TAOP52: Optimeringslära grundkurs
|
|
- Sten Eliasson
- för 6 år sedan
- Visningar:
Transkript
1 TAOP2: Optimeringslära grundkurs Nils-Hassan Quttineh Optimeringslära, MAI TAOP2: Föreläsning 1 2 Föreläsning 1: Kurspresenta3on och introduk3on 3ll op3meringslära Vad är op3meringslära och vad kan det användas 3ll? Kursens innehåll och upplägg Grundläggande begrepp 1
2 TAOP2: Föreläsning 1 3 Vad är op3meringslära? Matema3k som sybar 3ll ac finna bästa beslut / handlingsalterna3v Kan användas för ac beskriva, analysera och lösa komplexa problem inom teknik, ekonomi och samhälle Problemställning Beslutsalterna3v Mål Begränsningar? TAOP2: Föreläsning 1 4 Verkligt problem Iden3fiering, avgränsningar, förenklingar, antaganden Verifiering Validering Förenklat problem Op3meringsmodell Lösning Formulering Lösningsmetod Resultat 2
3 TAOP2: Föreläsning 1 Op3meringsmodell Beslut Variabler Mål Målfunk3on Begränsningar Bivillkor FörutsäCningar Mål och begränsningar ska kunna ucryckas kvan3ta3vt Antalet beslutsalterna3v är stort TAOP2: Föreläsning 1 6 Matema3sk modell x är variablerna, de beslut som ska facas f(x) är målfunk3onen X representerar mängden av alla 3llåtna lösningar min f(x) då x 2 X Exempel: min f(x) =2x 1 +3x 2 då x 1 +2x 2 0 apple x 1 apple 2 0 apple x 2 apple 2 X 3
4 TAOP2: Föreläsning 1 7 Tillämpningsområden Exempel: Transport och distribu3on lokalisering, rucplanering, schemaläggning Bemanningsplanering Tillordning, schemaläggning Konstruk3on strukturop3mering, packning och kapning Finans op3mal ak3eporsölj TAOP2: Föreläsning 1 8 Forskningsprojekt Exempel på aktuella projekt på Op3meringslära, MAI: Schemaläggning av avioniksystem, många komponenter som måste dela informa3on med varandra. PorSöljvalsop3mering, komponera en ak3eporsölj där man balanserar förväntad avkastning mot risk. RuCplanering för snöröjning, planera vilka fordon som behövs och vilka gator dom ska röja (och i vilken ordning). Op3mering av brachyterapi, förbäcring av stråldosplaner med avseende på tumördöd och risk för biverkningar. Produk3onsplanering inom processindustrin. 4
5 TAOP2: Föreläsning 1 9 Vad krävs för ac gå från verkligt problem 3ll resultat? Förståelse för 3llämpningen Förmåga ac strukturera problemställningen Välja lösningsmetod Lösa problemet: - Använda färdig programvara? - Programmera själv? Ämneskunskap matema3k programmering Denna kurs TAOP2: Föreläsning 1 10 Op3meringens roll Strukturera / förstå problemet Matema3ska modeller har op3mala lösningar verkligheten är mer nyanserad Vanligt sybe: - Ge riktlinjer eller förslag - Generera alterna3va förslag under olika förutsäcningar Op3meringsmodell Planerarens erfarenhet Övriga faktorer Beslut
6 TAOP2: Föreläsning 1 11 FörutsäCningar för op3mering Förr: Svårt ac hica data Allt / mycket programmering från grunden Långsamma datorer Nu3d (90-talet ): Data 3llgängligt och strukturerat Programvaror Mer 3llgängliga och användarvänliga Modelleringsspråk gör modellering enklare Snabba datorer och bra algoritmer TAOP2: Föreläsning 1 12 Val av lösningsmetod Faktorer som påverkar: Variabeltyp: Kon3nuerliga / diskreta/binära Problemtyp: Linjära / ickelinjära samband Modellstorlek: Antal variabler / villkor Data: Determinis3sk / stokas3sk Möjliga alterna3v: Op3merande metod Heuris3sk metod Simulering 6
7 TAOP2: Föreläsning 1 13 Man får vad man betalar för... Enkel Låg LäC Modell Realism Lösbarhet Komplex Hög Svår TAOP2: Föreläsning 1 14 Produk3onsplanering inom processindustrin [Perstorps anläggning i Stenungsund] 7
8 TAOP2: Föreläsning 1 1 Op3mering, processindustrin Målfunk3on Maximera intäkter: o Försäljning 3ll kunder Minimera kostnaden för: o Produk3on o Lagerhållning o Transporter (både mellan fabriker och 3ll kund) o Ej uppfylld eberfrågan TAOP2: Föreläsning 1 16 Op3mering, processindustrin Bivillkor Produk3onskapaciteter Tillgodose kundernas eberfrågan Beroenden mellan produkter Begränsad lagerkapacitet Lagerbalans: lager + nyproducerat - försäljning = nyc lager 8
9 TAOP2: Föreläsning 1 17 Kursmål Iden3fiera 3llämpningsområden Iden3fiera olika op3meringsproblem Förklara sybet med ec op3meringsproblem Modellera op3meringsproblem matema3skt Redogöra för olika op3meringsalgoritmer och sammanfaca principerna bakom algoritmerna Välja metod eller lösning för ec op3meringsproblem Använda en algoritm för ac lösa ec op3meringsproblem Använda programvara för ac lösa ec op3meringsproblem Redogöra för grundläggande op3meringsteori TAOP2: Föreläsning 1 18 Kursens innehåll Linjärprogrammering (LP) formulering av LP-problem simplexmetoden dualitet känslighetsanalys Icke-linjär programmering (ILP) konvexitet obegränsad op3mering, sökmetoder begränsad op3mering, KKT-villkoren 9
10 TAOP2: Föreläsning 1 19 Kursens upplägg Föreläsningar, 9 st Lek3oner, 10 st Salslabora3oner, 3 st ProjektuppgiB, 1 st SkriBlig tentamen (3 HP) Labora3onsdelen (1 HP) TAOP2: Föreläsning 1 20 Lek3onsgrupper Björn Morén: I1.a Jessica Boberg: I1.b Henrik von Perner: I1.c Joel Kvick: I1.d, I1.e Isabelle Uhno: I1.f Oleg Burdakov: Ii1.a Nisse Qumneh: Ii1.b 10
11 TAOP2: Föreläsning 1 21 Labora3oner Labora3onsgrupper om högst 2 personer 3 schemalagda labora3oner (lab1, lab2, lab3) EBer lab 1: ProjektuppgiB Formulering och lösning av ec LP-problem Individuella uppdragsbeskrivningar SkriBlig rapport samt muntlig avstämning Labora3onsinforma3on delas ut på lek3on Labora3onslistor finns ac fylla i på lek3on Labbarna 4h långa (goc om 3d) TAOP2: Föreläsning 1 22 Kursinforma3on Böcker: Lärobok: Lundgren m.fl. Op(meringslära (2008) Henningsson m.fl. Op(meringslära Övningsbok Används även i fortsäcningskursen. Kurshemsida På Kursplatsen LISAM: Kursinforma3on; labora3onsinforma3on; labora3onsfiler; status på labora3oner;... Registrera er för ac få 3llgång 3ll kurssidan!! 11
12 TAOP2: Föreläsning 1 23 LISAM Hur kommer man in i Lisam? Man kommer in i Lisam med sic LiU-id. Logga in på webbadressen: lisam.liu.se Det finns även länkar hit från olika ställen på LiU-webben, t.ex. från Studentportalen. Vad behöver man göra första gången i Lisam? Den absolut första gången man loggar in i Lisam kommer systemet ac i bakgrunden bygga upp den egna personliga sidan, vilket kan ta någon minut. Utöver ac vänta på deca behöver man inte göra några särskilda inställningar. TAOP2: Föreläsning 1 24 Utvärdering 3digare år TentauppgiBerna skiljer sig mycket från lek3onsuppgiberna: På lek3onsplanen finns hänvisningar 3ll typiska tentauppgiber på motsvarande material. Vid exemplen på tavlan, skriv ner HELA frågan/problemet. Finns på separata pdf-filer 3ll varje föreläsning! 12
13 TAOP2: Föreläsning 1 2 Nyheter Första gången kursen ges!! Från och med våren 2017 ges kursen i ÅK 1 under vt2 Minskar från 6 hp 3ll 4 hp Ha överseende om något inte funkar som det ska.. Projektrapporten ska skrivas på engelska! Nämnden för I-programmet vill få in mera inslag av engelska i utbildningen. En extra föreläsningar av Pamela Vang Generellt om ac skriva på engelska Speciellt om rapportskrivning TAOP2: Föreläsning 1 26 Förväntningar Förkunskapskrav: Linjär algebra och analys Självstudier Läs på inför föreläsningarna Lek3ons3den räcker obast inte 3ll för ac lösa alla uppgiber. Krävs ac ni lägger egen 3d på ac räkna. Kursvärderingar är bra, vi vill utveckla och förbäcra våra kurser! Kräver dock feedback. Snälla fyll i KURT-utvärderingen i slutet av kursen. Förra året svarade endast 29%.. 13
14 TAOP2: Föreläsning 1 27 Varför gör denna kurs ac ni blir bäcre civilingenjörer? Problemlösningsförmåga: Kursen ger övning i ac angripa och lösa verkliga planeringsproblem på ec mycket strukturerat säc. Datorn som verktyg: Övning i ac använda datorn som verktyg vid lösande av problem, samt övning i ac hantera olika programvaror. Matema3skt angreppssäc: Den matema3k ni lärt er 3digare kommer 3ll användning och säcs in i ec nyc sammanhang. TAOP2: Föreläsning 1 28 Tavelmarkör För ac få en bra struktur på anteckningarna används symbolen T 4.2 för ac markera övergång 3ll tavlan. Nu börjar vi på rik3gt!! 14
15 TAOP2: Föreläsning 1 29 Linjära op3meringsproblem (LP-problem) Maximera (minimera) en linjär målfunk3on Linjär bivillkorsmängd Undre (och övre) gräns för varje variabel Summa3onsform max z = X j2j c j x j Matrisform max z = c T x då X a ij x j apple b i, i 2 I då Ax apple b x 0 j2j x j 0, j 2 J TAOP2: Föreläsning 1 30 Grafisk lösning av LP-problem x 2 max z = x 2 [målfunk9on] då x 1 + x 2 apple 1 x 1 + 6x 2 apple 30 x 1, x 2 0 (2) (3) (2) Tillåtna området (3) x 1 1
16 TAOP2: Föreläsning 1 31 Grafisk lösning av LP-problem x 2 Op3mum x z * LP * LP = ( = , = 3 ) 3 T rz = 1 max z = x 2 [målfunk9on] då x 1 + x 2 apple 1 x 1 + 6x 2 apple 30 x 1, x 2 0 (2) (3) (2) Tillåtna området (3) x 1 TAOP2: Föreläsning 1 32 Grafisk lösning av LP-problem x 2 max z = x 1 [ny målfunk9on] då x 1 + x 2 apple 1 x 1 + 6x 2 apple 30 x 1, x 2 0 (2) (3) 1 rz = 0 (2) 1 rz = 0 Op3mum x z * LP * LP = ( 6, 0) = 6 T (3) x 1 16
17 TAOP2: Föreläsning 1 33 Grafisk lösning av LP-problem x 2 2 rz = max z = 2x 1 +x 2 då x 1 + x 2 apple 1 x 1 + 6x 2 apple 30 x 1, x 2 0 (2) (3) 2 rz = (2) (3) x 1 TAOP2: Föreläsning 1 34 Grafisk lösning av LP-problem x 2 max z = x 1 +6x 2 då x 1 + x 2 apple 1 x 1 + 6x 2 apple 30 x 1, x 2 0 (2) (3) rz = 6 rz = 6 (2) (3) x 1 17
18 TAOP2: Föreläsning 1 3 Grafisk lösning av LP-problem x 2 Op3mum ligger all3d i (minst) en hörnpunkt för linjära problem DeCa kommer vi ac använda för ac lösa LP-problem algebraiskt (Fö 3 + 4, Simplexalgoritmen) x 1 TAOP2: Föreläsning 1 36 Grafisk lösning av LP-problem z = 16 z = 10 x 2 A 2 rz = Målfunk3onskoefficienterna, gradienten 3ll z, pekar ditåt man vill gå (dit värdet på z ökar mest) T.ex. max z = 2x 1 + x 2 Alla punkter på linjer som är vinkelräta mot gradienten 3ll z ger samma målfunk3onsvärde: A = ( 0, 2) => z = 2*0 + *2 = 10 z = 4 B C B = (2., 1) => z = 2*2. + *1 = 10 C = (, 0) => z = 2* + *0 = 10 x 1 18
19 TAOP2: Föreläsning 1 37 Nota3on Variabler: I flervariabelanalys: x, y, z I op3meringslära: x 1, x 2, x 3,, x n Variabelvektor: x = ( x 1, x 2, x 3,, x n ) T I linjär algebra: x, I op3meringslära: x x, x, x Vi skriver oba x 0 ( varje element i vektorn x är större eller lika med noll ) TAOP2: Föreläsning 1 38 Nota3on Vektorer anges all3d som kolumnvektorer! Gör obast ingen skillnad på punkt och vektor Transponat: Samma sak!! Op3mallösning: x* - själva lösningen Op3malt målfunk3onsvärde: z* - värdet för x* 19
20 TAOP2: Föreläsning 1 39 Nota3on Summatecken För alla / För varje (mer på Fö 2) TAOP2: Föreläsning 1 40 Exempel: Produk3onsplanering Produk3on av två olika produkter. Maximera den totala vinsten. Resurs3llgång vid de två 3llverkningsavdelningarna: avd 1: 240h avd 2: 140h Produkt 1 vinst/enhet: 30 kr resursåtgång avd 1: 4h resursåtgång avd 2: 2h begränsad eberfrågan: 40 st Produkt 2 vinst/enhet: 20 kr resursåtgång avd 1: 3h resursåtgång avd 2: 2h T
21 TAOP2: Föreläsning 1 41 Modellformulering Variabeldefini3on: x i = antalet 3llverkade av produkt i, i = 1, 2 Matema3sk modell: max z = 30x x 2 då 4x 1 + 3x 2 apple 240 2x 1 + 2x 2 apple 140 x 1 apple 40 x 1, x 2 0 [målfunk9on] [resurs, avd. 1] [resurs, avd. 2] [maxproduk9on] [variabelbegränsningar] TAOP2: Föreläsning 1 42 x *0 + 3x 2 = 240 2*0 + 2x 2 = 140 Villkor 1 max z = 30x x 2 då 4x 1 + 3x 2 apple 240 2x 1 + 2x 2 apple 140 x 1 apple 40 x 1, x Villkor 3 X 2x 1 + 2*0 = 140 4x 1 + 3*0 = Villkor 2 x 1 21
22 TAOP2: Föreläsning 1 43 x z=1200 z=1800 max z = 30x x 2 r z = T z=600 0 x* = (40 26,67) z* = 1733,33 z=0 X x 1 TAOP2: Föreläsning 1 44 Matrisform max z = 30x x 2 max z = c T x då 4x 1 + 3x 2 apple 240 2x 1 + 2x 2 apple 140 x 1 apple 40 x 1, x 2 0 då Ax apple b x 0 c T = A = A b = A 22
23 TAOP2: Föreläsning 1 4 Summa3onsform max z = 30x x 2 max z = X j2j c j x j då 4x 1 + 3x 2 apple 240 2x 1 + 2x 2 apple 140 x 1 apple 40 x 1, x 2 0 då X a ij x j apple b i, i 2 I j2j x j 0, j 2 J c 1 = 30, c 2 = 20 a 11 = 4, a 12 = 3 a 21 = 2, a 22 = 2 a 31 = 1, a 32 = 0 b 1 = 240 b 2 = 140 b 3 = 40 TAOP2: Föreläsning 1 46 Exempel på typer av problem Linjära problem (LP) Ickelinjära problem (ILP) Grundkursen Linjära heltalsproblem Nätverksproblem FortsäCningskursen 23
24 TAOP2: Föreläsning 1 47 Linjär målfunk3on TAOP2: Föreläsning 1 48 Linjärt 3llåtet område X 24
25 TAOP2: Föreläsning 1 49 Ickelinjär målfunk3on TAOP2: Föreläsning 1 0 Ickelinjärt 3llåtet område X 2
26 TAOP2: Föreläsning 1 1 Ickelinjärt problem Tillåtet område X Op3mum i det inre av X Op3mum på randen 3ll X TAOP2: Föreläsning 1 2 Nätverksproblem Har en speciell struktur som gör ac logiken i problemet kan illustreras i form av ec nätverk med noder och bågar. Nätverksstrukturen utnycjas vid lösningsförfarandet 26
27 TAOP2: Föreläsning 1 3 Heltalsproblem max z = 30x x 2 då 4x 1 + 3x 2 apple 240 2x 1 + 2x 2 apple 140 x 1 apple 40 x 1, x 2 0, heltal Betydligt svårare ac lösa än ec LP-problem! TAOP2: Föreläsning 1 4 Konvexitet Vad avgör om ec problem är läc eller svårt ac lösa? Olika typer av problem sägs ha olika komplexitet. Komplexiteten beror generellt av problemstrukturen och inte av den aktuella datan. Skilj på: Konvexa problem = läca ac lösa Icke-konvexa problem = svåra ac lösa 27
28 TAOP2: Föreläsning 1 Konvexitet Linjära problem (LP-problem) är ALLTID konvexa. Icke-linjära problem (ILP) är konvexa eller icke-konvexa Defini9on 2.3 Problemet min f(x) då x 2 X är ec konvext problem om f(x) är en konvex funk3on och X är en konvex mängd. TAOP2: Föreläsning 1 6 Konvexkombina3on En punkt y är en konvexkombination av två punkter x och x (2) om y = λx + (1-λ)x (2) där 0 λ 1. x λ ökar λ = 1 λ = 1/ 2 ( 2 ) x λ = 0 Alternativt: y = λ 1 x + λ 2 x (2), λ 1 + λ 2 =1, λ 1, λ
29 TAOP2: Föreläsning 1 7 Konvex funk3on, def. 2.4 f(x) är en konvex funktion på X om det för varje val av punkter x, x (2) X och 0 λ 1 gäller att f (λx + (1 λ)x (2) ) λ f (x )+ (1 λ) f (x (2) ) f(x) f ( λx + (1 λ) x (2) ) λf ( x ) + (1 λ) f ( x (2) ) f( x ) f( x ( 2) ) x X ( 2 ) x TAOP2: Föreläsning 1 8 Konvex funk3on Exempel på en funk3on som inte är konvex: f(x) f ( λx f( x ) + (1 λ) x (2) ) λf ( x ) + (1 λ) f ( x f( x ( 2) ) (2) ) x X ( 2 ) x 29
30 TAOP2: Föreläsning 1 9 Konvex mängd En mängd X R n är en konvex mängd om det för varje val av punkter x,x (2) X och 0 λ 1 gäller att x = λx + (1 λ)x (2) X X x x X ( 2) x x ligger ej i mängden, ej konvex mängd X x Oavsett val av x linjen i mängden ( 1) mängden är konvex ( 2) x och x hamnar den streckade X, så ( 2 ) TAOP2: Föreläsning 1 60 Konvexitet Mer om konvexitet när vi kommer 3ll den icke-linjära delen av kursen. Defini9on 2.3 Problemet min f(x) då x 2 X är ec konvext problem om f(x) är en konvex funk3on och X är en konvex mängd. 30
31 TAOP2: Föreläsning 1 61 Uppsummering Fö. 1 Kursinforma3on Introduk3on 3ll ämnet Op3meringslära Linjär Programmering, LP-problem Grafisk lösning Konvexitet Vill 3psa om UHörliga exempel som finns på Lisam Nota3on: Förklaring av nota3on som ni kommer stöta på inom op3meringskurserna (bl.a. summatecken) Kommer upp fler dokument under kursens gång! 31
TAOP52: Optimeringslära grundkurs
TAOP2: Optimeringslära grundkurs Nils-Hassan Quttineh Optimeringslära, MAI TAOP2: Föreläsning 1 2 Föreläsning 1: Kurspresenta3on och introduk3on 3ll op3meringslära Vad är op3meringslära och vad kan det
TAOP14: Optimeringslära grundkurs
TAOP14: Optimeringslära grundkurs Nils-Hassan Quttineh Optimeringslära, MAI TAOP14: Föreläsning 1 2 Föreläsning 1: Kurspresenta3on och introduk3on 3ll op3meringslära Vad är op3meringslära och vad kan det
TAOP14: Optimeringslära grundkurs
TAOP14: Optimeringslära grundkurs Nils-Hassan Quttineh Optimeringslära, MAI TAOP14: Föreläsning 1 2 Föreläsning 1: Kurspresenta3on och introduk3on 3ll op3meringslära Vad är op3meringslära och vad kan det
Föreläsning 2: A/ modellera och lösa LP-problem. TAOP52: Föreläsning 2. Att modellera och lösa LP-problem
TAOP52: Föreläsning 2 Att modellera och lösa LP-problem TAOP52: Föreläsning 2 2 Föreläsning 2: A/ modellera och lösa LP-problem Problemställning i ord matema=sk modell AMPL-modell CPLEX resultatutskrid
Föreläsning 2: A/ modellera och lösa LP-problem. TAOP14: Föreläsning 2
TAOP14: Föreläsning 2 Problemställning i ord matematisk modell AMPL-modell CPLEX resultatutskrift svar på den givna problemställningen TAOP14: Föreläsning 2 2 Föreläsning 2: A/ modellera och lösa LP-problem
Föreläsning 2: A/ modellera och lösa LP-problem
TAOP52: Föreläsning 2 Att modellera och lösa LP-problem TAOP52: Föreläsning 2 2 Föreläsning 2: A/ modellera och lösa LP-problem Problemställning i ord matema=sk modell AMPL-modell CPLEX resultatutskrid
Föreläsning 2: A/ modellera och lösa LP-problem
TAOP14: Föreläsning 2 Problemställning i ord matematisk modell AMPL-modell CPLEX resultatutskrift svar på den givna problemställningen TAOP14: Föreläsning 2 2 Föreläsning 2: A/ modellera och lösa LP-problem
TNSL05 Optimering, Modellering och Planering. Föreläsning 1
TNSL05 Optimering, Modellering och Planering Föreläsning 1 2018-11-05 2 Föreläsning 1, dagordning Kursadministration Lärare Mål Kurshemsida Kursmoment Gruppindelningar Examination Litteratur Optimering
Optimalitetsvillkor. Optimum? Matematisk notation. Optimum? Definition. Definition
Optimum? När man har formulerat sin optimeringsmodell vill man lösa den Dvs finna en optimal lösning, x, till modellen Nästan alltid: Sökmetoder: Stå i en punkt, gå till en annan (bättre Upprepa, tills
TNSL05 Optimering, Modellering och Planering. Föreläsning 4
TNSL05 Optimering, Modellering och Planering Föreläsning 4 2018-11-14 2 Kursmål: idag Studenten ska efter avslutad kurs kunna: Analysera och formulera optimeringsmodeller inom ekonomiska tillämpningsområden
Kurser inom profilen Teknisk matematik (Y)
Kurser inom profilen Teknisk matematik (Y) Kurser i Optimeringslära Obligatorisk TAOP24 Optimeringslära fortsättningskurs Y Valbara TAOP04 Matematisk optimering TAOP34 Optimering av stora system TAOP87
TNSL05, Optimering, Modellering och Planering 6 hp, HT2-2011
ITN/KTS Stefan Engevall/Joakim Ekström Kursinformation TNSL05, Optimering, Modellering och Planering, HT2011 TNSL05, Optimering, Modellering och Planering 6 hp, HT2-2011 1 Kursmål & innehåll 1.1 Mål med
Linjärprogramming. EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin
Linjärprogramming EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin 1 Kursmål Formulera korttidsplaneringsproblem för vatten- och värmekraftsystem. 2 Tillämpad matematisk programming Korttidsplanering
TNK049 Optimeringslära
TNK049 Optimeringslära Clas Rydergren, ITN Föreläsning 1 Kursintroduktion Ämnesintroduktion Terminologi Tillämpningar Agenda Vilka personer medverkar i kursen? Kursupplägg Lärobok Laborationer Återkoppling
Examinator: Torbjörn Larsson Jourhavande lärare: Torbjörn Larsson, tel Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y Datum: 21 augusti 2012 Tid: 14-19 Hjälpmedel: Inga Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.
Speciell användning av heltalsvariabler. Heltalsprogrammering. Antingen-eller-villkor: Exempel. Speciell användning av heltalsvariabler
Heltalsprogrammering Speciell användning av heltalsvariabler max z = då c j x j j= a ij x j b i j= x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland
TNK049 Optimeringslära
TNK049 Optimeringslära Clas Rydergren, ITN Föreläsning 3 Problemklassificering Global/lokal optimalitet Konvexitet Generella sökmetoder Agenda Problemklassificering (kap 1.4, 2.1 2.3) Lokalt/globalt optimum
Lösningsförslag till tentamen i SF1861 Optimeringslära för T. Torsdag 28 maj 2010 kl
Lösningsförslag till tentamen i SF86 Optimeringslära för T. Torsdag 28 maj 2 kl. 4. 9. Examinator: Per Enqvist, tel. 79 62 98. (a) Inför variablerna x = (x sr, x sm, x sp, x sa, x sd, x gr, x gm, x gp,
TNSL05 Optimering, Modellering och Planering. Föreläsning 6
TNSL05 Optimering, Modellering och Planering Föreläsning 6 Agenda Kursens status Tolkning av utdata Intro lösningsmetoder Linjära optimeringsproblem (LP) på standardform Algebraisk formulering av LP Konveitet
min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ:
Heltalsprogrammering Speciell användning av heltalsvariabler max z = då c j x j a ij x j b i x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland u j
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 16 mars 010 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kaj Holmberg: Kombinatorisk
Olinjär optimering med bivillkor: KKT min f (x) då g i (x) 0 för alla i
Olinjär optimering med bivillkor min då f (x) g i (x) 0 för alla i Specialfall: Konvext problem. Linjära bivillkor: Ax b. Linjära likhetsbivillkor: Ax = b. Inga bivillkor: Hanterat tidigare. Metodprinciper:
TNSL05 Optimering, Modellering och Planering. Föreläsning 5
TNSL5 Optimering, Modellering och Planering Föreläsning 5 Dagordning Kort repetition Graf/nätverk: Begrepp Representation Exempel: Minkostnadsflödeproblem Billigastevägproblem 28--5 4 Hittills Föreläsning
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för EMM Datum: 2 augusti 2011 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ:
Heltalsprogrammering Speciell användning av heltalsvariabler max z = då n c j x j j= n a ij x j b i j= x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland
Föreläsning 2: Simplexmetoden. 1. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform.
Föreläsning 2: Simplexmetoden. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform. 3. Simplexalgoritmen. 4. Hur bestämmer man tillåtna startbaslösningar? Föreläsning
Optimering av försörjningskedjor
DNR LIU-2018-02499 1(6) Optimering av försörjningskedjor Programkurs 6 hp Supply Chain Optimization TAOP18 Gäller från: 2019 VT Fastställd av Programnämnden för Industriell ekonomi och logistik, IL Fastställandedatum
LP-problem. Vårt första exempel. Baslösningar representerar extrempunkter. Baslösningar representerar extrempunkter
LP-problem Vårt första exempel Ett LP-problem: max z = c T x då Ax b, x 0. Den tillåtna mängden är en polyeder och konvex. Målfunktionen är linjär och konvex. Så problemet är konvext. Var ligger optimum?
TAOP14: Optimeringslära SAMMANFATTNING OSKAR QVIST:
2015 TAOP14: Optimeringslära SAMMANFATTNING OSKAR QVIST: OSKQV953@STUDENT.LIU.SE Innehållsförteckning Allmänt... 2 Om optimering... 3 Matematiska formuleringar av optimeringsproblem... 3 Linjärprogrammering
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 10 januari 201 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping TAOP88 Matematiska Institutionen Lösning till tentamen Optimeringslära 9--7 Kaj Holmberg Lösningar Uppgift a: Inför slackvariabler x 5, x 6 och x 7 Starta med slackvariablerna
Extrempunkt. Polyeder
Optimum? När man har formulerat sin optimeringsmodell vill man lösa den. Dvs. finna en optimal lösning, x, till modellen. Nästan alltid: Sökmetoder: Stå i en punkt, gå till en annan bättre. Upprepa, tills
TNSL05 Optimering, Modellering och Planering. Föreläsning 2: Forts. introduktion till matematisk modellering
TNSL05 Optimering, Modellering och Planering Föreläsning 2: Forts. introduktion till matematisk modellering 2017-11-01 2 Dagordning Matematisk modellering, Linjära Problem (LP) Terminologi Målfunktion
Optimeringslara = matematik som syftar till att analysera och. Optimeringslara ar en gren av den tillampade matematiken.
Optimal = basta mojliga. Optimeringslara = matematik som syftar till att analysera och nna det basta mojliga. Anvands oftast till att nna ett basta handlingsalternativ i tekniska och ekonomiska beslutsproblem.
Optimering för ingenjörer
DNR LIU-2018-02499 1(9) Optimering för ingenjörer Programkurs 6 hp Engineering Optimization TAOP88 Gäller från: 2019 VT Fastställd av Programnämnden för maskinteknik och design, MD Fastställandedatum 2018-08-31
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: januari 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: januari 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Linjärprogrammering (Kap 3,4 och 5)
Linjärprogrammering (Kap 3,4 och 5) Fredrik Olsson, fredrik.olsson@iml.lth.se Avdelningen för produktionsekonomi Lunds tekniska högskola, Lunds universitet 16 september 2015 Dessa sidor innehåller kortfattade
Lösningsförslag till tentamen i SF1861 Optimeringslära för T. Onsdag 25 augusti 2010 kl
Lösningsförslag till tentamen i SF86 Optimeringslära för T. Onsdag 25 augusti 2 kl. 4. 9. Examinator: Per Enqvist, tel. 79 62 98. (a) Vi har ett nätverksflödesproblem med 5 noder. Låt x = (x 2, x 3, x
Optimeringslära för T (SF1861)
Optimeringslära för T (SF1861) 1. Kursinformation 2. Exempel på optimeringsproblem 3. Introduktion till linjärprogrammering Introduktion - Ulf Jönsson & Per Enqvist 1 Linjärprogrammering Kursinformation
Introduktion till kursen och MATLAB
Introduktion till kursen och MATLAB TNA005: Tillämpad matematik i teknik och naturvetenskap för ED1, KTS1, och MT1 vårterminen 2018 Berkant Savas Kommunikations- och transportsystem Institutionen för teknik
Tentamensinstruktioner. Vid skrivningens slut
Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN1 OPTIMERINGSLÄRA GRUNDKURS för I och Ii Datum: 13:e januari 2011 Tid: 8.00 13.00 Hjälpmedel: Kurslitteratur av Lundgren m fl: Optimeringslära
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C. Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 1 januari 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
Optimering. TAOP88 Optimering för ingenjörer. När inte intuitionen räcker till... Långsiktiga mål med kursen. Vad är optimering?
TAOP88 Optimering för ingenjörer Examinator: Kaj Holmberg kaj.holmberg@liu.se Kurshemsida: http://courses.mai.liu.se/gu/taop88 Lärare: Föreläsningar: Kaj Holmberg Lektioner, labbar: Oleg Burdakov Roghayeh
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 26-6- Kaj Holmberg Lösningar Uppgift Hinkpackning (hink = tur med cykeln. Jag använder
TNSL05, Optimering, Modellering och Planering 6 hp, HT2-2010
ITN/KTS Stefan Engevall/Joakim Ekström Kursinformation TNSL05, Optimering, Modellering och Planering, HT2010 TNSL05, Optimering, Modellering och Planering 6 hp, HT2-2010 1 Kursmål & innehåll 1.1 Mål med
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 2018-08-31 Kaj Holmberg Lösningar Uppgift 1 1a: Inför slackvariabler x 5, x 6 och
1 Duala problem vid linjär optimering
Krister Svanberg, april 2012 1 Duala problem vid linjär optimering Detta kapitel handlar om två centrala teoretiska resultat för LP, nämligen dualitetssatsen och komplementaritetssatsen. Först måste vi
Lösningar till SF1852 Optimeringslära för E, 16/1 08
Lösningar till SF8 Optimeringslära för E, 6/ 8 Uppgift (a) Problemet är ett transportproblem, ett specialfall av minkostnadsflödesproblem Nätverket består av 7 st noder A,B,C,P,Q,R,S, alternativt kallade,,,7,
Lösningar till 5B1762 Optimeringslära för T, 24/5-07
Lösningar till 5B76 Optimeringslära för T, 4/5-7 Uppgift (a) Först använder vi Gauss Jordans metod på den givna matrisen A = Addition av gånger första raden till andra raden ger till resultat matrisen
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 29 maj 20 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: januari 2013 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C. Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: juni 0 Tid:.00-9.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering. Kaj
Sannolikhetslära och statistik, grundkurs
DNR LIU-2018-02499 1(5) Sannolikhetslära och statistik, grundkurs Programkurs 6 hp Probability and Statistics, First Course TAMS42 Gäller från: 2019 VT Fastställd av Programnämnden för data- och medieteknik,
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN 1 OPTIMERINGSLÄRA GRUNDKURS för I, Ii och TB Datum: 24 augusti 2009 Tid: 8.00-13.00 Hjälpmedel: Lundgren m fl: Optimeringslära och/eller Lundgren
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 2 augusti 2011 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
Metod i kandidatarbetet M3
Metod i kandidatarbetet M3 Per Svensson Teknikens ekonomi och organisa
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: 1 april 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Avdelningen för fackspråk och kommunika5on på Chalmers
Språk och kommunika5on på Matema5k 1 (MMG200) ht- 14 Claes Ohlsson Avdelningen för fackspråk och kommunika5on Chalmers tekniska högskola claeso@chalmers.se Avdelningen för fackspråk och kommunika5on på
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 11 mars 2013 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kaj Holmberg: Optimering.
TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y. Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.
Matematiska institutionen Optimeringslära TENTAMEN TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y Datum: 27 augusti 2013 Tid: 14-19 Hjälpmedel: Inga Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
Optimering. Optimering
TAOP88 Optimering för ingenjörer Examinator: Kaj Holmberg kaj.holmberg@liu.se Kurshemsida: http://courses.mai.liu.se/gu/taop88 Lärare: Föreläsningar: Kaj Holmberg Lektioner, labbar: Oleg Burdakov, William
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 13 januari 2018 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping TAOP88 Matematiska Institutionen Lösning till tentamen Optimeringslära 28--24 Kaj Holmberg Uppgift Lösningar a: Målfunktionen är summan av konvexa funktioner (kvadrater och
Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet
Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: april 2018 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg: Optimering
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: 0 oktober 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i
TNSL05 Optimering, Modellering och Planering. Föreläsning 9
TNSL05 Optimering, Modellering och Planering Föreläsning 9 Agenda Kursens status Dualitet Billigaste väg problem 208-2- Kursens status Föreläsning (), 2-5: Modellering Föreläsning 6-0, () Lösningsmetod/känslighetsanalys
Optimering med hjälp av Lego. Mathias Henningsson
Optimering med hjälp av Lego Mathias Henningsson Vem är jag? Mathias Henningsson Lärare Optimeringslära 1996-2007 Produktionsekonomi 2008- Bokförfattare Optimeringslära övningsbok (Studentlitteratur) Arbetar
Lösningar till SF1861 Optimeringslära, 28 maj 2012
Lösningar till SF86 Optimeringslära, 28 maj 202 Uppgift.(a) Då det primala problemet P är så är det motsvarande duala problemet D minimera 3x + x 2 då 3x + 2x 2 6 x + 2x 2 4 x j 0, j =, 2. maximera 6 +
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: 2 maj 20 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken får
TNK049 Optimeringslära
TNK049 Optimeringslära Clas Rydergren, ITN Föreläsning 9 Icke-linjär optimering Konveitet Metoder ör problem utan bivillkor Optimalitetsvillkor ör icke-linjära problem Icke-linjär programmering Non-linear
Tentamensinstruktioner
TNSL05 1(8) TENTAMEN Datum: 1 april 2016 Tid: XXX Sal: XXX Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt
Lösningar till tentan i SF1861 Optimeringslära, 3 Juni, 2016
Lösningar till tentan i SF86 Optimeringslära, 3 Juni, 6 Uppgift (a) We note that each column in the matrix A contains one + and one, while all the other elements in the column are zeros We also note that
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: januari 2016 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TNSL05 Optimering, Modellering och Planering. Föreläsning 10
TNSL05 Optimering, Modellering och Planering Föreläsning 10 Agenda Kursens status Repetition Flödesnätverk Optimalitetsvillkor LP och Minkostandsflöde (MKF) Nätverkssimplex Känslighetsanalys Exempel: MKF
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: juni 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken får
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 8 januari 201 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
Optimering. TAOP86 Kombinatorisk optimering med miljötillämpningar. När inte intuitionen räcker till... Långsiktiga mål med kursen. Vad är optimering?
TAOP86 Kombinatorisk optimering med miljötillämpningar Examinator: Kaj Holmberg kaj.holmberg@liu.se http://courses.mai.liu.se/gu/taop86 Lärare: Föreläsningar: Kaj Holmberg Lektioner, labbar: Björn Morén
Era förväntningar? Agenda. Introduktion till examensarbete INTRODUKTION MÅL EXAMENSARBETE 16 HP KANDIDAT
Agenda Introduktion till examensarbete TDIU14 Aseel Berglund - Di Ola Leifler - Di Jacob Wikner - El Introduk/on Kursmål Examensarbete vs projektarbete Kursinforma/on Förberedelse exjobbsförslag 19/1 Webreg,
Optimeringslära Kaj Holmberg. Lösningar/svar. Iteration 2: x 2 s
Tekniska Högskolan i Linköping Optimering av realistiska sammansatta s Matematiska Institutionen Lösning till tentamen Optimeringslära 2014-01-15 Kaj Holmberg Lösningar/svar Uppgift 1 1a: (Detta problem
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 2018-01-02 Kaj Holmberg Lösningar Uppgift 1 1a: Den givna startlösningen är tillåten
1 LP-problem på standardform och Simplexmetoden
Krister Svanberg, mars 202 LP-problem på standardform och Simplexmetoden I detta avsnitt utgår vi från LP-formuleringen (2.2) från föreläsning. Denna form är den bäst lämpade för en strömlinjeformad implementering
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 19 april 2017 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 19 mars 2011 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kaj Holmberg: Optimering.
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 19 oktober 2017 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Optimeringslära 2013-11-01 Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 23-- Kaj Holmberg Uppgift a: Problemet skrivet i standardform är: Lösningar min
z = min 3x 1 2x 2 + y Fixera y, vilket ger subproblemet
Bendersdekomposition Blandade heltalsproblem med ett stort antal kontinuerliga variabler och få heltalsvariabler. Mycket lättare att lösa om heltalsvariablerna fixeras. Bendersdekomposition (primal dekomposition)
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: januari 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
Lösningar till tentan i SF1861 Optimeringslära, 1 juni 2017
Lösningar till tentan i SF86 Optimeringslära, juni 7 Lösningarna är på svenska, utom lösningen av (a som är på engelska (a The considered network is illustrated in FIGURE below, where the supply at the
5B1817 Tillämpad ickelinjär optimering. Kvadratisk programmering med olikhetsbivillkor Active-set metoder
5B1817 Tillämpad ickelinjär optimering Föreläsning 7 Kvadratisk programmering med olikhetsbivillkor Active-set metoder A. Forsgren, KTH 1 Föreläsning 7 5B1817 2006/2007 Kvadratisk programmering med olikhetsbivillkor
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 28-5-3 Kaj Holmberg Lösningar Uppgift a: P: Grafisk lösning ger x = 2/7 = 2 6/7,
Introduktionsmöte Innehåll
Introduktionsmöte Innehåll Introduktion till kursen Kursens mål och innehåll Undervisning Datavetenskap (LTH) Introduktionsmöte ST 2019 1 / 14 EDAA01 Programmeringsteknik - fördjupningskurs Ingen sommarkurs
Lösningar till SF1861/SF1851 Optimeringslära, 24/5 2013
Lösningar till SF86/SF85 Optimeringslära, 4/5 03 Uppgift (a) Inför de 3 variablerna x ij = kvantitet (i sorten ton) som fabrik nr i åläggs att tillverka av produkt nr j, samt t = tiden (i sorten timmar)
Optimering och simulering: Hur fungerar det och vad är skillnaden?
Optimering och simulering: Hur fungerar det och vad är skillnaden? Anders Peterson, Linköpings universitet Andreas Tapani, VTI med inspel från Sara Gestrelius, RIS-SIS n titt i KAJTs verktygslåda Agenda
Tentamensinstruktioner
Linköpings Tekniska Högskola Institutionen för Teknik och Naturvetenskap/ITN TENTAMEN TNE 05 OPTIMERINGSLÄRA Datum: 008-05-7 Tid: 4.00-8.00 Hjälpmedel: Boken Optimeringslära av Lundgren et al. och Föreläsningsanteckningar
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 1 november 2013 Tid:.00-13.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 28 augusti 2015 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar