Miniräknare ej tillåten. 1. Beräkna 2,35 0,5 Svar: (1/0/0)
|
|
- Ann Håkansson
- för 6 år sedan
- Visningar:
Transkript
1 Miniräknare ej tillåten 1. Beräkna 2,35 0,5 Svar: (1/0/0) 2. Beräkna 8!0,3 Svar: (1/0/0) 3. Beräkna 6 + 4!3 Svar: (1/0/0) 4. Robin har fem kort som visar olika former. Han blandar korten och tar slumpvis ett kort. Hur stor är sannolikheten att han tar ett kort med en fyrhörning? Svar: (1/0/0) 5. Beräkna 102 Svar: (1/0/0) Vilket av följande tal är det bästa närmevärdet till 25,6!0,45? Ringa in ditt svar. 0,115 1,15 11, (1/0/0) 7. Parallellogrammen är likformiga. Hur lång är sidan a? Svar: dm (1/0/0) Äp9Ma13 (B) 3
2 Miniräknare ej tillåten 8. Vad är hälften av 1? Skriv svaret i bråkform. Svar: (1/0/0) 3 9. Lös ekvationen x = 5 Svar: x = (1/0/0) 10. Hur många grader ska ringen vridas runt mittpunkten P för att mönstret ska sammanfalla med det ursprungliga mönstret? Ange minsta möjliga gradtal. Svar: (0/2/0) 11. Vilket tal är minst? Ringa in ditt svar ! (0/1/0) 12. Hur många grader är vinkeln a? Svar: (0/2/0) Äp9Ma13 (B) 4
3 Miniräknare ej tillåten 13. Skriv de tal som saknas i rutorna så att likheterna stämmer. a) (0/1/0) b) (0/0/1) 14. Du vet hur stor medelåldern är för tre vuxna personer. Vilka två av följande frågor kan man då besvara korrekt? Ringa in de två korrekta svarsalternativen. (0/1/1) Hur gammal är var och en av personerna? Hur stor var medelåldern för dessa personer för exakt två år sedan? Hur stor är medelåldern för två av dessa personer? Hur stor är personernas sammanlagda ålder? 15. Förenkla så långt som möjligt 3x + x x Svar: (0/0/1) Äp9Ma13 (B) 5
4 Miniräknare ej tillåten 16. Beräkna värdet av uttrycket a b! c då a = 8!10 7, b = 2!10 4, c = 8!10 2 Redovisa dina beräkningar i rutan. Svar: (0/2/1) 17. Lös ekvationen 2(x + 1) = 5! 2x Redovisa din lösning i rutan. Svar: x = (0/2/1) Äp9Ma13 (B) 6
5 18. Simhallen Du kan välja mellan tre olika betalningsmodeller A, B och C när du besöker simhallen under ett år. Diagrammet visar de tre betalningsmodellerna. a) Axel har valt att betala enligt modell A, Beatrice enligt modell B och Charlie enligt modell C. Under 2012 besökte alla tre simhallen 20 gånger var. Hur mycket fick var och en betala? b) Tänk dig att du ska börja simma i simhallen och ska välja betalningsmodell. Redogör för de för- och nackdelar som finns med de tre olika betalningsmodellerna. c) Visar någon/några av modellerna en kostnad som är proportionell mot antal besök i simhallen? Förklara för var och en av betalningsmodellerna varför de är proportionella eller inte. d) Ange för varje betalningsmodell en formel som du kan använda för att beräkna vad det skulle kosta oavsett hur många gånger du tänker besöka simhallen under ett år. Vid bedömningen av ditt arbete kommer läraren att ta hänsyn till vilka matematiska kunskaper du har visat och hur väl du har genomfört uppgiften hur väl du har redovisat ditt arbete hur väl du har motiverat dina slutsatser.! Äp9Ma13 (C) 3 (4/4/4)
6 En resa till Sydafrika Kevin och Veronica reser från Stockholm till Kapstaden. Kapstaden ligger i södra delen av Sydafrika. I Kapstaden finns Taffelberget som 2012 utnämndes till ett av de sju nya naturunderverken. I norra delen av Sydafrika finns många gruvor där man bryter guld och diamanter. I Sydafrika finns det också möjlighet att se många vilda djur. 4
7 19. Stockholm och Kapstaden ligger i samma tidszon, vilket betyder att klockan är lika mycket i de båda städerna. Kevin och Veronica reser från Stockholm till Kapstaden. Resan startar kl De är framme kl dagen efter. Hur lång tid tar resan? Endast svar krävs. (2/0/0) 20. År 2010 hade Sydafrika nästan 50 miljoner invånare. 7,5 % av dessa bodde i Kapstaden. Hur många bodde i Kapstaden? (2/0/0) 21. En av de största diamanterna som hittats i Sydafrika vägde carat. En carat motsvarar 200 mg. Enheten carat anger vikten av diamant. a) Hur många gram vägde diamanten? (2/0/0) b) Innan diamanten slipades delades den upp i 11 olika stora diamanter. Den största diamanten fick namnet Afrikas stora stjärna. Den vägde 106 gram. Hur många carat motsvarar det? (1/1/0) 5
8 22. Kevin hade kr med sig i reskassa. Efter 12 dygn har han kr kvar. Kevin räknar med att använda sina pengar i samma takt som hittills. Hur många dagar räcker då det som Kevin har kvar av reskassan? (3/0/0) 23. En noshörning kan få mycket långa horn. Ett horn växer cirka 0,5 cm i månaden. Noshörningens horn kan bli 1,55 m. Ungefär hur lång tid tar det för ett horn att bli så långt? (2/1/0) 24 Veronica och Kevin står på en utsiktsplats cirka 200 m över havsnivån och tittar på solen som går ner vid horisonten. Veronica påstår att horisonten ligger cirka 100 km bort. Kevin känner till en formel som man kan använda för att beräkna avståndet till horisonten. Om man befinner sig h meter över havsnivån är det S kilometer till horisonten, S = 13h. Stämmer Veronicas påstående? Motivera ditt svar med beräkningar. (0/3/0) 6
9 25. Sydafrika består av 9 provinser. I tabellen ser du folkmängd och area för varje provins. Folkmängd och area för Sydafrikas provinser och för Sverige. Folkmängd (miljoner) Area (1 000 km2) Eastern Cape 6,6 169 Free State 2,8 129 Gauteng 10,5 17 KwaZulu-Natal 10,3 92 Limpopo 5,2 123 Mpumalanga 3,7 79 North West 3,3 116 Northern Cape 1,1 362 Western Cape 5,3 129 Folkmängd (miljoner) Area (1 000 km2) 9,2 450 Provinser Land Sverige a) Kevin och Veronica diskuterar vilken provins som är störst. Kevin påstår att det är Gauteng medan Veronica anser att det är Northern Cape. Hur tolkar de tabellen när de ger så olika svar? (1/0/0) b) Nedan visas tre olika förslag på diagram över provinsernas folkmängd. Vilket diagram visar de tre provinser som har störst folkmängd? Motivera ditt svar. c) Gauteng är den provins som är folktätast. Ungefär hur många personer skulle bo i Sverige om vi hade samma folktäthet som Gauteng? 7 (2/0/0) (0/3/0)
10 26. Från Taffelberget i Kapstaden är det en fantastisk utsikt. För att komma upp på bergets topp kan man åka linbana från dalstationen till toppstationen. På bilden ser du en skiss på linbanan. a) Linbanan är m lång och resan till toppstationen tar 5 minuter. Vilken medelfart håller linbanan? Svara i m/s. (2/0/0) b) Linbanans kabin är cylinderformad och rymmer högst 65 personer. En person behöver minst 0,20 m 2 golvyta. Vilken diameter måste bottenytan på kabinen minst ha för att 65 personer ska få plats? (1/1/1) c) Dalstationen ligger 363 m över havsnivån. På vilken höjd över havsnivån ligger toppstationen? (0/1/3) 8
11 27. Robben Island är en känd fängelseö utanför Kapstaden. Formen på ön kan liknas vid en parallelltrapets. Mät på kartan och beräkna ungefär hur stor area Robben Island har i verkligheten. (1/2/1) 9
12 28. När olja från fartyg läcker ut i havet bildas en tunn hinna på vattnet som i genomsnitt har tjockleken 0,002 mm. Ett fartyg läcker ut 6 m 3 olja. Hur många kvadratkilometer täcker oljan? (0/2/2) 29. Den svarta noshörningen har länge varit utrotningshotad på grund av tjuvjakt. Man har på olika sätt försökt att stoppa tjuvjakten och antalet svarta noshörningar har därför ökat med 60 % från år 1995 till år År 2005 fanns det cirka svarta noshörningar. a) Hur många svarta noshörningar fanns det år 1995? (0/3/0) b) Utgå från att den procentuella ökningen fortsätter på samma sätt. Hur många svarta noshörningar kan man då räkna med att det finns år 2035? (0/2/1) 10
En resa till Sydafrika
En resa till Sydafrika Kevin och Veronica reser från Stockholm till Kapstaden. Kapstaden ligger i södra delen av Sydafrika. I Kapstaden finns Taffelberget som 2012 utnämndes till ett av de sju nya naturunderverken.
Matematik. Ämnesprov, läsår 2012/2013. Delprov D. Årskurs. Elevens namn och klass/grupp
Ämnesprov, läsår 2012/2013 Matematik Delprov D Årskurs 9 Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds
Matematik. Ämnesprov, läsår 2012/2013. Delprov D. Årskurs. Elevens namn och klass/grupp
Ämnesprov, läsår 2012/2013 Matematik Delprov D Årskurs 9 Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds
LÄXOR för år 9 inför ämnesprov i matematik
LÄXOR för år 9 inför ämnesprov i matematik Repetera på gammalt ämnesprov enligt: LÄXA tisdag v 15: LÄXA tisdag v 17: LÄXA tisdag v 18: LÄXA onsdag v 19: Del B Del C Del D Alla delar gjorda? Vad finns på
k9innehåll: Matte KONVENT Ma te ma tik Länktips: Mattecentrum.se Formelsamlingen.se Matteboken.se Pluggakuten.se
Matte KONVENT Plugga tillsammans inför de nationella proven i matematik Ma te ma å tik Länktips: Mattecentrum.se Formelsamlingen.se Matteboken.se Pluggakuten.se k9innehåll: Pluggtips Formelsamling Nationella
Matematik. Ämnesprov, läsår 2012/2013. Delprov B. Årskurs. Elevens namn och klass/grupp
Ämnesprov, läsår 2012/2013 Matematik Delprov B Årskurs 9 Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds
Matematik. Ämnesprov, läsår 2012/2013. Bedömningsanvisningar. Årskurs. Delprov B och Delprov C
Ämnesprov, läsår 2012/2013 Matematik Bedömningsanvisningar Delprov B och Delprov C Årskurs 9 Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds
b) 530 (carat) Påbörjad lösning, t.ex. korrekt enhetsbyte. Lösning med lämplig metod och korrekt svar. dagar; 6,3 dagar
19. 19 h 30 min; 19,5 h Korrekt svar. (2/0/0) +E B +E M 20. 3 750 000; 3,75 miljoner; ca 3,8 miljoner Redovisar godtagbar metod vid beräkning av procentuell andel med godtagbart svar. 21. a) 621,2 (g);
Matematik. Ämnesprov, läsår 2013/2014. Delprov B. Årskurs. Elevens namn och klass/grupp
Ämnesprov, läsår 2013/2014 Matematik Delprov B Årskurs 6 Elevens namn och klass/grupp Prov som återanvänds av Skolverket omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta
Träningsuppgifter, gamla nationella prov i matematik(del B1) från Taluppfattning. Hashem Rezai, S:t Ilians skola, Västerås
Taluppfattning 1. Vilket av följande tal är minst? Ringa in ditt svar. 2,9 2,98 2,998 2,889 2,89 (1/0) 2. Hur många miljoner visar miniräknaren? Svar: (1/0) 3. Vilket tal pekar pilen på? 31 32 33 Svar:
Matematik. Ämnesprov, läsår 2014/2015. Delprov B. Årskurs. Elevens namn och klass/grupp
Ämnesprov, läsår 2014/2015 Matematik Delprov B Årskurs 6 Elevens namn och klass/grupp Prov som återanvänds av Skolverket omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta
Matematik. Ämnesprov, läsår 2012/2013. Bedömningsanvisningar. Årskurs. Delprov B och Delprov C
Ämnesprov, läsår 2012/2013 Matematik Bedömningsanvisningar Delprov B och Delprov C Årskurs 9 Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds
Matematik. Ämnesprov, läsår 2012/2013. Bedömningsanvisningar. Årskurs. Delprov D
Ämnesprov, läsår 2012/2013 Matematik Bedömningsanvisningar Delprov D Årskurs 9 Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds t.o.m.
Repetitionsuppgifter 1
Repetitionsuppgifter 1 Beräkna 1 a) 0,5 + 0,7 b) 0,45 + 1,6 c) 2,76 0,8 2 a) 4,5 10 b) 30,5 10 c) 0,45 1 000 3 Vilka av produkterna är a) större än 6 1,09 6 0,87 6 1 6 4,3 6 0,08 6 b) mindre än 6 4 Skriv
MATEMATIK KURS A Våren 2005
MATEMATIK KURS A Våren 2005 1. Vilket tal pekar pilen på? 51 52 53 Svar: (1/0) 2. Skugga 8 3 av figuren. (1/0) 3. Vad är 20 % av 50 kr? Svar: kr (1/0) 4. Hur mycket vatten ryms ungefär i ett dricksglas?
Del B1 Innehållet i detta häfte är sekretessbelagt t o m den 30 juni 2007.
Miniräknare ej tillåten Del B1 Innehållet i detta häfte är sekretessbelagt t o m den 30 juni 2007. Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0)
NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN Del I
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av juni månad 2002. NATIONELLT
Matematik. Ämnesprov, läsår 2014/2015. Delprov C. Årskurs. Elevens namn och klass/grupp
Ämnesprov, läsår 2014/2015 Matematik Delprov C Årskurs 6 Elevens namn och klass/grupp Prov som återanvänds av Skolverket omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta
Matematik. Ämnesprov, läsår 2013/2014. Bedömningsanvisningar Delprov B, C, D, E. Årskurs
Ämnesprov, läsår 2013/2014 Matematik Bedömningsanvisningar Delprov B, C, D, E Årskurs 6 Prov som återanvänds av Skolverket omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta
MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs
MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning
Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp
Kursprov, vårterminen 2012 Matematik Elevhäfte Del I och Del II 1a Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov
Läxa 9 7 b) Dividera 84 cm med π för att få reda på hur lång diametern är. 8 1 mm motsvarar 150 / 30 mil = = 5 mil. Omvandla till millimeter.
LEDTRÅDAR LÄXOR Läa Förläng så att du får ett heltal i nämnaren. Använd division. Varje sekund klipper Karin, m =, m. Läa 0 ml = 0,0 liter Använd sambandet s = v t. Räkna ut hur mycket vattnet väger när
UTTRYCK ÅLDER 5. ALGEBRA P M K. Linda är 5 år äldre än Amanda. Amanda är x år. a) Skriv ett uttryck för hur gamla de är tillsammans.
UTTRYC ÅLDER Linda är 5 år äldre än Amanda. Amanda är x år. 5. ALGEBRA P M a) Skriv ett uttryck för hur gamla de är tillsammans. b)om de tillsammans är 29 år, hur gammal är var och en? E orrekt svar (a)
Del B: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. Skriv i decimalform sjutton hundradelar.
NAN: KLASS: Del : Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. 1) Skriv i decimalform sjutton hundradelar. 2) Vad är en tredjedel av 420 kr? 3) Vilket av
4 Dividera höjningen (0,5 %) med räntesatsen från början (1 %). 7 Du kan pröva dig fram till exempel så här: Från Till Procent- Procent enheter
ledtrådar LäOr Läa 8 Räkna först ut hur mycket tiokronorna och enkronorna är värda sammanlagt. Läa 8 Räkna först ut hur mycket allt vatten i hinken väger när den är full. Läa MGN = 8 Tänk dig att näckrosen
a) trettiotvåtusen femhundrasju b) femhundratusen åttiotre a) ett udda tal b) det största jämna tal som är möjligt A B C A B C 3,1 3,2
Alternativdiagnos 1 1 Skriv med siffror a) trettiotvåtusen femhundrasju b) femhundratusen åttiotre 2 Använd siffrorna 2, 3, 4 och 5 och skriv a) ett udda tal b) det största jämna tal som är möjligt 3 Vilka
REPETITION 2 A. a) Är sträckan proportionell mot tiden? b) Beräkna medelhastigheten under de fem första sekunderna.
REPETITION Hur mcket är a) 9 b) 00 0 c) 00 På en karta i skala : 0 000 är det, cm mellan två små sjöar. Hur långt är det i verkligheten? Grafen visar hur långt en bil hinner de se första sekunderna efter
Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller 1 vgpoäng
Ämnesprov i matematik Skolår 9 Vårterminen 2004 Del B1 Innehållet i detta häfte är sekretessbelagt t o m den 11 juni 2004. Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt
Repetitionsuppgifter 1
Repetitionsuppgifter 1 1 Vilka tal pekar pilarna på? a) b) Skriv talen med siffror 2 a) trehundra sju b) femtontusen fyrtiofem c) tvåhundrafemtusen tre 3 a) fyra tiondelar b) 65 hundradelar c) 15 tiondelar
Övningsblad 1.1 A. Bråkbegreppet. 1 Skugga. 2 Hur stor andel av figuren är skuggad? 3 Ringa in 2 av stjärnorna.
Övningsblad 1.1 A Bråkbegreppet 1 Skugga 1 6 av figuren b) 2 3 av figuren 3 av figuren 4 2 Hur stor andel av figuren är skuggad? b) 3 Ringa in 2 av stjärnorna. 4 Skriv 20 valfria bokstäver och låt 1 av
MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs
MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning
Matematik. Ämnesprov, läsår 2014/2015. Bedömningsanvisningar Delprov B, C, D, E. Årskurs
Ämnesprov, läsår 2014/2015 Matematik Bedömningsanvisningar Delprov B, C, D, E Årskurs 6 Prov som återanvänds av Skolverket omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta
Centralt innehåll i matematik Namn:
Centralt innehåll i matematik Namn: T - Taluppfattning T1 Tiosystemet 5,23 1000 = 523/0,01= T2 Positionerna 2,39-0,4 = T3 Primtal Vilka är de fem första primtalen. Vad är ett primtal? T4 Primtalsfaktorering.
4 Sätt in punkternas koordinater i linjens ekvation och se om V.L. = H.L. 5 Räkna först ut nya längden och bredden.
Läxor Läxa 7 En sådan timme skulle ha 00 00 s = 0 000 s. 8 a) O = π d och A = π r r. 0 Beräkna differensen mellan hela triangelns area och arean av den vita triangeln i toppen. Läxa 9 Hur stor andel målar
Sammanfattningar Matematikboken Y
Sammanfattningar Matematikboken Y KAPitel 1 TAL OCH RÄKNING Numeriska uttryck När man beräknar ett numeriskt uttryck utförs multiplikation och division före addition och subtraktion. Om uttrycket innehåller
Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 4. b) = 3 1 = 2
Kapitel.1 101, 102 Exempel som löses i boken 10 a) x= 1 11+ x= 11+ 1 = 2 c) x= 11 7 x= 7 11 = 77 b) x= 5 x 29 = 5 29 = 6 d) x= 2 26 x= 26 2= 1 10 a) x= 6 5+ 9 x= 5+ 9 6= 5+ 5= 59 b) a = 8a 6= 8 6= 2 6=
Nationellt kursprov i MATEMATIK KURS A Våren 2005. Del II
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med 10 juni 2005. Anvisningar Provtid Hjälpmedel
Addition och subtraktion. Vilka uträkningar visas på tallinjerna nedan? Beräkna med huvudräkning 1 3 5 = 2 2 2 + 5 = 3 3 7 + 3 = 4 4 1 4 = 5 7 2 + 7 5
OH 1 Addition och subtraktion Vilka uträkningar visas på tallinjerna nedan? 1 = 7 6 1 0 1 + = 7 6 1 0 1 7 + = 7 6 1 0 1 1 = 7 6 1 0 1 Beräkna med huvudräkning 8 6 6 8 7 + 7 8 9 7 9 1 8 10 1 + 0 Kopiering
Välkommen till Borgar!
Välkommen till Borgar! Välkommen till Borgar! Vi ser fram emot att snart träffa en ny årskull med naturettor och hoppas att du kommer att trivas mycket bra hos oss. Studier i naturvetenskapliga ämnen förutsätter
Innehållet i detta häfte är sekretessbelagt t o m den 9 juni 2006.
Miniräknare ej tillåten Innehållet i detta häfte är sekretessbelagt t o m den 9 juni 2006. Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller
2. 1 L ä n g d, o m k r e t s o c h a r e a
2. 1 L ä n g d, o m k r e t s o c h a r e a Ett plan är en yta som inte är buktig och som är obegränsad åt alla håll. På ett plan kan man rita en linje som är rak (rät). En linje är obegränsad åt båda
Övningsblad 5.1. Skriva och beräkna värdet av uttryck. 1 Matilda är m år. Vad betyder det om hennes bror är
Övningsblad 5.1 Skriva och beräkna värdet av uttryck 1 Matilda är m år. Vad betyder det om hennes bror är a) m + 3 år b) x 5 år c) 2x år 2 Janne är x år. Skriv ett uttryck för åldern på en person som är
DIGITALA VERKTYG ÄR INTE TILLÅTNA
DIGITALA VERKTYG ÄR INTE TILLÅTNA 1. Vilket av följande tal är det bästa närmevärdet till 6,35 3,2? Ringa in ditt svar. 0,203 2,03 20,3 203 2030 (1/0/0) 2. En formel för momsberäkning är inlagd i ett kalkylblad.
Välkommen till Borgar!
Välkommen till Borgar! Välkommen till Borgar! Vi ser fram emot att snart träffa en ny årskull med ettor och hoppas att du kommer att trivas mycket bra hos oss. Din första termin på gymnasiet kommer att
Matematik. Kursprov, höstterminen Delprov B. Elevens namn och klass/grupp
Kursprov, höstterminen 2016 Matematik Delprov B 1b Elevens namn och klass/grupp Prov som återanvänds av Skolverket omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds
18 a) 36 b) 900 c) 25 d) 1 REPETITIONSUPPGIFTER 2. 1 a) 20 m 2 b) 16 m 2 c) 10 m 2 d) 48 m 2 (50, 24 m 2 )
epetitionsuppgifter Till varje kapitel finns repetitionsuppgifter i form av Arbetsblad. Uppgifterna är relaterade till innehållet i respektive kapitel och täcker hela kapitlet. De uppgifter som kräver
NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 1999. Tidsbunden Del II
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1999. NATIONELLT
Rep 1 NÅGOT EXTRA. Sidan 88. Sidan 85. Sidan 89. Sidan 86. Sidan 87. Sidan 90
2 VOLYM OCH SKALA / REP 1 FACIT TILL ELEVBOKEN 125 a dl b ml c cl d l 126 5 st 127 200 cm 3 (2 dl = 0,2 l = 0,2 dm 3 = 200 cm 3 ) Sidan 85 128 A B C D Vas tom 235 g 528 g 0,85 kg 1,250 kg Vas med vatten
NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2001. Del II
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av 2011. Anvisningar Provtid
PLANERING MATEMATIK - ÅK 7. Bok: X (fjärde upplagan) Kapitel : 5 Geometri Kapitel : 6 Bråk och procent. Elevens namn: Datum för prov HÄLLEBERGSSKOLAN
PLANERING MATEMATIK - ÅK 7 Bok: X (fjärde upplagan) Kapitel : 5 Geometri Kapitel : 6 Bråk och procent Elevens namn: markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ TRE TRE FYRA
FACIT 0, ,10 0, ,75. b) 3 3 = 1. d) 5 2 = a) b) 60 c) d) 1,818 e) 0,898 f) Ex. 3 0,25 = 0,75
FACIT Ç TUMMEN UPP! MATTE ÅK KARTLÄGGNING TALUPPFATTNING 7 a) 00 0,0 Exempel: 0 = 0 0 = 0 7 b) 0 00 0 0,0 0 kr = 0 c) 0 00 0,0 7 0 kr = 0 = 0 Eget val a) 7 b) c) d) 0 e) 0 f) g) h) 0 0 0% % 0, 0 7% 00
Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.
NpMac vt 01 Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser
SKOGLIGA TILLÄMPNINGAR
STUDIEAVSNITT 3 SKOGLIGA TILLÄMPNINGAR I detta avsnitt ska vi titta på några av de skogliga tillämpningar på geometri som finns. SKOGSKARTAN EN MODELL AV VERKLIGHETEN Arbetar man i skogen klarar man sig
Övningsprov 3 inför lilla nationella Ma1 NA18 ht18
Övningsprov 3 inför lilla nationella Ma1 NA18 ht18 Del A Utan räknare Endast svar krävs 1. Beräkna: a) 3 4 2 3 b) 12 10 13 6 10 2 4 10 c) f ( 4) om f ( x) = 3x 4 d) 15% av 60 kr 2. Bestäm vinklarna u och
FEL I TEXT X Femte upplagan, Första tryckningen
FEL I TEXT X Femte upplagan, Första tryckningen Sid 99 I 169 ska det sista talet vara 38. Uppgiften ska vara: 169 Vilket tal saknas? 3 10 17 24 -?- 38 Sid 123 55 Bilden visar Cajsas rum. Mät i hela centimeter.
!TIE - 1,5 10,8 LÄXA a) omkrets b) area. 7,5 a) 0,6 700 b) 200. c) 0,05. c) (-7) + (-3) f) (-7)'3. a) 181 b) 12, 16,01-1,6
LÄXA. 1 1 En fönsterruta har måtten 0,8 m x 1,5 m. Vilken är rutans a) omkrets b) area 2 Räkna utan miniräknare 62000 7,5 a) 0,6 700 b) 200 c) 0,05 3 Beräkna a) 7 + (-3) d) (-7) (-3) b) 7 (-3) e) (-7)
Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.
Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1) a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje
Ansvarig lärare: Kristina Wallin , Maria Lindström , Barbro Wase
Skolmatematiktenta LPGG06 Kreativ Matematik Delkurs 2 20 augusti 2015 14.00 18.00 Hjälpmedel: Miniräknare Ansvarig lärare: Kristina Wallin 054-700 23 16, Maria Lindström 054-700 21 46, Barbro Wase 070-6309748
Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret.
NAN: KLASS: Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. 1) a) estäm ekvationen för den räta linjen i figuren. b) ita i koordinatsystemet en rät linje
Del B1 Innehållet i detta häfte är sekretessbelagt t o m den 30 juni 2008.
Miniräknare ej tillåten Del B1 Innehållet i detta häfte är sekretessbelagt t o m den 30 juni 008. Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0)
17 Trigonometri. triangeln är 20 cm. Bestäm vinkeln mellan dessa sidor. Lösning: Här är det dags för areasatsen. s1 s2 sin v 2
17 Trigonometri Övning 17.1 En likbent triangel har arean 10 cm. De båda lika långa sidorna i triangeln är 0 cm. estäm vinkeln mellan dessa sidor. Här är det dags för areasatsen = s1 s sin v där v ligger
Uppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans.
Del B Del C Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-16. Fullständiga lösningar krävs. 10 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består
150 cm 2 m 70 dm. 280 cm 3,5 m 40 dm 3,50 0,50. 200 cm 1,5 2,5. 6 m. 30 cm 4 dm 500 mm. 2 m. 70 dm. 150 cm. 3,5 m. 40 dm. 280 cm.
Skriv sträckorna i storleksordning. Längdenheter: meter (m), decimeter (dm), centimeter (cm) och millimeter (mm). Längden 15 cm kan skrivas på olika sätt: 15 cm = 1 m 5 cm = 1,5 m eller 15 dm cm eller
Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.
Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser Provet består
1. 4 + 6 3 = Svar: (1/0) 3. Skriv ett heltal i rutan så att bråket får ett värde mellan 2 och 3. Svar: (1/0)
1. 4 + 6 3 = Svar: (1/0) 2. Vad är hälften av 1 1 2? Svar: (1/0) 3. Skriv ett heltal i rutan så att bråket får ett värde mellan 2 och 3. Svar: (1/0) 8 4. Andreas har 4 km till skolan. Hur många minuter
DIGITALA VERKTYG ÄR INTE TILLÅTNA
1. Bestäm värdet av 4x + 3 om x = 3. Svar: (1/0/0) 2. Vilket värde på x uppfyller inte villkoret 2x + 1 > 5? Ringa in ditt svar. 7 5 4 3 2 (2/0/0) 3. Följande samband är ekvivalenser eller implikationer.
Intromatte för optikerstudenter
Intromatte för optikerstudenter Av Robert Rosén (2012). Ändringar av Daniel Larsson (2013). Ändringar av Jakob Larsson och Emelie Fogelqvist (2014). Kursmål Efter intromatten vill vi att du inom matematik
Intromatte för optikerstudenter
Intromatte för optikerstudenter Av Robert Rosén (2012). Ändringar av Daniel Larsson, Jakob Larsson, Emelie Fogelqvist och Simon Winter (2013 2016). Kursmål Efter intromatten vill vi att du inom matematik
hlager 2: 75 m 3 15 km 17 km h Lager 3: 100 m 3 hlager 5: 100 m 3 15 km 22 km 17 km 17 km 14 km Lager 1: 50 m 3
MATEMATIKUPPGIFTER I INTRÄDESFÖRHÖRET 2000 Uppgift 1 En långtradarchaufför skall frakta virke från olika lager till fabriken (se nedanstående bild). Hur lönar det sig för chauffören att frakta virket,
NOG-provet Provansvarig: Anders Lexelius Provtid: 50 min Högskoleverket
NOG-provet 2001-04-07 Provansvarig: Anders Lexelius Provtid: 50 min Högskoleverket 1. A, B, C och D skar var sin bit ur en tårta. A tog en tredjedel av tårtan. Hur stor del av tårtan var kvar sedan alla
Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp
Kursprov, vårterminen 2012 Matematik Elevhäfte Del I och Del II 1b Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov
Matematik Åk 9 Provet omfattar stickprov av det centrala innehållet i Lgr-11. 1. b) c) d)
1. b) c) d) a) Multiplikation med 100 kan förenklas med att flytta decimalerna lika många stg som antlet nollor. 00> svar 306 b) Använd kort division. Resultatet ger igen rest. Svar 108 c) Att multiplicera
PLANGEOMETRI I provläxa med facit ht18
PLANGEOMETRI I provläxa med facit ht18 På det här avsnittet kommer du i första hand att utveckla din begrepps metod och kommunikations förmåga. Det är nödvändigt att ha en linjal för att klara avsnittet.
Gunilla Viklund Birgit Gustafsson Anna Norberg
L ÄRARMAT E R I A L Gunilla Viklund Birgit Gustafsson Anna Norberg Negativa tal Utför beräkningarna. Addera svaren i varje grupp till en kontrollsumma. Alla kontrollsummor ska bli lika. 2 5 13 + ( 2) 11
Intromatte för optikerstudenter 2018
Intromatte för optikerstudenter 018 Rabia Akan rabiaa@kth.se Av Robert Rosén (01). Ändringar av Daniel Larsson, Jakob Larsson, Emelie Fogelqvist, Simon Winter och Rabia Akan (01-017). Kursmål Efter intromatten
sträckan = tiden. hastigheten hastigheten = sträckan tiden 210 hastigheten = 3 = 70 Bilisten kör 70 km/h. tiden =
Enheter och skala I det här kapitlet kan du lära dig mer om hastighet att skriva minuter som del av timme att räkna om km/h till m/s något om hastigheter till sjöss om volymenheterna cm 3, dm 3 och m 3
x kr y kr a) 7 dm b) 325 mm c) 1,2 km d) cm 2 Hur mycket är a) b) ( ) / 4 c) 10 / (14 4)
REPETITION 2 A Del I 1 Skriv i meter. a) 7 dm b) 32 mm c) 1,2 km d) 1 20 cm 2 Hur mycket är a) + 1 b) ( + 1) / c) / (1 ) 3 Hur lång tid är det mellan klockslagen? a) 13.3 1. b).2 11.37 c) 1. 21.32 Teckna
Bedömningsexempel från ämnesprovet i matematik årskurs 6, 2013
Bedömningsexempel från ämnesprovet i matematik årskurs 6, 2013 Innehåll Ämnesprovet i matematik i årskurs 6 läsåret 2012/2013, exempel på provuppgifter... 3 Inledning... 3 Skriftliga delprov... 5 Miniräknare
Kravgränser. Provet består av Del B, Del C, Del D samt en muntlig del och ger totalt 63 poäng varav 24 E-, 21 C- och 18 A-poäng.
Kravgränser Provet består av Del B, Del C, Del D samt en muntlig del och ger totalt 63 poäng varav 24 E-, 21 C- och 18 A-poäng. Kravgräns för provbetyget E: 17 poäng D: 25 poäng varav 7 poäng på minst
Uppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans. Formelblad och linjal.
Del B Del C Provtid Hjälpmedel Uppgift 1-11. Endast svar krävs. Uppgift 1-16. Fullständiga lösningar krävs. 10 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består
1.4 Räta linjer modellering
1.4 Räta linjer modellering Del 1 Utan digitala hjälpmedel 1. Medellängden hos en nyfödd under första levnadsåret kan enligt en förenklad modell beskrivas med formeln y = 48 + 2x där y är längden i cm
a) 4a + a b) 4a 3a c) 4(a + 1)
REPETITION 2 A 1 Förenkla uttrycken. a) 4a + a b) 4a 3a c) 4(a + 1) 2 Johannas väg till skolan är a m lång. a) Robins skolväg är 200 m längre än Johannas. Teckna ett uttryck för hur lång skolväg Robin
REPETITION 2 A. a) 4a + a b) 4a 3a c) 4(a + 1)
REPETITION 2 A 1 Förenkla uttrycken. a) 4a + a b) 4a 3a c) 4(a + 1) 2 Johannas väg till skolan är a m lång. a) Robins skolväg är 200 m längre än Johannas. Teckna ett uttryck för hur lång skolväg Robin
Arbetsblad 3:1. Tolka uttryck. 1 Kajsa är a år gammal. Para ihop varje påstående med rätt uttryck.
Arbetsblad :1 sid 78, 92 Tolka uttryck 1 Kajsa är a år gammal. Para ihop varje påstående med rätt uttryck. a) Karin är tre gånger så gammal: b) Katta är år yngre: a + a c) Kristina är en tredjedel så gammal:
Ma7-Per: Geometri. Det tredje arbetsområdet handlar om geometri.
Ma7-Per: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda
Matematik. Ämnesprov, läsår 2014/2015. Delprov D. Årskurs. Elevens namn och klass/grupp
Ämnesprov, läsår 2014/2015 Matematik Delprov D Årskurs 6 Elevens namn och klass/grupp Prov som återanvänds av Skolverket omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta
SKOLPORTENS NUMRERADE ARTIKELSERIE FÖR UTVECKLINGSARBETE I SKOLAN. Bilagor
SKOLPORTENS NUMRERADE ARTIKELSERIE FÖR UTVECKLINGSARBETE I SKOLAN Bilagor Gemensamma matematikprov, analysinstrument och bedömningsmatriser för kvalitetshöjningar Författare: Per Ericson, Max Ljungberg
9A Ma: Geometri. Det tredje arbetsområdet handlar om geometri.
9A Ma: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier
Högskoleverket. Delprov NOG 2003-04-05
Högskoleverket Delprov NOG 2003-04-05 2 1. Sven använder 40 procent av sin nettolön, d.v.s. lön efter skatt, till att betala hyran. Hur stor är Svens nettolön? (1) Efter att Sven betalat hyran har han
Matematik. Delprov B. Vårterminen 2009 ÄMNESPROV. Del B1 ÅRSKURS. Elevens namn
ÄMNESPROV Matematik ÅRSKURS 9 Prov som ska återanvändas omfattas av sekretess enligt 4 kap. 3 sekretesslagen. Avsikten är att detta prov ska kunna återanvändas t.o.m. 2009-06-30. Vid sekretessbedömning
2: E TOOT Bokstäverna O och T har en lodrät symmetriaxel, men inte R, B och L. Därför kommer endast ordet TOOT kunna skrivas på detta sätt.
Kängurutävlingen 018 Cadet svar och kommentarer Facit Cadet 1: C 19 0 + 18 = 8 = 19 : E TOOT Bokstäverna O och T har en lodrät symmetriaxel, men inte R, B och L. Därför kommer endast ordet TOOT kunna skrivas
MÄT OCH MÅTTA. Lärarhandledning
MÄT OCH MÅTTA Lärarhandledning 1 Mätväskan innehåller all tänkbar utrustning för att göra olika matematiska undersökningar på Universeum. Räkna till exempel ut volymer i vår regnskog eller mät längder,
4. Vad kan man multiplicera x med om man vill öka värdet med 15 %?
Axel Weüdelskolan/Komvux Matematik/Sibe 1. Förenkla x 1 1 1 1 1 x 2. Förenkla 5 3. Beräkna värdet av a 2 b om a = -3 och b = 2 4. Vad kan man multiplicera x med om man vill öka värdet med 15 %? 5. Vilket
Lös uppgiften med ett program, t.ex. print("jag kan ha köpt två bullar och en läsk och ska betala", 2 * , "kr.") T.ex. print(5 + 3 * 10) T.ex.
1 Print 3 Algebra Uttryck och prioriteringsreglerna 3 Algebra Uttryck och prioriteringsreglerna 3 Algebra Skriva och förenkla uttryck 1. Beskriv vad du kan ha köpt och beräkna värdet av uttrycket. a) 2
Matematik A Testa dina kunskaper!
Testa dina kunskaper! Försök i största möjliga mån att räkna utan hjälp av boken, skriv små noteringar i kanten om ni tycker att ni kan uppgifterna, att ni löste dem med hjälp av boken etc. Facit kommer
Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning
Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som
NpMa2a vt Provet består av tre skriftliga delprov (Delprov B, C och D). Tillsammans kan de ge 55 poäng varav 22 E-, 19 C- och 14 A-poäng.
Delprov B Delprov C Provtid Hjälpmedel Uppgift 1-8. Endast svar krävs. Uppgift 9-14. Fullständiga lösningar krävs. 10 minuter för Delprov B och Delprov C tillsammans. Formelblad och linjal. Kravgränser
Högskoleprovet Kvantitativ del
Högskoleprovet Kvantitativ del Här följer anvisningar till de kvantitativa delproven XYZ, KVA, NOG och DTK. Provhäftet innehåller 40 uppgifter och den totala provtiden är 55 minuter. XYZ Matematisk problemlösning
Bok: X (fjärde upplagan) Kapitel : 3 Längd, tid och samband Kapitel : 4 Algebra och mönster
PLANERING MATEMATIK - ÅK 7 Bok: X (fjärde upplagan) Kapitel : 3 Längd, tid och samband Kapitel : 4 Algebra och mönster Elevens namn: markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ
Några problemlösnings och modelleringsuppgifter med räta linjer
Några problemlösnings och modelleringsuppgifter med räta linjer Dessa uppgifter är indelade i två delar utan miniräknare och med miniräknare. Försök gärna lösa någon av varje del istället för alla på en