Kursnamn: Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p, betyg kräver
LP-problem. Vårt första exempel. Baslösningar representerar extrempunkter. Baslösningar representerar extrempunkter
LP-problem Vårt första exempel Ett LP-problem: max z = c T x då Ax b, x 0. Den tillåtna mängden är en polyeder och konvex. Målfunktionen är linjär och konvex. Så problemet är konvext. Var ligger optimum?
Tentamensinstruktioner
TNSL05 1(9) TENTAMEN Datum: augusti 017 Tid: 8-1 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 1 p, betyg
1(8) x ijt = antal mobiltelefoner av typ i=1,,m, Som produceras på produktionslina 1,, n, Under vecka t=1,,t.
1(8) (5p) Uppgift 1 Företaget KONIA tillverkar mobiltelefoner I en stor fabrik med flera parallella produktionslinor. För att planera produktionen de kommande T veckorna har KONIA definierat följande icke-negativa
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: januari 2013 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Laborationsuppgift 1 Tillämpad optimeringslära för MMT (5B1722)
Laborationsuppgift 1 Tillämpad optimeringslära för MMT (5B1722) Februari 2004 Avdelningen för Optimeringslära och Systemteori Institutionen för Matematik Kungliga Tekniska Högskolan Stockholm Allmän information
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping TAOP88 Matematiska Institutionen Lösning till tentamen Optimeringslära 9--7 Kaj Holmberg Lösningar Uppgift a: Inför slackvariabler x 5, x 6 och x 7 Starta med slackvariablerna
MIO310 OPTIMERING OCH SIMULERING, 4 p
Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO310 OPTIMERING
TNSL05 Optimering, Modellering och Planering. Föreläsning 6
TNSL05 Optimering, Modellering och Planering Föreläsning 6 Agenda Kursens status Tolkning av utdata Intro lösningsmetoder Linjära optimeringsproblem (LP) på standardform Algebraisk formulering av LP Konveitet
Ett linjärprogrammeringsproblem på allmän form ser ut som
Linjärprogrammering Ett linjärprogrammeringsproblem på allmän form ser ut som Minimera n j=1 c jx j x j 0 n j=1 a ijx j b i i =1, 2,...,m Variant: Vi kan vilja maximera istället. Vi kommer att studera
Optimalitetsvillkor. Optimum? Matematisk notation. Optimum? Definition. Definition
Optimum? När man har formulerat sin optimeringsmodell vill man lösa den Dvs finna en optimal lösning, x, till modellen Nästan alltid: Sökmetoder: Stå i en punkt, gå till en annan (bättre Upprepa, tills
Vårt första exempel. LP-dualitet: Exempel. LP-dualitet: Generellt. LP-dualitet: Relationer
Vårt första exempel Variabeldefinition: x 1 = antal enheter Optimus som görs varje timme. x 2 = antal enheter Rullmus som görs varje timme. Matematisk modell: max z = 4x 1 + 3x 2 då 2x 1 + 3x 2 30 (1)
Vinsten (exklusive kostnaden för inköp av kemikalier) vid försäljning av 1 liter fönsterputs är 2 kr för F1 och 3 kr för F3.
TNSL05 2(8) (5p) Uppgift 1 Företaget XAJA tillverkar två olika sorters rengöringsprodukter för fönsterputsning, benämnda F1 och F2. Förutom vatten, som ingår i båda produkterna är, innehållet ett antal
Optimering med bivillkor
Optimering med bivillkor Vi ska nu titta på problemet att hitta max och min av en funktionen f(x, y), men inte över alla möjliga (x, y) utan bara för de par som uppfyller ett visst bivillkor g(x, y) =
Lösningar till 5B1762 Optimeringslära för T, 24/5-07
Lösningar till 5B76 Optimeringslära för T, 4/5-7 Uppgift (a) Först använder vi Gauss Jordans metod på den givna matrisen A = Addition av gånger första raden till andra raden ger till resultat matrisen
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 17 januari 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering.
LP-dualitet: Exempel. Vårt första exempel. LP-dualitet: Relationer. LP-dualitet: Generellt
Vårt första exempel Variabeldefinition: x 1 = antal enheter Optimus som görs varje timme. x 2 = antal enheter Rullmus som görs varje timme. Matematisk modell: max z = 4x 1 + 3x 2 då 2x 1 + 3x 2 30 (1)
TNK049 Optimeringslära
TNK049 Optimeringslära Clas Rydergren, ITN Föreläsning 6 Det duala problemet Relationer primal dual Optimalitetsvillkor Nätverksoptimering (introduktion) Agenda Motivering av det duala problemet (kap 6.)
Vinsten (exklusive kostnaden för inköp av kemikalier) vid försäljning av 1 liter fönsterputs är 2 kr för F1 och 3 kr för F3.
TNSL05 (10) (5p) Uppgift 1 Företaget XAJA tillverkar två olika sorters rengöringsprodukter för fönsterputsning, benämnda F1 och F. Förutom vatten, som ingår i båda produkterna är, innehållet ett antal
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: januari 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: januari 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: januari 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig (ej fackspråklig) ordbok utan kommentarer. Formelsamling tillhandahålls i tentamenslokalen.
Operativ Verksamhetsstyrning/ Produktionslogistik Provmoment: Ladokkod: Tentamen ges för: TentamensKod: 7,5 högskolepoäng Skriftlig tentamen 41I32O, 51PL01 Affärsingenjör - inriktning bygg, Affärsingenjör
Examinator: Torbjörn Larsson Jourhavande lärare: Torbjörn Larsson, tel Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y Datum: 21 augusti 2012 Tid: 14-19 Hjälpmedel: Inga Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C. Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 1 januari 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
Eulercykel. Kinesiska brevbärarproblemet. Kinesiska brevbärarproblemet: Metod. Kinesiska brevbärarproblemet: Modell. Definition. Definition.
Eulercykel Definition En Eulercykel är en cykel som använder varje båge exakt en gång. Definition En nods valens är antalet bågar som ansluter till noden. Kinesiska brevbärarproblemet En brevbärartur är
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 23 augusti 2016 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: januari 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 19 oktober 2017 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
MIO310 OPTIMERING OCH SIMULERING, 4 p
Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO310 OPTIMERING
Lösningar till SF1861 Optimeringslära, 28 maj 2012
Lösningar till SF86 Optimeringslära, 28 maj 202 Uppgift.(a) Då det primala problemet P är så är det motsvarande duala problemet D minimera 3x + x 2 då 3x + 2x 2 6 x + 2x 2 4 x j 0, j =, 2. maximera 6 +
Optimering på dator. Laborationsinstruktion Systemanalysgruppen, 1998 Uppsala universitet. Handledarens kommentarer.
Laborationsinstruktion Systemanalysgruppen, 1998 Uppsala universitet Optimering på dator Namn Handledarens kommentarer Grupp Inskrivningsår Utförd den Godkänd den Signum Leif Gustafsson 1985 Thomas Persson
TNSL05 Optimering, Modellering och Planering. Föreläsning 5
TNSL5 Optimering, Modellering och Planering Föreläsning 5 Dagordning Kort repetition Graf/nätverk: Begrepp Representation Exempel: Minkostnadsflödeproblem Billigastevägproblem 28--5 4 Hittills Föreläsning
Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet
Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:
1 LP-problem på standardform och Simplexmetoden
Krister Svanberg, mars 202 LP-problem på standardform och Simplexmetoden I detta avsnitt utgår vi från LP-formuleringen (2.2) från föreläsning. Denna form är den bäst lämpade för en strömlinjeformad implementering
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM. Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 11 januari 2017 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 29 maj 20 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
SF1545 Laboration 1 (2015): Optimalt sparande
Avsikten med denna laboration är att: SF1545 Laboration 1 (215: Optimalt sparande - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda laborationstillfällen, - lösa
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping TAOP88 Matematiska Institutionen Lösning till tentamen Optimeringslära 28--24 Kaj Holmberg Uppgift Lösningar a: Målfunktionen är summan av konvexa funktioner (kvadrater och
General Algebraic Modeling System Översätter direkt från modell till algoritm.
Vad är GAMS? General Algebraic Modeling System Översätter direkt från modell till algoritm. Fördelar: Effektivt Skapa mängd ekvationer med en enda sats Lägg in data en och endast en gång Snabbt skapa prototyper
Dynamisk programmering. Dynamisk programmering. Dynamisk programmering. Dynamisk programmering
Betrakta ett lagerhållningsproblem i flera tidsperioder. Vi har tillverkning och försäljning av produkter i varje tidsperiod. Dessutom kan vi lagra produkter mellan tidsperioder, för att utnyttja stordriftsfördelar
Optimering med bivillkor
Kapitel 9 Optimering med bivillkor 9.1. Optimering med bivillkor Låt f(x) vara en funktion av x R. Vi vill optimera funktionen f under bivillkoret g(x) =C (eller bivllkoren g 1 (x) =C 1,..., g k (x) =C
TAOP61 Projekt 2. Kaj Holmberg (LiU) TAOP61 Optimering 28 oktober / 14
TAOP61 Projekt 2 Kaj Holmberg (LiU) TAOP61 Optimering 28 oktober 2016 1 / 14 TAOP61 Projekt 2 Optimering av elmotorutnyttjandet i en laddhybrid med hjälp av dynamisk programmering. Kaj Holmberg (LiU) TAOP61
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER för M/EMM Datum: oktober 0 Tid:.00-9.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet. Specialfall av minkostnadsflödesproblemet. Slutsats.
Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 8 januari 201 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
Optimering av olika slag används inom så vitt skilda områden som produktionsplanering,
Anders Johansson Linjär optimering Exempel på användning av analoga och digitala verktyg i undervisningen Kursavsnittet linjär optimering i Matematik 3b kan introduceras med såväl analoga som digitala
Lösningar till SF1861/SF1851 Optimeringslära, 24/5 2013
Lösningar till SF86/SF85 Optimeringslära, 4/5 03 Uppgift (a) Inför de 3 variablerna x ij = kvantitet (i sorten ton) som fabrik nr i åläggs att tillverka av produkt nr j, samt t = tiden (i sorten timmar)
k 1 B k 2 C ges av dx 1 /dt = k 1 x 1 x 1 (0) = 100 dx 2 /dt = k 1 x 1 k 2 x 2 x 2 (0) = 0 dx 3 /dt = k 2 x 2 x 3 (0) = 0
Radioaktivt sönderfall 2D124 numfcl, Fö 5 Ekvationerna som beskriver hur ett radioaktivt ämne A sönderfaller till ämnet B som i sin tur sönderfaller till C ges av dx 1 /dt = k 1 x 1 x 1 () = 1 dx 2 /dt
Lösningar/svar. Uppgift 1. Tekniska Högskolan i Linköping Optimering av realistiska sammansatta system. Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering av realistiska sammansatta system Matematiska Institutionen Lösning till tentamen Optimeringslära 2017-08-22 Kaj Holmberg Lösningar/svar Uppgift 1 1a: Variabeldefinition:
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 2 oktober 2013 Tid:.00-13.00 Hjälpmedel: Miniräknare Kaj Holmberg: Optimering.
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 0 augusti 201 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för EMM Datum: 2 augusti 2011 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
GYMNASIECASET Instruktioner
GYMNASIECASET 2019 Information till läraren Stort tack för att er skola vill vara med och delta i Gymnasiecaset 2019! Vi från Industriell ekonomi vid Linköpings Universitet hoppas att detta blir en utmärkt
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: 0 oktober 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i
TNK047 [TEN1] OPTIMERING OCH SYSTEMANALYS
TNK047 [TEN1] OPTIMERING OCH SYSTEMANALYS Datum: 22 maj 2012 Tid: 8 12, TP56 Hjälpmedel: Ett A4-blad med text/anteckningar (båda sidor) samt miniräknare. Antal uppgifter: 5; Vardera uppgift kan ge 5p.
Föreläsning 13: Multipel Regression
Föreläsning 13: Multipel Regression Matematisk statistik Chalmers University of Technology Oktober 9, 2017 Enkel linjär regression Vi har gjort mätningar av en responsvariabel Y för fixerade värden på
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 28-5-3 Kaj Holmberg Lösningar Uppgift a: P: Grafisk lösning ger x = 2/7 = 2 6/7,
Tentamensinstruktioner
TNSL05 1(7) TENTAMEN Datum: 21 april 2017 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,
ger rötterna till ekvationen x 2 + px + q = 0.
KTHs Sommarmatematik 2002 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 2.1 Introduktion Introduktion Avsnitt 2 handlar om den enklaste typen av algebraiska uttryck, polynomen. Eftersom polynom i princip
Mat eller Motor. - Är åkermark en bristvara eller finns det en tydlig affärsmöjlighet för biodrivmedel?
Mat eller Motor - Är åkermark en bristvara eller finns det en tydlig affärsmöjlighet för biodrivmedel? Mar>n Eriksson, Macklean Strategiutveckling 28 november, 2013 Macklean insikter 2 Rapportens konklusioner
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Instruktion för laboration 1
STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för matematisk statistik ANL/TB SANNOLIKHETSTEORI I, HT07. Instruktion för laboration 1 De skrifliga laborationsrapporterna skall vara skrivna så att
TNK047 OPTIMERING OCH SYSTEMANALYS
TNK047 OPTIMERING OCH SYSTEMANALYS Datum: 18 december 2006 Tid: 14 18 Hjälpmedel: Ett A4-blad med egna anteckningar (båda sidor) samt miniräknare. Antal uppgifter: ; Vardera uppgift kan ge p. Poängkrav: