hlager 2: 75 m 3 15 km 17 km h Lager 3: 100 m 3 hlager 5: 100 m 3 15 km 22 km 17 km 17 km 14 km Lager 1: 50 m 3
|
|
- Helen Andersson
- för 9 år sedan
- Visningar:
Transkript
1 MATEMATIKUPPGIFTER I INTRÄDESFÖRHÖRET 2000 Uppgift 1 En långtradarchaufför skall frakta virke från olika lager till fabriken (se nedanstående bild). Hur lönar det sig för chauffören att frakta virket, med tanke på att köra så få kilometer som möjligt, då han startar från fabriken? Det ryms maximalt 50 m 3 virke på långtradaren. Lös uppgiften genom att pröva dig fram. hlager 4: 75 m 3 15 km FABRIK g 24 km 18 km 17 km h Lager 3: 100 m 3 16 km hlager 5: 100 m 3 22 km 17 km 17 km 14 km h Lager 1: 50 m 3 15 km hlager 2: 75 m 3 Uppgift 2 a) Beräkna med hjälp av kartan (skalan 1:10 000) arean av den triangelformade strandtomten. b) På kartan har också ritats den planerade sommarstugevägen. För att få vägen i körbart skick för personbilstrafik måste den 3,2 m breda vägen få ett tio centimeter tjockt gruslager. Gör en uppskattning av mängden grus som behövs. Uppgift 3 a) Vid en renovering av en bostad skall vardagsrummets rektangulära golv som är 5,15 m långt och 4,15 m brett, beläggas med parkett. Hur många bitar av parkett behövs om en bit har storleken 2085 mm x 188 mm och man för säkerhets skull skaffar 5% extra parkett? b) Vid en annan renovering köptes plastmatta, som kostade 60 mk/m 2, parkett som kostade 210 mk/m 2 samt andra tillbehör, som kostade 2300 mk. Hur många kvadratmeter köptes av vartdera golvmaterialet ifall inköpena kostade sammanlagt mk och golvmaterialet skulle räcka till 100 m 2 golv.
2 Uppgift 4 a) Av priset på papper utgjorde råmaterialet 35%, övriga kostnader 55% samt tillverkarens vinst 10%. Med hur många procent ändras priset på papper och i vilken riktning, om råvarukostnaderna sjunker med 4%, de övriga kostnaderna ökar med 6% medan vinsten fortfarande utgör 10% av priset? b) Av priset på papper utgör 35% råmaterialkostnader och av råmaterialkostnaderna är cellulosans andel 60%. Med hur många procent stiger priset på papper, ifall cellulosapriset går upp med 6% och cellulosans prisstegring i sin helhet överförs till papperspriset? Uppgift 5 Träets fuktighetskvot u beräknas med hjälp av följande formel: mu mo u = 100% mo där m u = träbitens massa, som färsk m o = träbitens massa, torkad Med en träbits torr-rådensitet menas den densitet, som man får, när man väger träbiten torr och mäter volymen färsk. a) Fuktighetskvoten för en färsk träbit är 45% och densiteten är 725 kg/m 3. Vilken torrrådensitet har träbiten om den är 20,0 mm hög, 100,0 mm bred och 200,0 mm lång? b) Vilken massa skulle ovan nämnda träbit ha, ifall bitens fuktighetskvot varit 18%? Uppgift 6 Tallens övre diameter d 6,0 (på 6 m:s höjd) beror av brösthöjdsdiametern d 1,3 (på 1,3 m:s höjd) enligt ekvationen d a d + b 6,0 = 1, 3 I ett bestånd såg förhållandet ut som nedan bifogade graf visar. a) Bestäm konstanterna a och b. b) Vilken övre höjd har en tall vars brösthöjdsdiameter är 21 centimeter? d 6,0 (cm) x A (26, 18) x B (8, 6) d 1,3 (cm)
3 MATEMATIKUPPGIFTER I INTRÄDESFÖRHÖRET Bröderna Kalle, Ville och Pelle hade alla varsitt 4 ha stort markområde. a) Kalles område har formen av en rektangel med längden 250 meter. Beräkna områdets bredd. b) Villes område är kvadratiskt. Beräkna områdets sida. c) Pelles område har formen av en cirkel. Beräkna områdets radie. 2. Hur högt är trädet enligt mätningar gjorda efter skissen, om avståndet AB är 23 m? A B 3. En tallplanta var 0,30 m lång då den planterades en vår. Plantan växte under de följande växtperioderna lika mycket varje växtperiod. Om plantan växte under den fjärde växtperioden med 1/6 av den totallängd den hade efter föregående växtperiod, så hur lång var plantan efter åttonde växtperioden? 4. Massan av en stock var från början 210 kg. Vid detta tillfälle var dess fuktighetskvot 20 % (fuktighetskvoten = massan av den mängd vatten som finns i stocken i förhållande till stockens torrmassa). Vid lagring av stocken avdunstade 20 % av vattnet. Vilken var stockens fuktighetskvot nu? 5. En kund köpte från ett hyvleri rundstockar av två olika storlekar. Stockarna hade formen av räta cirkelcylindrar, de mindre stockarnas diametrar var 15 cm, deras volym var 130 dm 3 /st. och priset var 260 mk/st., medan de större stockarnas diametrar var 25 cm, deras volym 260 dm 3 /st. och pris 400 mk/st. Fastvolymen av hela stockpartiet var 52
4 m 3 (fastvolym = trävolymen) och priset mk. Hur mycket köpte kunden av respektive stockstorlek? 6. I ett kontinuerligt växande skogsbestånd (i ett sådant bestånd finns träd i alla diameterklasser) beror trädenas stamantal Y d per hektar av diameterklassen d enligt följande: Y d = , 2 d a) Hur många stammar finns det per hektar i diameterklassen 30 cm? b) I vilken diameterklass finns det 150 stammar per hektar? (Trädens diametrar anges med 1 cm:s noggrannhet, t.ex. i diameterklassen 30 cm finns träd med diametrar 29,5 cm 30,49 cm.)
5 Svar: kortast 463 km 2 Svar: a) 1,43 ha b) (65 70) m 3 3 Svar: a) 59 bitar b) 42 m 2 plastmatta resp. 58 m 2 parkett 4 Svar: a) +2,1 % b) 1,26 % 5 Svar: a) 500 kg/m 3 b) 2,36 kg 6 Svar: a) a = b = 2/3 b) cm Svar: a) 160 m b) 200 m c) 112,8 m 2 Svar: 19,3 m 3 Svar: 1,1 m 4 Svar: 16% 5 Svar: st med d = 15 cm och st med d = 25 cm 6 Svar: a) 13 st b) diameterklassen 16 cm
SKOGLIGA TILLÄMPNINGAR
STUDIEAVSNITT 3 SKOGLIGA TILLÄMPNINGAR I detta avsnitt ska vi titta på några av de skogliga tillämpningar på geometri som finns. SKOGSKARTAN EN MODELL AV VERKLIGHETEN Arbetar man i skogen klarar man sig
Läs merDensitet Tabellen nedan visar massan och volymen för olika mängder kopparnubb.
Tid Vi har inte en entydig definition av tid. Tid knytas ofta till förändringar och rörelse. Vi koncentrerar på hur vi mäter tiden. Vi brukar använda enheten sekund för att mäta tiden. Enheten för tid
Läs merHögskoleverket. Delprov NOG
Högskoleverket Delprov NOG 2002-04-06 1. Ett tusen kronor sattes in på ett konto. Pengarna var insatta på kontot i två år och efter halva tiden ändrades räntan. Vilken var räntesatsen under det första
Läs mera) 4a + a b) 4a 3a c) 4(a + 1)
REPETITION 2 A 1 Förenkla uttrycken. a) 4a + a b) 4a 3a c) 4(a + 1) 2 Johannas väg till skolan är a m lång. a) Robins skolväg är 200 m längre än Johannas. Teckna ett uttryck för hur lång skolväg Robin
Läs merREPETITION 2 A. a) 4a + a b) 4a 3a c) 4(a + 1)
REPETITION 2 A 1 Förenkla uttrycken. a) 4a + a b) 4a 3a c) 4(a + 1) 2 Johannas väg till skolan är a m lång. a) Robins skolväg är 200 m längre än Johannas. Teckna ett uttryck för hur lång skolväg Robin
Läs merPoolbygge. fredag 11 april 14
Poolbygge Första lektionen vart jag klar med att rita och skriva ritningen. Först skrev jag poolen i skalan 1:60 vilket vi inte fick göra så jag gjorde den till 1:30, alltså har jag minskat den 30 gånger
Läs merArbetsblad 3:1. Hur stor är vinkeln? 1 Vilken eller vilka av vinklarna är. 2 Uppskatta (gör en bra gissning) hur stora vinklarna är.
Arbetsblad :1 Hur stor är vinkeln? 1 Vilken eller vilka av vinklarna är a) rät b) spetsig c) trubbig A C D F E G 2 Uppskatta (gör en bra gissning) hur stora vinklarna är. A C D E F G Mät vinklarna och
Läs mer8-1 Formler och uttryck. Namn:.
8-1 Formler och uttryck. Namn:. Inledning Ibland vill du lösa lite mer komplexa problem. Till exempel: Kalle är dubbelt så gammal som Stina, och tillsammans är de 33 år. Hur gammal är Kalle och Stina?
Läs merGEOMETRISKA TILLÄMPNINGAR
INNEHÅLL GEOMETRISKA TILLÄMPNINGAR GEOMETRISKA TILLÄMPNINGAR 251 252 GEOMETRISKA TILLÄMPNINGAR I samband med ett åskväder regnade det enligt en regnmätare 38 mm. Hur många liter vatten kom det a) på en
Läs mer2. 1 L ä n g d, o m k r e t s o c h a r e a
2. 1 L ä n g d, o m k r e t s o c h a r e a Ett plan är en yta som inte är buktig och som är obegränsad åt alla håll. På ett plan kan man rita en linje som är rak (rät). En linje är obegränsad åt båda
Läs merMoment Viktiga exempel Övningsuppgifter
Moment Viktiga exempel Övningsuppgifter Inga Inga Inga Fler exempel på optimering Exempel 1. Utifrån en rektangulär pappskiva med bredden 7 dm och längden 11 dm, vill man åstadkomma en kartong utan lock,
Läs merÖvningsuppgifter omkrets, area och volym
Stockholms Tekniska Gymnasium 01-0-0 Övningsuppgifter omkrets, area och volym Uppgift 1: Beräkna arean och omkretsen av nedanstående figur. 4 7 Uppgift : Beräkna arean och omkretsen av nedanstående figur.
Läs mer4-4 Parallellogrammer Namn:..
4-4 Parallellogrammer Namn:.. Inledning Hittills har du arbetat bl.a. med linjer och vinklar. En linje är ju någonting som bara har en dimension, längd. Men när två linjer skär varandra och det bildas
Läs mer1. Provtiden är 2 timmar (kl ). Du får avlägsna dig från matematikprovet tidigast kl
URVALSPROV FÖR YRKESHÖGSKOLORNAS UTBILDNINGAR INOM NATURBRUK Provet i matematik 30.5.2017 Namn: Personsignum: SVARSDIREKTIV 1. Provtiden är 2 timmar (kl. 12.00-14.00). Du får avlägsna dig från matematikprovet
Läs merLäxa 9 7 b) Dividera 84 cm med π för att få reda på hur lång diametern är. 8 1 mm motsvarar 150 / 30 mil = = 5 mil. Omvandla till millimeter.
LEDTRÅDAR LÄXOR Läa Förläng så att du får ett heltal i nämnaren. Använd division. Varje sekund klipper Karin, m =, m. Läa 0 ml = 0,0 liter Använd sambandet s = v t. Räkna ut hur mycket vattnet väger när
Läs merMoment Viktiga exempel Övningsuppgifter I
Moment Viktiga eempel Övningsuppgifter I Inga Inga Inga Grafritning Vi använder en sjustegsprocess Funktionens definitionsmängd 2 Funktionens skärningspunkter med alarna Asymptoter 4 Stationära punkter
Läs merTekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö
Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 15.11.2012 En för alla yrkesutbildande skolor på andra stadiet gemensam MATEMATIKTÄVLING
Läs merHögskoleverket. Delprov NOG 2002-10-26
Högskoleverket Delprov NOG 2002-10-26 1. Det ordinarie priset på en skjorta, som såldes på rea, var 600 kr. Inför slutrean sänktes priset till halva ursprungliga reapriset. Vad var det ursprungliga reapriset
Läs merRepetitionsuppgifter. Geometri
Endimensionell anals, Geometri delkurs B1 1. Fra punkter A, B, C och D ligger pa en cirkel med radien 1 dm. Se guren! Strackorna AD och BD ar lika langa. Vidare ar vinkeln BAC och vinkeln ABC 100. D Berakna
Läs merTräningsuppgifter, gamla nationella prov i matematik(del B1) från Taluppfattning. Hashem Rezai, S:t Ilians skola, Västerås
Taluppfattning 1. Vilket av följande tal är minst? Ringa in ditt svar. 2,9 2,98 2,998 2,889 2,89 (1/0) 2. Hur många miljoner visar miniräknaren? Svar: (1/0) 3. Vilket tal pekar pilen på? 31 32 33 Svar:
Läs mer4 Sätt in punkternas koordinater i linjens ekvation och se om V.L. = H.L. 5 Räkna först ut nya längden och bredden.
Läxor Läxa 7 En sådan timme skulle ha 00 00 s = 0 000 s. 8 a) O = π d och A = π r r. 0 Beräkna differensen mellan hela triangelns area och arean av den vita triangeln i toppen. Läxa 9 Hur stor andel målar
Läs merPLANGEOMETRI I provläxa med facit ht18
PLANGEOMETRI I provläxa med facit ht18 På det här avsnittet kommer du i första hand att utveckla din begrepps metod och kommunikations förmåga. Det är nödvändigt att ha en linjal för att klara avsnittet.
Läs mer5B1134 Matematik och modeller
KTH Matematik 1 5B1134 Matematik och modeller 5 september 2005 1 Första veckan Geometri med trigonometri Veckans begrepp cirkel, cirkelsegment, sektor, korda båglängd, vinkel, grader, radianer sinus, cosinus,
Läs mer150 cm 2 m 70 dm. 280 cm 3,5 m 40 dm 3,50 0,50. 200 cm 1,5 2,5. 6 m. 30 cm 4 dm 500 mm. 2 m. 70 dm. 150 cm. 3,5 m. 40 dm. 280 cm.
Skriv sträckorna i storleksordning. Längdenheter: meter (m), decimeter (dm), centimeter (cm) och millimeter (mm). Längden 15 cm kan skrivas på olika sätt: 15 cm = 1 m 5 cm = 1,5 m eller 15 dm cm eller
Läs mer3-8 Proportionalitet Namn:
3-8 Proportionalitet Namn: Inledning Det här kapitlet handlar om samband mellan olika storheter och formler. När du är klar är du mästare på att arbeta med proportionalitet, det vill säga du klarar enkelt
Läs merAgrikultur-forstvetenskapliga fakulteten Prov 4: Miljö- och naturresursekonomi Nationalekonomi och matematik
Urvalsprovet består av två delar. Del 1 består av essäfrågor i nationalekonomi. Del 1 bedöms med 0 30 poäng. Del innehåller uppgifter i matematik. För del 1 kan den sökande få 0 30 poäng. Minst 0 poäng
Läs merREPETITION 3 A. a) b) a) 1 4 av 200 kr b) 10 % av 750 kr c) 2 3. av 60 kg. a) b) c) b) a) 6 8. a) b) b) 0,075 c) d) 0,9.
DEL I 1 Mät vinklarna. Gradtalen ska sluta på 0 eller 5. 2 Hur mycket är a) 1 4 av 200 kr b) 10 % av 750 kr c) 2 3 av 60 kg 3 Mät sidorna i hela och halva centimeter. Beräkna sedan omkrets och area av
Läs merProvet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.
NpMac vt 01 Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser
Läs merÖvningsprov 3 inför lilla nationella Ma1 NA18 ht18
Övningsprov 3 inför lilla nationella Ma1 NA18 ht18 Del A Utan räknare Endast svar krävs 1. Beräkna: a) 3 4 2 3 b) 12 10 13 6 10 2 4 10 c) f ( 4) om f ( x) = 3x 4 d) 15% av 60 kr 2. Bestäm vinklarna u och
Läs merDenna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller 1 vgpoäng
Ämnesprov i matematik Skolår 9 Vårterminen 2004 Del B1 Innehållet i detta häfte är sekretessbelagt t o m den 11 juni 2004. Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt
Läs merProvet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.
Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser Provet består
Läs merMatematik A Testa dina kunskaper!
Testa dina kunskaper! Försök i största möjliga mån att räkna utan hjälp av boken, skriv små noteringar i kanten om ni tycker att ni kan uppgifterna, att ni löste dem med hjälp av boken etc. Facit kommer
Läs merObservera att uppgifterna inte är ordnade efter svårighetsgrad!
TENTAMEN I FYSIK FÖR V1, 14 DECEMBER 2010 Skrivtid: 14.00-19.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad
Läs mer6 cm. 106 Beräkna a) 3 ( 4) b) ( 2) 5 c) 4 ( 2,5) d) ( 8) 1,5. T.ex. print(3 * -4) 13 Beräkna cirkelns a) diameter b) omkrets
1 Print 1 Tal Multiplikation och division med negativa tal 106 Beräkna a) 3 ( 4) b) ( 2) 5 c) 4 ( 2,5) d) ( 8) 1,5 print(3 * -4) 2 Geometri Cirkelns omkrets 13 Beräkna cirkelns a) diameter b) omkrets 6
Läs merfredag den 11 april 2014 POOL BYGGE
POOL BYGGE KLADD Såhär ser min kladd ut: På min kladd så bestämde jag mig för vilken form poolen skulle ha och ritade ut den. På min kladd har jag även skrivit ut måtten som min pool skulle vara i. Proportionerna
Läs merNågra problemlösnings och modelleringsuppgifter med räta linjer
Några problemlösnings och modelleringsuppgifter med räta linjer Dessa uppgifter är indelade i två delar utan miniräknare och med miniräknare. Försök gärna lösa någon av varje del istället för alla på en
Läs merVälkommen till Borgar!
Välkommen till Borgar! Välkommen till Borgar! Vi ser fram emot att snart träffa en ny årskull med naturettor och hoppas att du kommer att trivas mycket bra hos oss. Studier i naturvetenskapliga ämnen förutsätter
Läs merUppgift 1-7. Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans. Formelblad och linjal.
Del B Del C Provtid Hjälpmedel Uppgift 1-7. Endast svar krävs. Uppgift 8-14. Fullständiga lösningar krävs. 10 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består av
Läs merVindkraftverk. Principen bakom vårt vindkraftverk
Vindkraftverk Min grupp har gjort ett speciellt vindkraftverk som är inspirerat av det flygande vindkraftverket Buoyant airborne turbine. Det som gör vårt vindkraftverk annorlunda jämfört med andra är
Läs merHögskoleverket NOG
Högskoleverket NOG 2005-10-29 1. Att hyra en cykel kostar 60 kr första dygnet och därefter betalar man en lägre avgift per dygn. Hur mycket kostar det att hyra en cykel en vecka? (1) De efterföljande dygnen
Läs mer4-8 Cirklar. Inledning
Namn: 4-8 Cirklar Inledning Du har arbetat med fyrhörningar (parallellogrammer) och trehörningar (trianglar). Nu skall du studera en figur som saknar hörn, och som består av en böjd linje. Den kallas för
Läs merTal Räknelagar Prioriteringsregler
Tal Räknelagar Prioriteringsregler Uttryck med flera räknesätt beräknas i följande ordning: 1. Parenteser 2. Exponenter. Multiplikation och division. Addition och subtraktion Exempel: Beräkna 10 5 7. 1.
Läs merlång och 15 cm bred. Hur stor area har tomten i verkligheten? 4,5 2 l b) 2-2- 3 4
LÄXA 12 1 Beräkna med huvudräkning a) En kvadrat har arean 81 cm 2. Hur stor är omkretsen? b) Hur mycket kostar 600 g fläskfile, om priset per kilogram är 120 kr? c) En burk energidryck innehåller 200
Läs merREPETITION 2 A. a) Är sträckan proportionell mot tiden? b) Beräkna medelhastigheten under de fem första sekunderna.
REPETITION Hur mcket är a) 9 b) 00 0 c) 00 På en karta i skala : 0 000 är det, cm mellan två små sjöar. Hur långt är det i verkligheten? Grafen visar hur långt en bil hinner de se första sekunderna efter
Läs merMin pool. Hanna Lind 7:2 Alfa
Min pool Hanna Lind 7:2 Alfa RITNING Jag började med att räkna ut ett antal rimliga mått som jag visste blev heltal när jag delade dom på 30, det gjorde jag då skalan var 1:30. I min ritning visar jag
Läs mer3. Hur snabbt förändras diametern av en cirkel med avseende på cirkelns area?
Dagens 30 aug: a, 2, 3, 5, 6.. Låt Q vara antalet producerade enheter. Bestäm a. Marginalvinsten för vinstfunktionen π(q) = 3Q + Q + 2. Marginalintäkten för intäktsfunktionen R(Q) = ( + 2Q) 3/2. c. Marginalkostnaden
Läs merAddition och subtraktion. Vilka uträkningar visas på tallinjerna nedan? Beräkna med huvudräkning 1 3 5 = 2 2 2 + 5 = 3 3 7 + 3 = 4 4 1 4 = 5 7 2 + 7 5
OH 1 Addition och subtraktion Vilka uträkningar visas på tallinjerna nedan? 1 = 7 6 1 0 1 + = 7 6 1 0 1 7 + = 7 6 1 0 1 1 = 7 6 1 0 1 Beräkna med huvudräkning 8 6 6 8 7 + 7 8 9 7 9 1 8 10 1 + 0 Kopiering
Läs merSeparata blad för varje problem.
Institutionen för Fysik och Materialvetenskap Tentamen i FYSIK A 2008-12-12 för Tekniskt/Naturvetenskapligt Basår lärare : Johan Larsson, Lennart Selander, Sveinn Bjarman, Kjell Pernestål (nätbasår) Skrivtid
Läs merDel B: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. Skriv i decimalform sjutton hundradelar.
NAN: KLASS: Del : Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. 1) Skriv i decimalform sjutton hundradelar. 2) Vad är en tredjedel av 420 kr? 3) Vilket av
Läs merLästal från förr i tiden
Lästal från förr i tiden Nedan presenteras ett antal problem som normalt leder till ekvationer av första graden. Inled din lösning med ett antagande. Teckna sedan ekvationen. Då ekvationen är korrekt uppställt
Läs merJORD- OCH SKOGSBRUKSMINISTERIETS FÖRORDNING OM ANVÄNDNING AV KRANVÅG VID MÄTNING AV VIRKE OCH ÅTSKILJNING AV PARTIER
JORD- OCH SKOGSBRUKSMINISTERIET FÖRORDNING Nr 18/08 Datum 2.12.2008 Dnr 2593/01/2008 Giltighetstid 1.1.2009 tills vidare Upphävs Jord- och skogsbruksministeriets föreskrift nr 47/99, Mätning med kranvåg
Läs merKapitel 9 Hydrostatik. Fysik 1 - MB 2008
Tryck Kraft per yta kallas tryck. När en kraft F verkar vinkelrätt och jämnt fördelad mot en yta A erhålls trycket p F p där A p = tryck F = kraft A = area eller yta Tryck forts. p F A Enheten för tryck
Läs merKomvux/gymnasieprogram:
Namn: Skola: Komvux/gymnasieprogram: Anvisningar: Tidsbunden del består av två delar, Del I och Del II. Den sammanlagda provtiden är 120 minuter varav högst 30 minuter för Del I. Till uppgifterna i Del
Läs merMatematik 2b (Typ) E-uppgifter på hela kursen
Matematik 2b (Typ) E-uppgifter på hela kursen I Räta linjens ekvation och linjära modeller (1 6) II Ekvationssystem (7 11) III Algebra (12 14) IV Andragradsfunktioner ( inklusive funktioner med komplexa
Läs merDel I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.
Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1) a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje
Läs merMiniräknare ej tillåten. 1. Beräkna 2,35 0,5 Svar: (1/0/0)
Miniräknare ej tillåten 1. Beräkna 2,35 0,5 Svar: (1/0/0) 2. Beräkna 8!0,3 Svar: (1/0/0) 3. Beräkna 6 + 4!3 Svar: (1/0/0) 4. Robin har fem kort som visar olika former. Han blandar korten och tar slumpvis
Läs merLathund geometri, åk 7, matte direkt (nya upplagan)
Lathund geometri, åk 7, matte direkt (nya upplagan) Det som står i den här lathunden ska du kunna till provet. Du ska kunna ställa upp och räkna ut liknande tal som de nedan: a) 39,8 + 2,62 b) 16,42 5,8
Läs merKursprov i matematik, kurs E ht Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 5
freeleaks NpMaE ht1997 för Ma4 1(6) Innehåll Förord 1 Kursprov i matematik, kurs E ht1997 2 Del I: Uppgifter utan miniräknare Del II: Uppgifter med miniräknare 5 Förord Kom ihåg Matematik är att vara tydlig
Läs mer5B1134 Matematik och modeller
KTH Matematik 1 5B1134 Matematik och modeller 2006-09-04 1 Första veckan Geometri med trigonometri Veckans begrepp cirkel, cirkelsegment, sektor, korda, båglängd, vinkel, grader, radianer, sinus, cosinus,
Läs merVi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = 1 x.
Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = x 8 6 4 2-3 -2-2 3-2 -4-6 -8 Figur : Vi konstaterar följande: Då
Läs merMATEMATIK KURS A Våren 2005
MATEMATIK KURS A Våren 2005 1. Vilket tal pekar pilen på? 51 52 53 Svar: (1/0) 2. Skugga 8 3 av figuren. (1/0) 3. Vad är 20 % av 50 kr? Svar: kr (1/0) 4. Hur mycket vatten ryms ungefär i ett dricksglas?
Läs mer4. Vad kan man multiplicera x med om man vill öka värdet med 15 %?
Axel Weüdelskolan/Komvux Matematik/Sibe 1. Förenkla x 1 1 1 1 1 x 2. Förenkla 5 3. Beräkna värdet av a 2 b om a = -3 och b = 2 4. Vad kan man multiplicera x med om man vill öka värdet med 15 %? 5. Vilket
Läs merMa3bc. Komvux, Lund. Prov kap3-4/
Ma3bc. Komvux, Lund. Prov kap3-4/5. 150513. (Lärare: Ingemar Carlsson) Anvisningar Del B, C och Del D Provtid Hjälpmedel Del A Del B Del C och D Kravgränser Övrigt 110 minuter för Del B, C och Del D. Du
Läs mer1. Mattias säljer tomater på torget. Anders köper två tomater av Mattias. Vad kostar tomaterna per kg?
NOG 2000 vår Högskoleverket 2 1. Mattias säljer tomater på torget. Anders köper två tomater av Mattias. Vad kostar tomaterna per kg? (1) Anders betalar 3,40 kr för tomaterna. (2) Den ena tomaten väger
Läs merNpMa2a vt Provet består av tre skriftliga delprov (Delprov B, C och D). Tillsammans kan de ge 55 poäng varav 22 E-, 19 C- och 14 A-poäng.
Delprov B Delprov C Provtid Hjälpmedel Uppgift 1-8. Endast svar krävs. Uppgift 9-14. Fullständiga lösningar krävs. 10 minuter för Delprov B och Delprov C tillsammans. Formelblad och linjal. Kravgränser
Läs merUppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans.
Del B Del C Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-16. Fullständiga lösningar krävs. 10 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består
Läs merÄMNESPROV I MATEMATIK Skolår 9 Delprov B
ÄMNESPROV I MATEMATIK Skolår 9 Delprov B Till uppgifterna krävs fullständiga lösningar. Din redovisning ska vara så klar att en annan person ska kunna läsa och förstå vad du menar. Det är viktigt att du
Läs merMatematik CD för TB = 5 +
Föreläsning 4 70 a) Vi delar figuren i två delar, en triangel (på toppen) och en rektangel. Summan av dessa två figurers area ger den eftersökta. Vi behöver följande formler: A R = b h A T = b h Svar:
Läs merRepetitionsuppgifter 1
Repetitionsuppgifter 1 1 Vilka tal pekar pilarna på? a) b) Skriv talen med siffror 2 a) trehundra sju b) femtontusen fyrtiofem c) tvåhundrafemtusen tre 3 a) fyra tiondelar b) 65 hundradelar c) 15 tiondelar
Läs merMål Likformighet, Funktioner och Algebra år 9
Mål Likformighet, Funktioner och Algebra år 9 Provet omfattar s. 102-135 (kap 4) och s.183-186, 189, 191, 193, 200-215. Repetition: Repetitionsuppgifter 4, läa 13-16 (s. 255 260) samt andra övningsuppgifter
Läs merEgentligen har vi ingen ny teori att presentera idag. Målet för den närmaste framtiden är att nöta in undersökandet av polynomfunktioner.
Egentligen har vi ingen ny teori att presentera idag. Målet för den närmaste framtiden är att nöta in undersökandet av polynomfunktioner. 1 (Bokens nr 3204) Ett straffkast i basket följer ekvationen h(x)
Läs merP O O L B Y G G E. Bilden tagen utav - Andrej Trnkoczy, ifrån flickr. tisdag 8 april 14
P O O L B Y G G E Bilden tagen utav - Andrej Trnkoczy, ifrån flickr Det du behöver veta i denna keynote är.. Vad skala är/ hur man räknar med skala Vad omkrets är/ hur man räknar med omkrets Vad area är/
Läs merCentralt innehåll i matematik Namn:
Centralt innehåll i matematik Namn: T - Taluppfattning T1 Tiosystemet 5,23 1000 = 523/0,01= T2 Positionerna 2,39-0,4 = T3 Primtal Vilka är de fem första primtalen. Vad är ett primtal? T4 Primtalsfaktorering.
Läs mer4 Dividera höjningen (0,5 %) med räntesatsen från början (1 %). 7 Du kan pröva dig fram till exempel så här: Från Till Procent- Procent enheter
ledtrådar LäOr Läa 8 Räkna först ut hur mycket tiokronorna och enkronorna är värda sammanlagt. Läa 8 Räkna först ut hur mycket allt vatten i hinken väger när den är full. Läa MGN = 8 Tänk dig att näckrosen
Läs merInnehållet i detta häfte är sekretessbelagt t o m den 9 juni 2006.
Miniräknare ej tillåten Innehållet i detta häfte är sekretessbelagt t o m den 9 juni 2006. Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller
Läs mer8F Ma Planering v2-7 - Geometri
8F Ma Planering v2-7 - Geometri Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar
Läs merSlutrapport för projektet - Skötsel av olikåldrig tallskog
Slutrapport för projektet - Skötsel av olikåldrig tallskog Projektets löptid: 1 januari 2012 1 april 2014 Huvudsökande: Erik Valinger Titel: Professor Organisationstillhörighet: Sveriges lantbruksuniversitet
Läs merÖvningsblad 3.1 A. Omkrets och area. 1 Beräkna figurernas omkrets och area. Varje ruta har arean 1 cm 2.
Övningsblad 3.1 A Omkrets och area 1 Beräkna figurernas omkrets och area. Varje ruta har arean 1 cm 2. a) b) O = A = O = A = 2 Skugga rektangelns area och markera triangelns omkrets. (m) (m) 25 80 80 70
Läs merVektorn w definieras som. 3. Lös ekvationssystemet algebraiskt: (2p) 4. Förenkla uttrycket så långt det går. (2p)
1. Linjerna y=2x+4, y=4 och x=3 innesluter tillsammans en triangel. Linjen y=5,5 skär triangeln i två punkter. Beräkna sträckan mellan dessa två punkter. 2. Vektorn w definieras som w = 2u v där u = (7,1)
Läs merLäxa 11. Läxa T ex kan en sida vara 4 cm. Hur lång är då höjden mot den sidan? 8 b) Flytta andra stickan i översta raden ett steg åt höger.
ledtrådar LäxOr Läxa Rita en bild med de lyktstolparna. Hur många mellanrum är det? Läxa 8 På nedre halvan ska talen adderas tv å och två och på den övre halvan ska talen subtraheras. Läxa 6 7 Rita en
Läs merNATIONELLT PROV I MATEMATIK KURS A VÅREN 1996. Tidsbunden del
NATIONELLT PROV I MATEMATIK KURS A VÅREN 1996 Tidsbunden del Anvisningar Provperiod 10 maj - 1 juni 1996. Provtid Hjälpmedel Provmaterialet 120 minuter utan rast. Miniräknare och formelsamling. Formelblad
Läs mer9E Ma Planering v2-7 - Geometri
9E Ma Planering v2-7 - Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (45 min): Läsa på anteckningar
Läs merHögskoleprovet. Block 1. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.
Block 1 2010-10-23 Högskoleprovet Svarshäfte nr. DELPROV 1 NOGa Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss
Läs merRepetitionsprov på algebra, p-q-formeln samt andragradsfunktioner
Repetitionsprov på algebra, p-q-formeln samt andragradsfunktioner Del B Utan miniräknare Endast svar krävs! 1. Lös ekvationen (x + 3)(x 2) = 0 Svar: (1/0/0) 2. Förenkla uttrycket 4(x 3)(x + 3) så långt
Läs merInlämningsuppgift 2. Figur 2.2
Inlämningsuppgift 2 2.1 En rektangulär tank med kvadratisk botten (sidlängd 1.5 m) och vertikala väggar innehåller vatten till en höjd av 0.8 m. Vid tiden t = 0 tas en plugg bort från ett cirkulärt hål
Läs merDelprov B: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.
Delprov B: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1. Ange det uttryck som ska stå i parentesen för att likheten ska gälla. ( ) ( x 5) x 5 (1/0/0). Koordinatsystemet
Läs mer2 Materia. 2.1 OH1 Atomer och molekyler. 2.2 10 Kan du gissa rätt vikt?
2 Materia 2.1 OH1 Atomer och molekyler 1 Vid vilken temperatur kokar vatten? 2 Att rita diagram 3 Vid vilken temperatur kokar T-sprit? 4 Varför fryser man ofta efter ett bad? 5 Olika ämnen har olika smält-
Läs merx kr y kr a) 7 dm b) 325 mm c) 1,2 km d) cm 2 Hur mycket är a) b) ( ) / 4 c) 10 / (14 4)
REPETITION 2 A Del I 1 Skriv i meter. a) 7 dm b) 32 mm c) 1,2 km d) 1 20 cm 2 Hur mycket är a) + 1 b) ( + 1) / c) / (1 ) 3 Hur lång tid är det mellan klockslagen? a) 13.3 1. b).2 11.37 c) 1. 21.32 Teckna
Läs mersträckan = tiden. hastigheten hastigheten = sträckan tiden 210 hastigheten = 3 = 70 Bilisten kör 70 km/h. tiden =
Enheter och skala I det här kapitlet kan du lära dig mer om hastighet att skriva minuter som del av timme att räkna om km/h till m/s något om hastigheter till sjöss om volymenheterna cm 3, dm 3 och m 3
Läs mer4-2 Linjära mått och måttsystem Namn:.
4-2 Linjära mått och måttsystem Namn:. Inledning I det här kapitlet skall lära dig vad en linje är och vilka egenskaper en linje har. Du kommer även att repetera vilka enheter avstånd mäts i. Varför skall
Läs merTekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö
Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 15.11.2007 En för alla yrkesutbildande skolor på andra stadiet gemensam MATEMATIKTÄVLING
Läs merImport: www.ghevent.se 0176-20 61 50
Import: www.ghevent.se 0176-20 61 50 TECHNI STAGE den lätta, robusta och flexibla scenen. Begreppet att utföra snabba och säkra montage, är TECHNI STAGE den perfekta lösningen där du skapar alla dina teatrala
Läs mer= a) 12 b) -1 c) 1 d) -12 [attachment:1]räkneoperation lektion 1.odt[/attachment] = a) 0 b) 2 c) 2 d) 1
Lektion. + 8= 0 0. := 0 0. : = 8. : ( )= 8. 0/0 = 8. +(+ ) = 8. + = 0 8. ( )+0= 0 8. 8/ = - 0 8 0 0. = - - [attachment:]räkneoperation lektion.odt[/attachment]. = 0. /( )= - -. ( )= 0. 0 (0 0: )+ = 0.
Läs merUppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans. Formelblad och linjal.
Del B Del C Provtid Hjälpmedel Uppgift 1-11. Endast svar krävs. Uppgift 1-16. Fullständiga lösningar krävs. 10 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består
Läs merNATIONELLT KURSPROV I MATEMATIK KURS A VÅREN Del I
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av juni månad 2002. NATIONELLT
Läs merInnehållsförteckning
Innehållsförteckning Inledning 2 Grundläggande fysik 3 SI enheter 3 Area och godstjocklek 4 Tryck 5 Temperatur 7 Densitet 8 Flöde 10 Värmevärde 11 Värmeutvidgning 14 Sträckgränser 15 Allmänna gaslagen
Läs merMätdonet bör fungera tillförlitligt under alla drivningsförhållanden.
BILAGA 1 VIRKESMÄTNING MED SKÖRDARE 1(5) VIRKESMÄTNING MED SKÖRDARE 1 Definition Mätdonets egenskaper 3 Krav på mätdonet Med virkesmätning med skördare avses att volymen hos virke som upparbetas med avverkningsmaskin
Läs mer+ 1 R 2.. Lös ut a och beräkna sidlängden hos en liksidig triangel med arean 35 cm 2
. Lös ut m ur F = mv r. Lös ut r ur F = π mr T. Lös ut v o ur s = v o t + at. Lös ut v o ur v = vo v 5. Lös ut R ur R = R + R. Arean hos ett klot ges av formeln A = πr. Lös ut r och beräkna radien hos
Läs merLinnéuniversitetet Institutionen för fysik och elektroteknik
Linnéuniversitetet Institutionen för fysik och elektroteknik Ht2015 Program: Naturvetenskapligt basår Kurs: Fysik Bas 1 delkurs 1 Laborationsinstruktion 1 Densitet Namn:... Lärare sign. :. Syfte: Träna
Läs mer