Att uttrycka och argumentera för en mönstergeneralisering algebraiskt
|
|
- Marcus Axelsson
- för 6 år sedan
- Visningar:
Transkript
1 Att uttrycka och argumentera för en mönstergeneralisering algebraiskt Jenny Fred, lärare på Ekensbergsskolan, koordinator på STLS, forskningsassistent i Skolfi-projekt och doktorand vid Forskarskolan i Learning Study, Stockholms universitet
2 Att förändra och utveckla en klassrumspraktik Learning study som forskningsansats Lärare ägare av forskningsfrågan Ett kollaborativt arbete En intervenerande process En iterativ process 2
3 Problemställningar som kommer att diskuteras Innebörden, för elever i de lägre årskurserna, i att uttrycka och argumentera för en mönstergeneralisering algebraiskt Uppgifter som hindrar respektive möjliggör för eleverna att uttrycka och argumentera för mönstergeneraliseringar algebraiskt 3
4 Utgångspunkt Algebra som ett eget kunskapsområde under centralt innehåll redan för de lägre årskurserna TIMSS (2007, 2011), PISA (2012) och UiM (2013) pekar ut algebra som ett av de huvudområden vari svenska elever har svårigheter Tidigare studie - att utveckla förmågan att kunna urskilja och beskriva mönster i talföljder Att använda algebra som ett kraftfullt verktyg för att lösa matematiska problem, beskriva och analysera relationer, karaktärisera och förstå matematiska strukturer och idéer Talmönster som ingång 4
5 Aritmetisk undervisningstradition Algebraisk undervisningstradition Numeriska siffror och beräkningar som ingång Generella, grundläggande och teoretiska samband Fokuserar ofta rätt svar samt olika lösningsprocesser i problemlösning Fokus på att utveckla ett s.k. non-counting angreppssätt Elever tränas i att göra aritmetiska operationer Problemlösande arbete med stöd av medierande redskap 5
6 Teoretiska design- och analysprinciper Variationsteorin LO Kritiska aspekter Variationsmönster Lärandeverksamhet med utgångspunkt i ett verksamhetsteoretiskt perspektiv lärandeuppgift ett kollaborativt arbete motsättningar 6
7 Aritmetiska vs algebraisk generalisering En aritmetisk generalisering möjliggör inte att kunna förutsäga antalet element i vilken figur som helst i ett talmönster. En algebraisk generalisering möjliggör att kunna förutsäga antalet element i vilken figur som helst I ett talmönster. (Radford, 2006) 7
8 Uttryck för olika kvalitativa uppfattningar Elev A:... figur 1 hade två och den (pekar på figur 2) hade fyra.... Elev B:... att alltid lägger man på två (kvadrater). Elev C: är det 4 (figur 4) är det också fyra rader och är det 5 (figur 5) så är det också fem rader. Elev D: Kolla, 1:an då är det 2, 2:an då är 4, 3:an är 6, liksom man dubblar allting. Figur 1 Figur 2 Figur 3 8
9 Uttryck för olika kvalitativa uppfattningar Elev E: man plussar ju bara till en sådan där (pekar på en kolumn med två kvadrat) Elev F: Udda hopp. Elev F: "... om du lägger bort den här (den ensamma kvadratet till höger om varje figur i mönstret) och sedan... Figur 1 Figur 2 Figur 3 9
10 Att använda sig av algebraiska strukturer att urskilja relationen mellan figurens nummer och figurens minsta analysenhet att urskilja relationen mellan figurens nummer och figurens minsta analysenhet och använda det för att förutsäga vilken figur som helst i mönstret att urskilja vad som utgör mönstrets konstant 10
11 Uppgiftens konstruktion figur 3 figur 5 Rita figur. Uppgift A Hur många kvadrater har figur 4? Uppgift B Hur ni tittade på figur 3 och figur 5 när ni kom fram till hur figur 4 skulle se ut? 11
12 Elevsvar Uppgift A Rita figur 4 att urskilja relationen mellan figurens nummer och figurens minsta analysenhet att urskilja relationen mellan figurens nummer och figurens minsta analysenhet och använda det för att förutsäga vilken figur som helst i mönstret att urskilja vad som utgör mönstrets konstant Uppgift B Rita hur ni tittade på figur 3 och figur 5 när ni kom fram till hur figur 4 skulle se ut? Figur 3 Figur 5 12
13 Elevsvar att urskilja relationen mellan figurens nummer och figurens minsta analysenhet att urskilja relationen mellan figurens nummer och figurens minsta analysenhet och använda det för att förutsäga vilken figur som helst i mönstret att urskilja vad som utgör mönstrets konstant Läraren: Så som ni såg på det (mönstret) skulle jag kunna skriva så här? Ni såg det som och Var det så ni såg det eller är det något ni vill ändra? Figur 3 Figur Elev A: Nej. På figur 3 är det tre fyrkanter och figur 5 är det fem där uppe och på figur 4, fyra där uppe. Elev B: Och en mer där nere. Det är fyra där nere på figur 3. 13
14 Det finns inte endast en algebraisk struktur 14
15 Tack för att ni lyssnade!
På vilka sätt kan mönster vara en ingång till att utveckla förmågan att uttrycka och argumentera för generaliseringar algebraiskt?
På vilka sätt kan mönster vara en ingång till att utveckla förmågan att uttrycka och argumentera för generaliseringar algebraiskt? Jenny Fred, lärare på Ekensbergsskolan och doktorand vid Forskarskolan
Syftet med vår studie
Uppgifter som redskap för mediering av kritiska aspekter i matematikundervisningen Jenny Fred & Johanna Stjernlöf Syftet med vår studie Övergripande syfte: Att bidra med ny och fördjupad ämnesdidaktisk
Algebra utan symboler Learning study
Algebra utan symboler - - - - - Learning study Johan Häggström, NCM Göteborgs universitet 1 Är algebra verkligen något för grundskolans första år? Om eleverna förstår aritmetiken så bra att de kan förklara
Behövs ett nytt perspektiv på relationen undervisning-lärande? och kan Learning activity bidra med något?
Behövs ett nytt perspektiv på relationen undervisning-lärande? och kan Learning activity bidra med något? INGER ERIKSSON Institutionen för de humanistiska och samhällsvetenskapliga ämnenas didaktik & Stockholm
Uppgifter som redskap för mediering av kritiska aspekter i matematikundervisning
forskning om undervisning och lärande nr 12 21 Uppgifter som redskap för mediering av kritiska aspekter i matematikundervisning J Fred & J Stjernlöf Artikeln beskriver resultaten från ett forsknings- och
Sy$e. Möjliga innebörder i förmågan a5 föra och följa algebraiska resonemang undersöka förmågan att kunna föra algebraiska resonemang
Möjliga innebörder i förmågan a5 föra och följa algebraiska resonemang Carolina Blomström, Jenny Fred och Sanna We5ergren STLS, FoU-enheten, Stockholms stad Sy$e undersöka förmågan att kunna föra algebraiska
Matematik på lågstadiet genom algebra och problemlösning. Ämnesdidaktiskt utvecklingsarbete
Matematik på lågstadiet genom algebra och problemlösning Ämnesdidaktiskt utvecklingsarbete Gudrun Malmers Stiftelse Elevintervjuer med elever i årskurs 1 i grundskolan. Eleverna deltar i ett 3-årigt utvecklingsprojekt
Samband och förändring en översikt med exempel på uppgifter
Modul: Samband och förändring Del 1: Öppna uppgifter Samband och förändring en översikt med exempel på uppgifter Örjan Hansson, Högskolan Kristianstad Problem om samband och förändring spänner över stora
Under hösten 2008 deltog jag i en kurs som hette Matematikundervisning
Astrid Karlsson Mönsterproblem i dubbel bemärkelse Med utgångspunkt i det rika problemet Stenplattor synliggörs skillnader i elevers lösningar och hur problem som behandlar mönster kan leda in eleverna
Lokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 4. Samband och förändring Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
Upprepade mönster (fortsättning från del 1)
Modul: Algebra Del 2: Resonemangsförmåga Upprepade mönster (fortsättning från del 1) Anna-Lena Ekdahl och Robert Gunnarsson, Högskolan i Jönköping Ett viktigt syfte med att arbeta med upprepade mönster
Här är två korta exempel på situationer då vi tillämpar den distributiva lagen:
Modul: Algebra Del 8: Avslutande reflektion och utvärdering Distributiva lagen Cecilia Kilhamn, Göteborgs Universitet Distributiva lagen a (b + c) = a b + a c Den distributiva lagen kallas den räknelag
Vad innebär det att undervisa i algebra i årskurs 1 3? Vart ska dessa
Åsa Brorsson Algebra för lågstadiet I denna artikel beskriver en lärare hur hon arbetar med algebra redan i de tidiga skolåren. Det är ett arbete som hjälper elever att förstå likhetstecknets betydelse,
En parallellogram har delats i två delar P och Q som figuren visar. Vilket av följande påståenden är säkert sant?
En parallellogram har delats i två delar P och Q som figuren visar. Vilket av följande påståenden är säkert sant? P har större omkrets än Q. P har mindre omkrets än Q. P har mindre area än Q Q och P har
Per Berggren och Maria Lindroth 2012-10-30
Varierad undervisning Per Berggren och Maria Lindroth 2012-10-30 Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga
Matematik 92MA41 (15hp) Vladimir Tkatjev
Matematik 92MA41 (15hp) Vladimir Tkatjev Med anledning av de nya kursplanerna har Strävorna reviderats. Formen, en matris med rutor, är densamma men istället för att som tidigare anknyta till mål att sträva
Trösklar i matematiklärandet
Matematik, Specialpedagogik Grundskola åk 7 9 Modul: Inkludering och delaktighet lärande i matematik Del 7: Trösklar i matematiklärandet Trösklar i matematiklärandet Ingemar Holgersson, Högskolan Kristianstad
Utmanande uppgifter som utvecklar. Per Berggren och Maria Lindroth
Utmanande uppgifter som utvecklar Per Berggren och Maria Lindroth 2014-11-12 Vilka förmågor ska utvecklas Problemlösning (Förstå frågan i en textuppgift, Använda olika strategier när jag löser ett problem,
Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 9
PLANERING OCH BEDÖMNING MATEMATIK ÅK 9 TERMINSPLAN HÖSTTERMINEN ÅK 9: 1 1.1 TALMÄNGDER 2 1.2 NEGATIVA TAL 3 FORTS. 1.2 NEGATIVA TAL 4 1.3 POTENSER 5 1.4 RÄKNA MED POTENSER 6 TALUPPFATTNING + RESONERA 7
MÖNSTER OCH TALFÖLJDER
MÖNSTER OCH TALFÖLJDER FÖRELÄSNINGENS INNEHÅLL OCH SYFTE Genomgång av viktiga matematiska begrepp, uttryck och symboler med anknytning till mönster och talföljder. Skälet till att välja detta innehåll
Mönster och Algebra. NTA:s första matematiktema. Per Berggren & Maria Lindroth
Mönster och Algebra NTA:s första matematiktema Per Berggren & Maria Lindroth 1 Lgr11- Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att
Algebra och Ekvationer År 7
Undervisning Algebra och Ekvationer År 7 Lärandemål (konkretisering av syfte och centralt innehåll ur Lgr 11) Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga och situationer och inom
Kursplan för Matematik
Sida 1 av 5 Kursplan för Matematik Inrättad 2000-07 SKOLFS: 2000:135 Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematik som behövs för
Matematik - Åk 9 Funktioner och algebra Centralt innehåll
Matematik - Åk 9 Funktioner och algebra Centralt innehåll Innebörden av variabelbegreppet och dess användning i algebraiska uttryck, formler och ekvationer. Algebraiska uttryck, formler och ekvationer
Lokal pedagogisk planering
Lokal pedagogisk planering RO/Skola: Rebbelberga skola Arbetsområde: Taluppfattning Ämne: Matematik Termin/År: ht 2013 Årskurs: 1 Ämnets syfte enligt grundskolans kursplan: Genom undervisningen i ämnet
Del ur Lgr 11: kursplan i matematik i grundskolan
Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet
Ladokkod: TentamensKod: Tentamensdatum: Tid: Hjälpmedel: Inga hjälpmedel
11GF20 MaI Provmoment: Ladokkod: Tentamen ges för: Matematik 0,5 hp Studenter i lärarprogrammet GF(11GF20) 15 högskolepoäng TentamensKod: Tentamensdatum: 16-05-13 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel
Mönster och Algebra. NTA:s första matematiktema. Per Berggren
Mönster och Algebra NTA:s första matematiktema Per Berggren 1 Lgr11- Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga
22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod:
SMID Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 3hp Studenter i inriktningen GSME 22,5 högskolepoäng Tentamensdatum: 12-08-30 Tid: 09.00-13.00 Hjälpmedel: Inga Totalt antal poäng på
Bedömning för lärande i matematik
Bedömning för lärande i matematik Vilka har arbeta med materialet Varför ser det ut som det gör När och hur kan du som lärare använda materialet Katarina Kjellström PRIM-gruppen Vilka har deltagit i arbetet
ämnesområden. Funktioner och räta linjens ekvation. Hur funktioner kan användas för att undersöka förändring, förändringstakt och andra samband.
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Mattekollen. Mattekollen 1. Mattekollen 3. Mattekollen 2. 6 Mål för kapitlet. 156 mattekollen. För att avsluta kapitlet
Mattekollen Eleven har redan under sin tidigare skolgång utvecklat vissa kunskaper kring olika matematiska förmågor genom det centrala innehållet. I Mattekollen 1 sätter eleven ord på det han/hon redan
Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. Skriv inte på bladens baksidor. Helst en uppgift per blad.
Ma F-3 I Provmoment: Ladokkod: Tentamen ges för: Matematik 5 hp Studenter i lärarprogrammet Ma F-3 I (11F322) 15 högskolepoäng TentamensKod: Tentamensdatum: 15-04-29 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel
Bedömning för lärande i matematik. PRIM-gruppen. Inger Ridderlind. Inger Ridderlind, PRIM-gruppen
Bedömning för lärande i matematik Workshop 15 juni 16 juni Inger Ridderlind PRIM-gruppen Workshop Komma igång med materialet Avgränsa ett Tema- Kunskapsområde Algebra (Samband och förändring) Hela materialet
Mönster statiska och dynamiska
Modul: Didaktiska perspektiv på matematikundervisningen 1 Del 3: Fantasi, mönster och sannolikhet Mönster statiska och dynamiska Berit Bergius & Lena Trygg, NCM I många matematiska aktiviteter ska deltagarna
Labora&v matema&k - för en varierad undervisning
Labora&v matema&k - för en varierad undervisning Per Berggren & Maria Lindroth 2012-02- 23 Lgr11- Matema&ska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar
kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt
Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda
Terminsplanering årskurs 6 Matematik Ärentunaskolan
Inledning Terminsplanering årskurs 6 Matematik Ärentunaskolan På Ärentunaskolan arbetar vi med läromedlet MatteBorgen. Förutom uppgifter i boken arbetar vi med problemlösning och tränar olika strategier
Att undervisa multiplikation och division med 10, 100 och 1000
Att undervisa multiplikation och division med 10, 100 och 1000 Learning Study i praktiken Tina Edner & Tinna Lidgren Bakgrund Grundskolan Nya Elementar i Stockholm Analys av nationella prov och lärarnas
Magiska kvadrater. strävorna
strävorna 1A Magiska kvadrater taluppfattning huvudräkning mönster Avsikt och matematikinnehåll Avsikten är att ge eleverna färdighetsträning i huvudräkning, tillfälle att upptäcka mönster och att dra
PRIM-gruppen har på uppdrag av Skolverket utarbetat ett webbaserat
Katarina Kjellström Ett bedömningsstöd för grundskolans matematiklärare På Skolverkets webbplats finns nu ett fritt tillgängligt bedömnings stöd. Artikel författaren har deltagit i arbetet med att ta fram
Ladokkod: Studenter i lärarprogrammet GF 11GF20 vt17 tillfälle 1 och vt16 tillfälle 4
11GF20 MaI Provmoment: Ladokkod: Tentamen ges för: Matematik 0,5 hp 15 högskolepoäng Studenter i lärarprogrammet GF 11GF20 vt17 tillfälle 1 och vt16 tillfälle 4 TentamensKod: Tentamensdatum: 17-05-12 Tid:
Lgr 11 matriser i Favorit matematik 4 6
Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor
2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ
Matematik, 600 verksamhetspoäng Ämnet handlar bland annat om mängder, tal och geometriska figurer. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska
Studenter i lärarprogrammet GF(11GF20) 46 p G: 28 p VG: 38 p
11GF20 MaI Provmoment: Ladokkod: Tentamen ges för: Matematik 0,5 hp Studenter i lärarprogrammet GF(11GF20) 15 högskolepoäng TentamensKod: Tentamensdatum: 18-05-22 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel
MATEMATIK 3.5 MATEMATIK
3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Förståelse för rum, tid och form, och grundläggande egenskaper hos mängder, mönster, antal, ordning, tal, mätning och förändring - Matematik, Äldre
Geometriska former Förståelse för rum, tid och form, och grundläggande egenskaper hos mängder, mönster, antal, ordning, tal, mätning och förändring - Matematik, Äldre Syfte Varför? Upptäcka och undersöka
48 p G: 29 p VG: 38 p
11F322 MaI Provmoment: Matematik 5 hp Ladokkod: Tentamen ges för: Studenter i lärarprogrammet F-3 15 högskolepoäng TentamensKod: Tentamensdatum: 16-05-31 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel Totalt
Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer
Matematik Steg: Bas ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i talområdet 0-10 bråk- och decimalform ordningstal upp till 5 ha en grundläggande rumsuppfattning och kunna
Magiska kvadrater. Material Nio kapsyler Material för att göra egna spelplaner eller spelpåsar, se separata beskrivningar.
Strävorna 4A Magiska kvadrater... utvecklar sin förmåga att förstå, föra och använda logiska resonemang, dra slutsatser och generalisera samt muntligt och skriftligt förklara och argumentera för sitt tänkande....
Centralt innehåll. I årskurs 1.3
3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.
Np MaB vt Låt k = 0 och rita upp de båda linjerna. Bestäm skärningspunkten mellan linjerna.
Vid bedömning av ditt arbete med uppgift nummer 17 kommer läraren att ta hänsyn till: Hur väl du beräknar och jämför trianglarnas areor Hur väl du motiverar dina slutsatser Hur väl du beskriver hur arean
Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8
PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 TERMINSPLAN HÖSTTERMINEN ÅK 8: 1 1.1 ANDELEN 2 1.2 HÖJNING OCH SÄNKNING 3 FORTS. 1.2 HÖJNING OCH SÄNKNING 4 1.3 HUR STOR ÄR DELEN 1 5 AKTIVITET + 1.4 HUR STOR ÄR
Exempel på uppgifter från års ämnesprov i matematik för årskurs 3
Exempel på uppgifter från 2010 2013 års ämnesprov i matematik för årskurs 3 2 Innehåll Inledning... 5 Skriftliga räknemetoder... 6 Huvudräkning, multiplikation och division... 8 Huvudräkning, addition
Samband och förändringar Olika proportionella samband, däribland dubbelt och hälften.
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Lokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 3. Ekvationer och geometri. Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
I arbetet hanterar eleven flera procedurer och löser uppgifter av standardkaraktär med säkerhet, både utan och med digitala verktyg.
Kunskapskrav Ma 2a Namn: Gy Betyg E D Betyg C B Betyg A 1. Begrepp Eleven kan översiktligt beskriva innebörden av centrala begrepp med hjälp av några representationer samt översiktligt beskriva sambanden
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
Arbetsområde: Huvudsakligt ämne: Negativa tal Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa problem
Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal
Matematik Mål att sträva mot Vi strävar mot att varje elev ska utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik utveckla sin förmåga att
Bedömning av kunskap för lärande och undervisning i matematik. PRIM-gruppen Gunilla Olofsson
Bedömning av kunskap för lärande och undervisning i matematik PRIM-gruppen Gunilla Olofsson PRIM-gruppen Forskningsgruppen för bedömning av kunskap och kompetens Gruppen utvecklar olika instrument för
Geometriska mönster i Favorit matematik
Geometriska mönster i Favorit matematik En läromedelsgranskning av Favorit matematik i årskurserna 1-3 KURS: Examensarbete för grundlärare F-3, 15 hp PROGRAM: Grundlärarprogrammet med inriktning mot arbete
Kursplaner i matematik och lärares mål med undervisningen. Ola Helenius, LUMA 2010
Kursplaner i matematik och lärares mål med undervisningen Ola Helenius, LUMA 2010 Skolinspektionens kvalitetsgranskningar Grundskolan: 23 skolor (avslutad) Matematikutbildningens mål och undervisningens
Tränarguide del 2. Mattelek. www.flexprogram.se
Tränarguide del 2 Mattelek www.flexprogram.se 1 ANTALSUPPFATTNING - MINST/STÖRST ANTAL Övningarna inom detta område tränar elevernas uppfattning av antal. Ett antal objekt presenteras i två separata rutor.
Övningshäfte 2: Induktion och rekursion
GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2017 INLEDANDE ALGEBRA Övningshäfte 2: Induktion och rekursion Övning D Syftet är att öva förmågan att utgående från enkla samband, aritmetiska och geometriska,
Inte ska väl småbarn syssla med något så svårt som algebra vad skulle det
Maria Alkhede & Camilla Björklund Strumpor, symboler och strukturer algebra i förskolan och i förskoleklassen Matematik har sedan revideringen av förskolans läroplan varit ett framträdande innehåll i förskolan,
Förslag den 25 september Matematik
Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Extramaterial till Matematik X
LIBER PROGRMMERING OCH DIGITL KOMPETENS Extramaterial till Matematik X NIVÅ TRE Programmering LÄRRE I den här uppgiften får du och dina elever en introduktion till programmering. Uppgiften vänder sig först
Inlärningsnivåer i matema0k och en varierad undervisning
Inlärningsnivåer i matema0k och en varierad undervisning Per Berggren & Maria Lindroth 2015-03- 17 Lgr11- Matema0ska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges
Lokal studieplan matematik åk 1-3
Lokal studieplan matematik åk 1-3 Kunskaps område Taluppfat tning och tals användni ng Centralt Innehåll Kunskapskrav Moment Åk1 Moment Åk2 Moment Åk3 Naturliga tal och deras egenskaper samt hur talen
Matematik. Ämnesprov, läsår 2013/2014. Bedömningsanvisningar Delprov B, C, D, E. Årskurs
Ämnesprov, läsår 2013/2014 Matematik Bedömningsanvisningar Delprov B, C, D, E Årskurs 6 Prov som återanvänds av Skolverket omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta
Remissversion av kursplan i matematik i grundskolan. Matematik. Syfte
Matematik Syfte Matematiken har en mångtusenårig historia med bidrag från många kulturer och har utvecklats ur människans praktiska behov och naturliga nyfikenhet. Matematiken är kreativ och problemlösande
Exempel på uppgifter från års ämnesprov i matematik för årskurs 3
Exempel på uppgifter från 2010 2014 års ämnesprov i matematik för årskurs 3 Innehåll Inledning... 5 Skriftliga räknemetoder... 6 Huvudräkning... 8 Udda tal och positionssystemet... 11 Likheter, tallinjen
Likhetstecknets innebörd
Likhetstecknets innebörd Följande av Görel Sterner översatta och bearbetade text bygger på boken: arithmetic & algebra in elementary school. Portsmouth: Heinemann Elever i åk 1 6 fick följande uppgift:
Kartläggningsmaterial för nyanlända elever SVENSKA. Algebra Matematik. 1 2 Steg 3
Kartläggningsmaterial för nyanlända elever Algebra Matematik 1 2 Steg 3 SVENSKA Kartläggningsmaterial för nyanlända elever Algebra åk 3 MA 1. Fortsätt att rita mönstret a) b) 2. Figurerna blir större och
kvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor.
Turen har kommit till geometriska talföljder och summan av en geometrisk talföljd. Talföljden 1,, 4, 8, 16, 3,... är ett exempel på en geometrisk talföljd. Utmärkande för en geometrisk talföljd är att
Mål Likformighet, Funktioner och Algebra år 9
Mål Likformighet, Funktioner och Algebra år 9 Provet omfattar s. 102-135 (kap 4) och s.183-186, 189, 191, 193, 200-215. Repetition: Repetitionsuppgifter 4, läa 13-16 (s. 255 260) samt andra övningsuppgifter
LEARNING STUDY. Matematik Karl Johans skola i Örebro. Anders Sahlin / Viktoria Bjurström 1
LEARNING STUDY Matematik Karl Johans skola i Örebro 1 www.karljohansskola.se Anders Sahlin speciallärare Viktoria Bjurström Ma/No lärare 2 Bakgrund Behov av ett utvecklingsarbete. *Hur går det till när
Geometri. Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock
Geometri Matematik åk 4-6 - Centralt innehåll Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock Konstruktion av geometriska objekt Skala Symmetri
Ma7-Per: Algebra. Det andra arbetsområdet handlar om algebra och samband.
Ma7-Per: Algebra Det andra arbetsområdet handlar om algebra och samband. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera
Per Berggren och Maria Lindroth 2014-11-19
Varierad matematikundervisning Per Berggren och Maria Lindroth 2014-11-19 Luffarschack Med en utmaning! Sfinxen En rik laborativ matematikuppgift som tar sin början i de första skolåren och fortsätter
Syfte. Malmö stad Komvux Malmö Södervärn PRÖVNING. prövning grundläggande matematik
prövning grundläggande matematik Malmö stad Komvux Malmö Södervärn PRÖVNING Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer.
Vad är det som gör skillnad?
Vad är det som gör skillnad? Pedagogisk Inspiration Maria Dellrup Elisabeth Pettersson Nafi Zanjani Team Munkhättan Lotta Appelros Morin Iwona Charukiewicz Gudrun Einarsdottir Dammfriskolan Emma Backström
När vi läste Skolverkets rapport Svenska elevers matematikkunskaper
Florenda Gallos Cronberg & Truls Cronberg Två perspektiv på att utveckla algebraiska uttryck Svenska elever påstås ha svårt med mönstertänkande. Eller är det så att de inte får lärarledd undervisning i
Hjälpmedel: Miniräknare, skrivmateriel (ex. linjal, gradskiva, passare) och Lgr 11
Matematik och matematikdidaktik för 7,5 högskolepoäng grundlärare med inriktning mot arbete i förskoleklass och grundskolans årskurs 1-3, 7.5 hp VT17 Provmoment: Tentamen Matematik och matematikdidaktik,
Kursplanen i matematik 2011 - grundskolan
Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust
Övningshäfte 1: Logik och matematikens språk
GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2014 INLEDANDE ALGEBRA Övningshäfte 1: Logik och matematikens språk Övning A Målet är att genom att lösa och diskutera några inledande uppgifter få erfarenheter
Grundläggande matematik fo r grundlärare med inriktning mot arbete i grundskolans a rskurs 4-6, 15 hp VT ho gskolepoäng
Grundläggande matematik fo r grundlärare med inriktning mot arbete i grundskolans a rskurs 4-6, 15 hp VT17 Provmoment: Tentamen Matematik, 4 hp, tillfälle 1 Ladokkod: TE01 Tentamen ges fo r: Studenter
Matematikplanering 3 geometri HT-12 VT-13 7 a KON
Matematikplanering 3 geometri HT-12 VT-13 7 a KON MÅL Grundkurs Mäta (med gradskiva) och beräkna vinklar Känna till triangelns vinkelsumma och använda den för att räkna ut vinklar Kunna namnen på några
Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1
Matematik med didaktisk inriktning för grundlärare i förskoleklass och grundskolans a rskurs 1-3, III, VT18 7,5 högskolepoäng Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1 Ladokkod:
Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik
Betyg i årskurs 6 Betyg i årskurs 6, respektive årskurs 7 för specialskolan, träder i kraft hösten 2012. Under läsåret 2011/2012 ska kunskapskraven för betyget E i slutet av årskurs 6 respektive årskurs
Enhet / skola: Lindens skola i Lanna Åk: 3
Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 3 Avsnitt / arbetsområde: Undersöka med Hedvig Ämnen som ingår: Svenska/svenska som andraspråk, matematik, bild, So,
Learning study elevers lärande i fokus
Learning study elevers lärande i fokus McKinsey & Co. How the world s best-performing school systems come out on top. Högpresterande länder tar in kompetensutvecklingen till klassrummet och gör den till
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
MATEMATIK 5.5 MATEMATIK
5.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Pedagogiskt café. Problemlösning
Pedagogiskt café Problemlösning Vad är ett matematiskt problem? Skillnad mellan uppgift och problem - Uppgift är något som eleven träffat på tidigare, kan lösa med vanliga standardmetoder - Matematiskt
Bo skola 1 Matematikmål år F-3 Skriftligt omdöme/kunskapsinformation
Bo skola Matematikmål år - Namn: Strävansmål: Vi strävar efter att varje elev ska Utveckla goda baskunskaper i de fyra räknesätten Utvecklar en god förståelse för matematik och matematiska begrepp att
Planering Matematik åk 8 Algebra, vecka Centralt innehåll
Planering Matematik åk 8 Algebra, vecka 49 2015 Centralt innehåll Innebörden av variabelbegreppet och dess användning i algebraiska uttryck, formler och ekvationer. Algebraiska uttryck, formler och ekvationer
Constanta Olteanu, Linnéuniversitetet och Anna-Lena Ekdahl, Högskolan i Jönköping
Modul: Algebra Del 3: Bedömning för utveckling av undervisningen i algebra Intervju Constanta Olteanu, Linnéuniversitetet och Anna-Lena Ekdahl, Högskolan i Jönköping I en undervisning kan olika former
Vad är algoritmer? Lektionen handlar om att få en grundläggande förståelse för vad en algoritm är. Vad är algoritmer?
Lektionen handlar om att få en grundläggande förståelse för vad en algoritm är. Lektionsförfattare: Lotta Ohlin Andersson Till läraren 1. Vad vet du om algoritmer? 2. Vad betyder ordet algoritm? En digital
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
Arbetsområde: Huvudsakligt ämne: Matematik, åk 4-6 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa