Föreläsning 3 Reaktorfysik 1. Litteratur: Reaktorfysik KSU.pfd (fördjupad kurs) IntroNuclEngChalmers2012.pdf

Storlek: px
Starta visningen från sidan:

Download "Föreläsning 3 Reaktorfysik 1. Litteratur: Reaktorfysik KSU.pfd (fördjupad kurs) IntroNuclEngChalmers2012.pdf"

Transkript

1 Föreläsning 3 Reaktorfysik 1 Litteratur: Reaktorfysik KSU.pfd (fördjupad kurs) IntroNuclEngChalmers2012.pdf 1

2 Fissionsfragment (klyvningsprodukter) kärnor som bildas direkt vid fissionen Fissionsprodukter fissionsfragment samt deras dotterkärnor Totalt bildas ca 300 nuklider av vilka 200 är radioaktiva. Sönderfaller med β-sönderfall. Fissionsprocessen i reaktorn Total energi som fås vid en klyvning är ca 200 MeV. 2

3 Fissionsprocessen i reaktorn I reaktorn finns ca 300 nuklider varav 200 är radioaktiva. Ett 60-tal bildas direkt som fissionsfragment t.ex. U + n Ba+ Kr + 2n 200MeV Nya kärnor bildas genom β- sönderfallskedjor: 135 Te (19 s) 135 I (6.7 h) 135 Xe (9.1 h) 135 Cs ( år) 135 Ba (stabil) Nya kärnor kan också bildas genom neutroninfångning: 59 Co + n 60 Co 60 Co (5.3 år) 60 Ni (β- sönderfall) 16 O + n 16 N + p 16 N (7.3 s) 16 O (β- sönderfall) 238 U + n 239 U 239 U (23.5 m) 239 Np (2.35 d) 239 Pu fission Använt kärnbränsle är alltså en komplex soppa av olika nuklider. Jämför med det färska bränslet som är relativt ofarligt ur strålningssynpunkt. 3

4 Sönderfall påverkar reaktorn Radioaktivitet skärmning Fördröjda neutronerna styrning Resteffekt kylning även när reaktorn är av Reaktorgifter driftsproblem I praktiken är alla klyvningsprodukter radioaktiva. Sönderfall enligt: A = dn / dt = λn N N e ; s λt 1 = 0 λ A är aktivitet N är antalet kärnor t är tiden λ är sönderfalls konstanten T 1/2 =halveringstid= ln(2)/ λ 4

5 Curie= Ci =3, sönderfall/s Becquerel = 1 Bq=1 sönderfall/s Sönderfall - Enheter De flesta sönderfaller till andra radioaktiva ämnen Sönderfallskedjor Exempel: 135 Te (19 s) 135 I (6.7 h) 135 Xe (9.1 h) 135 Cs ( år) 135 Ba (stabil) 5

6 Sönderfall Radioaktivt sönderfall (ingen produktion) A = dn dt = λn N( t) = N(0) e λt Definition av halveringstid: N(0) λt 1 ln 2 2 = N(0) e t 1 = 2 2 λ 6

7 135 Xe har extremt stor sannolikhet för neutron infångning. Reaktorgift: exempel på reaktorns påverkan av sönderfall 135 Xe+n 136 Xe (stabil) Dvs 135 Xe förbrukar neutroner utan fission. Ett annat (men inte lika allvarligt) reaktorgift är 149 Sm. 7

8 Sönderfall Hur bestäms halveringstiden för ett prov om aktiviteten är given? Exempel: 1 g av Ra-226 med uppmätt aktivitet Bq 8

9 Uppbyggnad av aktivitet Kärnor kan skapas genom fission (fissions fragment), och sönderfall dn / dt = P λn P är produktionshastigheten pga fission [kärnor/s] Då reaktorn startas är N(0)=0 Antalet kärnor ökar enligt λt ( ) = ( / λ )( 1 ) N t P e Vid jämnvik (oändlig tid) dn/dt=0 N = P/ λ Kedjesönderfall A B C D E β β β β λa λb λc λd stabil För enkelhetens skull antag endast två steg: A B C dn dt dn dt dn dt A B C β β λa λb stabil = P λ N A A A = λ N λ N = λ N A A B B B B Ämnen kan också förstöras och bildas 9 pga neutroninfångning

10 Uppbyggnad av aktivitet Uppbyggnad av aktivitet i reaktorn Antalet kärnor ändras enligt: dn = P λn dt N = antal kärnor P = produktionshastigheten λ= sönderfallskonstanten Uppbyggnaden av kärnor ges av: När tiden blir N = P/ λ 10

11 Resteffekt Även om klyvning stoppas avger bränslet värme pga sönderfall i klyvnings-produkterna kylning nödvändig även efter avstängning Resteffektens storlek påverkas av Den tid reaktorn har varit i drift Reaktorns effekt närmaste tiden innan avställning Hur länge reaktorn har varit avstängd TMI- och Fukushima-olyckorna orsakades pga misslyckande att kyla resteffekten Vad krävs för att resteffekten ska skada bränslet? 11

12 Andel av resteffekt 100% 80 % U-239 och Np-239 Fissionsprodukter Annan neutroninfångning Tyngre aktinider Cs-134 Relativt bidrag till resteffekt Fissionprodukter U-239 och Np-239 Tyngre aktinider Cs-134 (infångning Cs- 133) Annan infångning i fissionsprodukter e+006 1e+007 1e+008 1e+009 Kylningstid (s) 12

13 O2 PLEX Kyla bränslet efter 40 s snabbstopp 60 Oskarshamn 2 (2300 MWt) 50 Vattenmassa (ton) över hök kg/s 12 kg/s 11.5 kg/s kg/s Tid efter avställning (min) 13

14 Temperaturförlopp vid kylbortfall Temperatur ( C) Nivå Rand Semi Cent Hetk Nivå i fallspalt (m hök) Tid (min) 14

15 Neutronens födelse Neutroner kan uppstå vid: 1) Fission Inklusive spontan fission Viktig neutronkälla (Californium 252, Cf 252 ) 2) Fusion d + t α +n 3) Infångning av partiklar Be+α n (Chadwick 1932) 15

16 Neutronens liv och död Klyva en kärna Frigör 200 MeV och 2-3 neutroner Infångas i en kärna Bränslet Moderatorn Reaktormaterial Läcka ut ur reaktorn Spridas mot en kärna och förlora energi Infångning av neutroner kan göra stabila ämnen radioaktiva minimera sådana ämnen i härden Co59+n Co60 - Stark gammakälla! d+n t Vid höga energier (MeV) kan neutronen också: (n,p): Vätgasproduktion, och försprödning av stål O 16 +n N 16 +p (n,α): Helium produktion och svällning i material 16

17 Mikroskopiskt tvärsnitt sannolikhet för en viss kärnreaktion Träffytans storlek (tvärsnittet) upplevs olika av olika projektiler och energier och beror också på vilken reaktion som avses. Detta är kvantmekanik och har alltså ingenting med geometriska ytan att göra! Kärnreaktioner och tvärsnitt Enhet för mikroskopiskt tvärsnitt: 1 barn = 1b = cm 2 Tvärsnitt = antalet reaktioner ( antalet partiklar in) ( antalet kärnor per ytenhet) 17

18 Kärnreaktioner och tvärsnitt Tvärsnitt för olika reaktioner kan adderas: Totala tvärsnittet: σ s = σ el + σ inel = spridning σ c = infångning (capture) σ c = σ γ = σ n, γ (olika beteckningar) σ f = fission σ a = σ c + σ f absorption σ tot = σ s + σ c + σ f Totala tvärsnittet är ett mått på sannolikheten för att någon reaktion inträffar. 18

19 Kärnreaktioner och tvärsnitt Makroskopiskt tvärsnitt reaktionssannolikheten i ett material Ett material består av många atomer/molekyler men det är långt mellan kärnorna. Därför skuggar inte individuella kärnor varandra för neutronerna. Kärntäthet: N 0 kärnor/cm 3 Makroskopiskt tvärsnitt: Σ = N 0 σ cm -1 För neutronerna som är oladdade spelar inte elektronskal eller molekylbindningar någon roll. Neutroner växelverkar enbart med den starka kärnkraften som bara påverkar kärnor och kärnpartiklar. 19

20 Kärnreaktioner och tvärsnitt I N dx σ neutronflöde kärntäthet tjocklek tvärsnitt di = ändringen av neutronströmmen när man går sträckan dx blir: Eller: di di dx = I N σ dx = I N σ Löser man ekvationen får man: N σ x I = I 0 e 20

21 Kärnreaktioner och tvärsnitt 21

22 Tvärsnittets energiberoende Tre energiområden för neutroner Långsamma / termiska < 1 ev Intermediära 1eV 100 kev Snabba > 100 kev Tillämpningar Kärnkraft 0-14MeV Cancerbehandling 0-70 MeV Elektronikstörningar MeV Neutronabsorption i U

23 Termiska neutroner Enorma fissionstvärsnitt för vissa kärnor U-233, U-235, Pu-239, Pu-241 Noll fission för övriga Stora infångningstvärsnitt för många kärnor Absorbatorer: styrstavar och brännbar absorbator Elastisk spridning varierar inte Infångning och fission varierar som 1/v 23

24 Intermediära neutroner Kraftiga fluktuationer Svåra att beräkna teoretiskt Måste mätas Enorm resonans vid 6.7 ev (5000 b) i U- 238 Konsekvens Dopplereffekt i infångningsresonansen Om bränslet blir hetare breddas resonansen ökad infångning effektminskning Negativ återkoppling säkerhet Liknande effekt i andra kärnor 100% Infångning i 2 mm U238 infångning 80% 60% 40% 20% 0% Tvärsnitt [barn] 24

25 Snabba neutroner Snabba neutroner: Tvärsnitt små Varierar långsamt Fissionstvärsnitt trappformade Tvärsnitt databas: 25

26 Varför går effekten ner när bränslet blir varmare 1. Den relativa hastigheten mellan U-235 och neutronerna ökar, vilket gör att tvärsnittet minskar (1/v) 2. Resonanserna i U235 fissionstvärsnitt blir smalare, färre neutroner fissioner U Resonanserna i U-238 breddas vilket gör att fler n,gamma reaktioner sker. 4. Moderatorn blir varmare så fler neutroner absorberas i moderatorn. 26

27 Neutronmoderering Moderering dämpning här: nedbromsning av neutroner Klyvning av U235 effektivast vi låg energi nedbromsning genom spridning (moderation/termalisering) 27

28 Vilka krav har vi på en bra moderator? Neutronmoderering Stark resonansinfångning i U 238 moderation i stora steg och separera moderation från bränslet Neutronerna ska förlora så mycket energi som möjligt vid varje kollisison => moderatormaterialet ska bestå av lätta kärnor Neutronerna ska kollidera med många kärnor på kort sträcka => hög densitet, stort spridningstvärsnitt Moderatorn ska absorbera så få neutroner som möjligt => lågt absorptionstvärsnitt Homogen eller heterogen härd? Moderatorn ska vara skild från bränslet för att undvika att neutronerna absorberas i resonanserna i 238 U => heterogen sammansättning av härden 28

29 Neutronmoderering Letargi medellogaritmiska energiförlusten elastisk spridning (bättre beskrivet i chalmershäftet) Ibland är det praktiskt med ett konstant mått på hur effektiv en moderator är => begreppet letargi, u = ln(e ref /E), har denna egenskap. ξ är den mängd letargi som vinns vid varje kollision. Förändringen har minskande absolutvärde. Förändringen har konstant absolutvärde. Notera dock att värdet på letargin ökar när energin minskar. 29

30 2 2 E före ( A 1) A 1 ξ = ln = 1+ ln E efter 4A A 1 + E = 2MeV E Eref E slut E ln 0 ref ref ln E E E ref ln ln E slut E 0 E slut E 0 n = = = ξ ξ ξ ökning av letargin uslut u0 = = ξ ξ 0 slut = 1eV ξξ, förändringen i letargi kallas för Medellogaritmiska energiförlusten Neutronmoderering Masstal A ξ n 238 U 56 Fe 23 Na 12 C 2 D 1 H Med hjälp av letargibegreppet kan vi beräkna hur många studs det krävs för att stoppa en neutron från sin nuvarande energi, E 0, till en slutenergi, E slut. Vad beror stoleken på ξξ på?

31 Antal kollisioner för nedbromsning Neutronmoderering 31

32 Neutronmoderering olika material Om vi har en mix av n olika material i ett ämne beräknas medelvärdet för ξ som ξ = σσ sssξξ 1 +σσ ss2 ξξ 2 + +σσ ssnn ξξ nn σσ sss +σσ sss + +σσ ssss För vatten får vi således: ξ = 2σσ sshhξξ HH +σσ ssoo ξξ OO 2σσ sshh +σσ ssoo 32

33 Moderatorns godhetstal G (engelska moderating ratio = MR) Godhetstalet är ett mått på hur bra en moderator är. Ju högre G desto bättre. Definition: ξ = letargi förändring, mått på energiförlusten vid varje spridning Σ s = spridningstvärsnittet; mått på sannolikheten för att neutronen sprids vilket ger upphov till energiförlust Σ a = absorptionstvärsnittet; mått på sannolikheten för att neutronen absorberas ξ och Σ s ska vara stora Σ a ska vara litet => högt G = bra moderator! 33

34 Neutronmoderering Olika moderatormaterial Högt MR (godhetstal) = bra moderator! Varför är lättvatten den sämsta moderatorn? Varför används ändå lättvatten i en majoritet av världens reaktorer? 34

35 Materialval för reaktorer Konstruktionsmaterial Små absorptionstvärsnitt Zirkonium i bränslekapslingen (cladding) Minimera mängden stål i reaktorn Reglermaterial Stort absorptionstvärsnitt Bor och kadmium i styrstavar Bor i vatten (tryckvatten reaktor) Brännbara absorbatorer Tar hand om överreaktivitet Stort absorptionstvärsnitt för X n Gd 157 (254 kbarn) Absorberar neutroner i början av reaktorcykeln Litet absorptionstvärsnitt för X n+1 Gd 158 (2.5 barn) Absorberar få neutroner i slutet av reaktorcykeln 35

36 Kryssfråga En tjeckisk ingenjör föreslår att man bör använda litium-7 som moderator. Är det en bra idé? Beräkna godhetstalet för litium- 7 och för vatten och argumentera utifrån det för eller emot användandet av litium som moderator. Vilka andra för- resp. nackdelar kan det finnas? 36

Föreläsning 5. Reaktorfysik 3. Litteratur: E-095 Reaktorfysik H1.pdf Reaktorfysik KSU.pfd (fördjupad kurs) IntroNuclEngChalmers2012.

Föreläsning 5. Reaktorfysik 3. Litteratur: E-095 Reaktorfysik H1.pdf Reaktorfysik KSU.pfd (fördjupad kurs) IntroNuclEngChalmers2012. Föreläsning 5 Reaktorfysik 3 Litteratur: E-095 Reaktorfysik H1.pdf Reaktorfysik KSU.pfd (fördjupad kurs) IntroNuclEngChalmers2012.pdf 1 Neutroncykeln Fission ger 2-4 neutroner 1,0000 av dessa ska ge ny

Läs mer

Intro till Framtida Nukleära Energisystem. Carl Hellesen

Intro till Framtida Nukleära Energisystem. Carl Hellesen Intro till Framtida Nukleära Energisystem Carl Hellesen Problem med dagens kärnkraft Avfall (idag)! Fissionsprodukter kortlivade (några hundra år)! Aktinider (, Am, Cm ) långlivade (100 000 års lagringstid)!

Läs mer

Miljöfysik. Föreläsning 5. Användningen av kärnenergi Hanteringen av avfall Radioaktivitet Dosbegrepp Strålningsmiljö Fusion

Miljöfysik. Föreläsning 5. Användningen av kärnenergi Hanteringen av avfall Radioaktivitet Dosbegrepp Strålningsmiljö Fusion Miljöfysik Föreläsning 5 Användningen av kärnenergi Hanteringen av avfall Radioaktivitet Dosbegrepp Strålningsmiljö Fusion Energikällor Kärnkraftverk i världen Fråga Ange tre fördelar och tre nackdelar

Läs mer

Breedning och transmutation i snabba reaktorer

Breedning och transmutation i snabba reaktorer Breedning och transmutation i snabba reaktorer Carl Hellesen Problem med dagens kärnkraft Avfall Fissionsprodukter kortlivade (några hundra år) Aktinider (, Am, Cm ) långlivade (100 000 års lagringstid)

Läs mer

Kärnfysik och radioaktivitet. Kapitel 41-42

Kärnfysik och radioaktivitet. Kapitel 41-42 Kärnfysik och radioaktivitet Kapitel 41-42 Tentförberedelser (ANMÄL ER!) Maximipoäng i tenten är 25 p. Tenten består av 5 uppgifter, varje uppgift ger max 5 p. Uppgifterna baserar sig på bokens kapitel,

Läs mer

Studiematerial till kärnfysik del II. Jan Pallon 2012

Studiematerial till kärnfysik del II. Jan Pallon 2012 Frågor att diskutera Kapitel 4, The force between nucleons 1. Ange egenskaperna för den starka kraften (växelverkan) mellan nukleoner. 2. Deuterium är en mycket speciell nuklid när det gäller bindningsenergi

Läs mer

Föreläsning 3. Radioaktivitet, alfa-, beta-, gammasönderfall

Föreläsning 3. Radioaktivitet, alfa-, beta-, gammasönderfall Radioaktivitet, alfa-, beta-, gammasönderfall Halveringstid (MP 11-3, s. 522-525) Alfa-sönderfall (MP 11-4, s. 525-530) Beta-sönderfall (MP 11-4, s. 530-535) Gamma-sönderfall (MP 11-4, s. 535-537) Se även

Läs mer

Föreläsning 5 Reaktionslära, fission, fusion

Föreläsning 5 Reaktionslära, fission, fusion Föreläsning 5 Reaktionslära, fission, fusion Reaktionslära MP 12.1 Tvärsnitt MP 12.1 Fission MP 12.2 Fusion MP 12.2 Se även: http://library.thinkquest.org/17940/texts/star/star.html 1 TID Reaktionslära

Läs mer

PRODUKTION OCH SÖNDERFALL

PRODUKTION OCH SÖNDERFALL PRODUKTION OCH SÖNDERFALL Inom arkeologin kan man bestämma fördelningen av grundämnen, t.ex. i ett mynt, genom att bestråla myntet med neutroner. Man skapar då radioisotoper som sönderfaller till andra

Läs mer

Lösningar del II. Problem II.3 L II.3. u= u MeV = O. 2m e c2= MeV. T β +=

Lösningar del II. Problem II.3 L II.3. u= u MeV = O. 2m e c2= MeV. T β += Lösningar del II Problem II.3 Kärnan 14 O sönderfaller under utsändning av en positiv elektron till en exciterad nivå i 14 N, vilken i sin tur sönderfaller till grundtillståndet under emission av ett γ

Läs mer

Materiens Struktur. Lösningar

Materiens Struktur. Lösningar Materiens Struktur Räkneövning 5 Lösningar 1. Massorna för de nedan uppräknade A = isobarerna är 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 63,935812u 63,927968u 63,929766u 63,929146u 63,936827u Tabell 1: Tabellen

Läs mer

Föreläsning 11 Kärnfysiken: del 3

Föreläsning 11 Kärnfysiken: del 3 Föreläsning Kärnfysiken: del 3 Kärnreaktioner Fission Kärnreaktor Fusion U=-e /4πε 0 r Coulombpotential Energinivåer i atomer Fotonemission när en elektron/atom/molekyl undergår en övergång Kvantfysiken

Läs mer

Välkomna till Kärnkraft teknik och system 10 hp

Välkomna till Kärnkraft teknik och system 10 hp Välkomna till Kärnkraft teknik och system 10 hp Henrik Sjöstrand (kursansvarig) Henrik.sjostrand@physics.uu.se, 471 3329, hus 1 vån 3 längst söderut. Erik Brager (inlämningsuppgifter och projektet) erik.branger@physics.uu.se

Läs mer

Lösningar del II. Problem II.3 L II.3. u u MeV O. 2m e c2= MeV T += MeV Rekylkärnans energi försummas 14N

Lösningar del II. Problem II.3 L II.3. u u MeV O. 2m e c2= MeV T += MeV Rekylkärnans energi försummas 14N Lösningar del II Problem II.3 Kärnan 14 O sönderfaller under utsändning av en positiv elektron till en exciterad nivå i 14 N, vilken i sin tur sönderfaller till grundtillståndet under emission av ett kvantum

Läs mer

Från atomkärnor till neutronstjärnor Christoph Bargholtz

Från atomkärnor till neutronstjärnor Christoph Bargholtz Z N Från atomkärnor till neutronstjärnor Christoph Bargholtz 2006-06-29 1 C + O 2 CO 2 + värme? E = mc 2 (mc 2 ) före > (mc 2 ) efter m = m efter -m före Exempel: förbränning av kol m m = 10 10 (-0.0000000001

Läs mer

Atom- och kärnfysik! Sid 223-241 i fysikboken

Atom- och kärnfysik! Sid 223-241 i fysikboken Atom- och kärnfysik! Sid 223-241 i fysikboken 1. Atomen Kort repetition av Elin Film: Vetenskap-Atom: Upptäckten När du har srepeterat och sett filmen om ATOMEN ska du kunna beskriva hur en atom är uppbyggd

Läs mer

Instuderingsfrågor Atomfysik

Instuderingsfrågor Atomfysik Instuderingsfrågor Atomfysik 1. a) Skriv namn och laddning på tre elementarpartiklar. b) Vilka elementarpartiklar finns i atomkärnan? 2. a) Hur många elektroner kan en atom högst ha i skalet närmast kärnan?

Läs mer

Kärnenergi. Kärnkraft

Kärnenergi. Kärnkraft Kärnenergi Kärnkraft Isotoper Alla grundämnen finns i olika varianter som kallas för isotoper. Ofta finns en variant som är absolut vanligast. Isotoper av ett ämne har samma antal protoner och elektroner,

Läs mer

Kärnenergi. Kärnkraft

Kärnenergi. Kärnkraft Kärnenergi Kärnkraft Isotoper Alla grundämnen finns i olika varianter som kallas för isotoper. Ofta finns en variant som är absolut vanligast. Isotoper av ett ämne har samma antal protoner och elektroner,

Läs mer

Tillämpad kvantmekanik Neutronaktivering. Utförd den 30 mars 2012

Tillämpad kvantmekanik Neutronaktivering. Utförd den 30 mars 2012 Tillämpad kvantmekanik Neutronaktivering Utförd den 30 mars 2012 Rapporten färdigställd den 12 april 2012 Innehåll 1 Bakgrund 1 2 Utförande 3 2.1 Efterbehandling.......................... 3 2.1.1 Bestämning

Läs mer

Föreläsning 3. Radioaktivitet, alfa-, beta-, gammasönderfall

Föreläsning 3. Radioaktivitet, alfa-, beta-, gammasönderfall Radioaktivitet, alfa-, beta-, gammasönderfall Halveringstid (MP 11-3, s. 522-525) Alfa-sönderfall (MP 11-4, s. 525-530) Beta-sönderfall (MP 11-4, s. 530-535) Gamma-sönderfall (MP 11-4, s. 535-537) Se även

Läs mer

När man diskuterar kärnkraftens säkerhet dyker ofta

När man diskuterar kärnkraftens säkerhet dyker ofta Faktaserien utges av Analysgruppen vid Kärnkraftsäkerhet och Utbildning AB (KSU) Box 1039 SE - 611 29 NYKÖPING Telefon 0155-26 35 00 Fax 0155-26 30 74 E-post: analys@ksu.se Internet: www.analys.se Faktaserien

Läs mer

Marie Curie, kärnfysiker, 1867 1934. Atomfysik. Heliumatom. Partikelacceleratorn i Cern, Schweiz.

Marie Curie, kärnfysiker, 1867 1934. Atomfysik. Heliumatom. Partikelacceleratorn i Cern, Schweiz. Marie Curie, kärnfysiker, 1867 1934. Atomfysik Heliumatom Partikelacceleratorn i Cern, Schweiz. Atom (grek. odelbar) Ordet atom användes för att beskriva materians minsta beståndsdel. Nu vet vi att atomen

Läs mer

LEKTION 27. Delkurs 4 PROCESSER I ATOMKÄRNAN MATERIENS INNERSTA STRUKTUR

LEKTION 27. Delkurs 4 PROCESSER I ATOMKÄRNAN MATERIENS INNERSTA STRUKTUR GÖTEBORGS UNIVERSITET Fysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 april 1998 Distanskurs LEKTION 27 Delkurs 4 PROCESSER I ATOMKÄRNAN MATERIENS

Läs mer

Kärnkraftverkens höga skorstenar

Kärnkraftverkens höga skorstenar Kärnkraftverkens höga skorstenar Om jag frågar våra tekniskt mest kunniga studenter och lärare på en teknisk högskola varför kärnkraftverken har så höga skorstenar, får jag olika trevande gissningar som

Läs mer

Lösningar till problem del I och repetitionsuppgifter R = r 0 A 13

Lösningar till problem del I och repetitionsuppgifter R = r 0 A 13 Lösningar till problem del I och repetitionsuppgifter 0 Problem I. 6 0 08 Beräkna kärnradien hos 8 O8, 50 Sn70 och 8 Pb6. Använd r 0 =, fm. L I. Enligt relation R = r 0 A 3 får vi R =. 6 3 = 3. 0 fm, R

Läs mer

Fission och fusion - från reaktion till reaktor

Fission och fusion - från reaktion till reaktor Fission och fusion - från reaktion till reaktor Fission och fusion Fission, eller kärnklyvning, är en process där en tung atomkärna delas i två eller fler mindre kärnor som kallas fissionsprodukter och

Läs mer

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin 13. Kärnfysik Föreläsning 13. Kärnfysik 2

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin 13. Kärnfysik Föreläsning 13. Kärnfysik 2 Föreläsning 13 Kärnfysik 2 Sönderfallslagen Låt oss börja med ett tankeexperiment (som man med visst tålamod också kan utföra rent praktiskt). Säg att man kastar en tärning en gång. Innan man kastat tärningen

Läs mer

Kärnkraft. http://www.fysik.org/website/fragelada/index.as p?keyword=bindningsenergi

Kärnkraft. http://www.fysik.org/website/fragelada/index.as p?keyword=bindningsenergi Kärnkraft Summan av fria nukleoners energiinnehåll är större än atomkärnors energiinnehåll, ifall fria nukleoner sammanfogas till atomkärnor frigörs energi (bildningsenergi även kallad kärnenergi). Energin

Läs mer

Stora namn inom kärnfysiken. Marie Curie radioaktivitet Lise Meitner fission Ernest Rutherford atomkärnan (Niels Bohr atommodellen)

Stora namn inom kärnfysiken. Marie Curie radioaktivitet Lise Meitner fission Ernest Rutherford atomkärnan (Niels Bohr atommodellen) Atom- och kärnfysik Stora namn inom kärnfysiken Marie Curie radioaktivitet Lise Meitner fission Ernest Rutherford atomkärnan (Niels Bohr atommodellen) Atomens uppbyggnad Atomen består av tre elementarpartiklar:

Läs mer

Neutronaktivering. Laboration i 2FY808 - Tillämpad kvantmekanik

Neutronaktivering. Laboration i 2FY808 - Tillämpad kvantmekanik Neutronaktivering Laboration i 2FY808 - Tillämpad kvantmekanik Datum för genomförande: 2012-03-30 Medlaborant: Jöns Leandersson Handledare: Pieter Kuiper 1 av 9 Inledning I laborationen används en neutronkälla

Läs mer

Repetition kärnfysik Heureka 1: kap version 2019

Repetition kärnfysik Heureka 1: kap version 2019 Repetition kärnfysik Heureka 1: kap. 14-15 version 2019 Kärnfysik Atomkärnan består av protoner och neutroner. Dessa har följande massor: partikel massa i u massa i kg elektron 0,0005486 9,109 10-31 proton

Läs mer

Lösningar till problem del I och repetitionsuppgifter R r 0 A 13

Lösningar till problem del I och repetitionsuppgifter R r 0 A 13 Lösningar till problem del I och repetitionsuppgifter 03 Problem I. 6 0 08 Beräkna kärnradien hos 8O8, 50 Sn70 och 8 Pb6. Använd r 0 =, fm. L I. Enligt relation R r 0 A 3 får vi R. 6 3 3. 0 fm, R. 0 /

Läs mer

Lösningar till tentamen i kärnkemi ak

Lösningar till tentamen i kärnkemi ak Lösningar till tentamen i kärnkemi ak 1999.117 Del A 1. Det finns radioaktiva sönderfall som leder till utsändning av monoenergetisk joniserande strålning? Vad är detta för strålslag? (2p) Svar: Alfastrålning

Läs mer

Atomens uppbyggnad. Atomen består av tre elementarpartiklar: Protoner (+) Elektroner (-) Neutroner (neutral)

Atomens uppbyggnad. Atomen består av tre elementarpartiklar: Protoner (+) Elektroner (-) Neutroner (neutral) Atom- och kärnfysik Atomens uppbyggnad Atomen består av tre elementarpartiklar: Protoner (+) Elektroner (-) Neutroner (neutral) Elektronerna rör sig runt kärnan i bestämda banor med så stor hastighet att

Läs mer

3.7 γ strålning. Absorptionslagen

3.7 γ strålning. Absorptionslagen 3.7 γ strålning γ strålningen är elektromagnetisk strålning. Liksom α partiklarnas energier är strålningen kvantiserad; strålningen kan ha endast bestämda energier. Detta beror på att γ strålningen utsänds

Läs mer

1. 2. a. b. c a. b. c. d a. b. c. d a. b. c.

1. 2. a. b. c a. b. c. d a. b. c. d a. b. c. 1. Lina sitter och läser en artikel om utgrävningarna i Motala ström. I artikeln står det att arkeologerna funnit bruksföremål som är 7 år gamla. De har daterat föremålen med hjälp av kol-14-metoden. Förklara

Läs mer

Så fungerar kärnkraft

Så fungerar kärnkraft Så fungerar kärnkraft Enkelt uttryckt är ett kärnkraftverk en elfabrik, där uran används som bränsle. Att tillverka el i ett kärnkraftverk sker enligt samma princip som i ett kraftverk som eldas med kol,

Läs mer

Till exempel om vi tar den första kol atomen, så har den: 6 protoner, 12 6=6 neutroner, 6 elektroner; atommassan är också 6 men masstalet är 12!

Till exempel om vi tar den första kol atomen, så har den: 6 protoner, 12 6=6 neutroner, 6 elektroner; atommassan är också 6 men masstalet är 12! 1) Till exempel om vi tar den första kol atomen, så har den: 6 protoner, 12 6=6 neutroner, 6 elektroner; atommassan är också 6 men masstalet är 12! Om vi tar den tredje kol atomen, så är protonerna 6,

Läs mer

Röntgenstrålning och Atomkärnans struktur

Röntgenstrålning och Atomkärnans struktur Röntgenstrålning och tomkärnans struktur Röntgenstrålning och dess spridning mot kristaller tomkärnans struktur - Egenskaper. Isotoper. - Bindningsenergi - Kärnmodeller - Radioaktivitet, radioaktiva sönderfall.

Läs mer

Tentamen i FUF050 Subatomär Fysik, F3

Tentamen i FUF050 Subatomär Fysik, F3 Tentamen i FUF050 Subatomär Fysik, F3 Tid: 013-05-30 fm Hjälpmedel: Physics Handbook, nuklidkarta, Beta, Chalmersgodkänd räknare Poäng: Totalt 75 poäng, för betyg 3 krävs 40 poäng, för betyg 4 krävs 60

Läs mer

ATOM OCH KÄRNFYSIK. Masstal - anger antal protoner och neutroner i atomkärnan. Atomnummer - anger hur många protoner det är i atomkärnan.

ATOM OCH KÄRNFYSIK. Masstal - anger antal protoner och neutroner i atomkärnan. Atomnummer - anger hur många protoner det är i atomkärnan. Atomens uppbyggnad Atomen består av tre elementarpartiklar: Protoner (p + ) Elektroner (e - ) Neutroner (n) Elektronerna rör sig runt kärnan i bestämda banor med så stor hastighet att de bildar ett skal.

Läs mer

Atomens uppbyggnad. Atomen består av tre elementarpartiklar: Protoner (+) Elektroner (-) Neutroner (neutral)

Atomens uppbyggnad. Atomen består av tre elementarpartiklar: Protoner (+) Elektroner (-) Neutroner (neutral) Atom- och kärnfysik Atomens uppbyggnad Atomen består av tre elementarpartiklar: Protoner (+) Elektroner (-) Neutroner (neutral) Elektronerna rör sig runt kärnan i bestämda banor med så stor hastighet att

Läs mer

Tentamen i FUF050 Subatomär Fysik, F3

Tentamen i FUF050 Subatomär Fysik, F3 Tentamen i FUF050 Subatomär Fysik, F3 Tid: 2012-08-30 em Hjälpmedel: Physics Handbook, nuklidkarta, Beta, Chalmersgodkänd räknare Poäng: Totalt 75 poäng, för betyg 3 krävs 40 poäng, för betyg 4 krävs 60

Läs mer

Lösningar till tentamen i kärnkemi ak

Lösningar till tentamen i kärnkemi ak Lösningar till tentamen i kärnkemi ak 1999.118 Del A 1. Det finns radioaktiva sönderfall som leder till utsändning av monoenergetisk joniserande strålning? Vad är detta för strålslag? (2p) Svar: Alfastrålning

Läs mer

Laboration 36: Nils Grundbäck, e99 ngr@e.kth.se Gustaf Räntilä, e99 gra@e.kth.se Mikael Wånggren, e99 mwa@e.kth.se. 8 Maj, 2001 Stockholm, Sverige

Laboration 36: Nils Grundbäck, e99 ngr@e.kth.se Gustaf Räntilä, e99 gra@e.kth.se Mikael Wånggren, e99 mwa@e.kth.se. 8 Maj, 2001 Stockholm, Sverige Laboration 36: Kärnfysik Nils Grundbäck, e99 ngr@e.kth.se Gustaf Räntilä, e99 gra@e.kth.se Mikael Wånggren, e99 mwa@e.kth.se 8 Maj, 2001 Stockholm, Sverige Assistent: Roberto Liotta Modern fysik (kurskod

Läs mer

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 13 Kärnfysik 2 den 4 maj Föreläsning 13.

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 13 Kärnfysik 2 den 4 maj Föreläsning 13. Föreläsning 13 Sönderfallslagen Låt oss börja med ett tankeexperiment (som man med visst tålamod också kan utföra rent praktiskt). Säg att man kastar en tärning en gång. Innan man kastat tärningen kan

Läs mer

Säkerhet i snabbreaktorer

Säkerhet i snabbreaktorer Säkerhet i snabbreaktorer Carl Hellesen Återkopplingar Hur håller man en reaktor stabil Återkopplingar LWR Negativ Doppler-återkoppling (snabb) Negativ void-återkoppling, långsam först måste kylmedlet

Läs mer

2. Beskriv principen för en hastighetsselektor (skiss och utförlig förklaring) (4p). Svar: Se figur 2.1 och tillhörande text i läroboken.

2. Beskriv principen för en hastighetsselektor (skiss och utförlig förklaring) (4p). Svar: Se figur 2.1 och tillhörande text i läroboken. Lösningar till tentamen i Kärnkemi ak den 5 september 00 Konstanter och definitioner som gäller hela tentan: ev.607733. 0 9. joule kev 000. ev MeV 000. kev Gy joule kg N.. A 6.0367 0 3 mole Bq sec kbq

Läs mer

Vågrörelselära & Kvantfysik, FK januari 2012

Vågrörelselära & Kvantfysik, FK januari 2012 Räkneövning 10 Vågrörelselära & Kvantfysik, FK2002 9 januari 20 Problem 42.1 Vad är det orbitala rörelsemängdsmomentet, L, för en elektron i a) 3p-tillståndet b) 4f-tillståndet? Det orbitala rörelsemängdsmomentet

Läs mer

Laborationsrapport neutronaktivering

Laborationsrapport neutronaktivering Laborationsrapport neutronaktivering Av Daniel Tingdahl. Medlaborant: Lennart Olofsson Sammanfattning I denna laboration bestämdes dels halveringstiden för 116m In, dels reaktionstvärsnittet för termiska

Läs mer

2. Hur många elektroner får det plats i K, L och M skal?

2. Hur många elektroner får det plats i K, L och M skal? Testa dig själv 12.1 Atom och kärnfysik sidan 229 1. En atom består av tre olika partiklar. Vad heter partiklarna och vilken laddning har de? En atom kan ha tre olika elementära partiklar, neutron med

Läs mer

4.4. Radioaktivitet. dn dt = λn,

4.4. Radioaktivitet. dn dt = λn, 4.4. Radioaktivitet [Understanding Physics: 21.4-21.9] Som vi tidigare konstaterat, är de flesta nuklider radioaktiva. De sönderfaller genom att spontant sända ut en partikel och alstra en annan kärna,

Läs mer

Bindningsenergi per nukleon, MeV 10. Fusion. Fission

Bindningsenergi per nukleon, MeV 10. Fusion. Fission Hur fungerar en kärnreaktor? Några reaktorfysikaliska grundbegrepp med tillämpning på den första nukleära kedjereaktionen. Bengt Pershagen Utgivet till utställningen Kärnenergin 50 år på Tekniska Museet

Läs mer

Fysik, atom- och kärnfysik

Fysik, atom- och kärnfysik Fysik, atom- och kärnfysik T.o.m. vecka 39 arbetar vi med atom- och kärnfysik. Under tiden får vi arbeta med boken Spektrumfysik f.o.m. sidan 229 t.o.m.sidan 255. Det finns ljudfiler i mp3 format. http://www.liber.se/kampanjer/grundskola-kampanj/spektrum/spektrum-fysik/spektrum-fysikmp3/

Läs mer

R Beräkning av nuklidinnehåll, resteffekt, aktivitet samt doshastighet för utbränt kärnbränsle. Rune Håkansson Studsvik Nuclear AB.

R Beräkning av nuklidinnehåll, resteffekt, aktivitet samt doshastighet för utbränt kärnbränsle. Rune Håkansson Studsvik Nuclear AB. R-99-74 Beräkning av nuklidinnehåll, resteffekt, aktivitet samt doshastighet för utbränt kärnbränsle Rune Håkansson Studsvik Nuclear AB Mars 2000 Svensk Kärnbränslehantering AB Swedish Nuclear Fuel and

Läs mer

Materiens Struktur. Lösningar

Materiens Struktur. Lösningar Materiens Struktur Räkneövning 4 Lösningar 1. Sök på internet efter information om det senast upptäckta grundämnet. Vilket masstal och ordningsnummer har det och vilka är de angivna egenskaperna? Hur har

Läs mer

Radioaktivt sönderfall Atomers (grundämnens) sammansättning

Radioaktivt sönderfall Atomers (grundämnens) sammansättning Radioaktivitet Radioaktivt sönderfall Atomers (grundämnens) sammansättning En atom består av kärna (neutroner + protoner) med omgivande elektroner Kärnan är antingen stabil eller instabil En instabil kärna

Läs mer

Experimentell fysik. Janne Wallenius. Reaktorfysik KTH

Experimentell fysik. Janne Wallenius. Reaktorfysik KTH Experimentell fysik Janne Wallenius Reaktorfysik KTH Återkoppling från förra mötet: Många tyckte att det var spännade att lära sig något om 1. Osäkerhetsrelationen 2. Att antipartiklar finns och kan färdas

Läs mer

Atom- och Kärnfysik. Namn: Mentor: Datum:

Atom- och Kärnfysik. Namn: Mentor: Datum: Atom- och Kärnfysik Namn: Mentor: Datum: Atomkärnan Väteatomens kärna (hos den vanligaste väteisotopen) består endast av en proton. Kring kärnan kretsar en elektron som hålls kvar i sin bana p g a den

Läs mer

Småsaker ska man inte bry sig om, eller vad tycker du? av: Sofie Nilsson 1

Småsaker ska man inte bry sig om, eller vad tycker du? av: Sofie Nilsson 1 Småsaker ska man inte bry sig om, eller vad tycker du? av: Sofie Nilsson 1 Ger oss elektrisk ström. Ger oss ljus. Ger oss röntgen och medicinsk strålning. Ger oss radioaktivitet. av: Sofie Nilsson 2 Strålning

Läs mer

Tentamen i Tillämpad Kärnkemi den 8 mars 2001

Tentamen i Tillämpad Kärnkemi den 8 mars 2001 Tentamen i Tillämpad Kärnkemi den 8 mars 001 1 PWR-reaktorer i USA har en termisk verkningsgrad på 33% och använder i genomsnitt bränsle med en initial anrikning på 4% 35U, samt har en medelutbränning

Läs mer

Lösningar till tentamen i Kärnkemi ak den 27 januari Del A

Lösningar till tentamen i Kärnkemi ak den 27 januari Del A Lösningar till tentamen i Kärnkemi ak den 27 januari 2001 Del A 1 En sönderfallskedja börjar med 265Sg Vilka nuklider ingår i denna? Du kan avsluta sönderfallskedjan när du når en nuklid som har halveringstid

Läs mer

Så fungerar kärnkraft version 2019

Så fungerar kärnkraft version 2019 Så fungerar kärnkraft version 2019 Enkelt uttryckt är ett kärnkraftverk en elfabrik, där uran används som bränsle. Att tillverka el i ett kärnkraftverk sker enligt samma princip som i ett kraftverk som

Läs mer

Tentamen: Atom och Kärnfysik (1FY801) Lördag 15 december 2012,

Tentamen: Atom och Kärnfysik (1FY801) Lördag 15 december 2012, Tentamen: Atom och Kärnfysik (1FY801) Lördag 15 december 2012, 9.00-14.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum

Läs mer

Atomkärnans struktur

Atomkärnans struktur Föreläsning 18 tomkärnans struktur Rutherford, Geiger och Marsden påvisade ~1911 i spridningsexperiment att atomen hade sin positiva laddning och massa koncentrerad till en kärna. I vissa fall kunde α-partiklarna

Läs mer

Materiens Struktur. Lösningar

Materiens Struktur. Lösningar Materiens Struktur Räkneövning 3 Lösningar 1. Studera och begrunda den teoretiska förklaringen till supralednigen så, att du kan föra en diskussion om denna på övningen. Skriv även ner huvudpunkterna som

Läs mer

undanträngda luften vilket motsvarar Flyft kraft skall först användas för att lyfta samma volym helium samt ballongens tyngd.

undanträngda luften vilket motsvarar Flyft kraft skall först användas för att lyfta samma volym helium samt ballongens tyngd. FYSIKTÄVLINGEN Finalen - teori 1 maj 001 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFUNDET 1 Vi beräknar först lyftkraften för en ballong Antag att ballongen är sfärisk med diametern 4πr 4π 0,15 0 cm Den har då

Läs mer

Lösning: Vi börjar med ekvationen för buktighet hos cylindrisk geometri (19.21c) b m 1. b 2. L2. m ( 1 f) k inf Σ amod. afuel.

Lösning: Vi börjar med ekvationen för buktighet hos cylindrisk geometri (19.21c) b m 1. b 2. L2. m ( 1 f) k inf Σ amod. afuel. Lösningar till tentamen i Tillämpad Kärnkemi den 12 maj 1999 1 En liten homogen termisk reaktor ör en rymdarkost skall konstrueras som består av rent 233UO 2 -pulver (täthet 104 g/cm3) jämnt ördelat i

Läs mer

Kontrollerad termonukleär fusion

Kontrollerad termonukleär fusion Kontrollerad termonukleär fusion Carl Hellesen Applied Nuclear Physics Department of Physics and Astronomy Uppsala Universitet Fusionsreaktioner Skillnaderna i nukleära bindningsenergier 62 Ni hårdast

Läs mer

Innehållsförteckning

Innehållsförteckning 1 Abstract The Oskarshamn nuclear power plant in Sweden intents to insert 80 fuel element with a mixture of uranium and plutonium, MOX fuel, in the Oskarshamn 3 nuclear reactor. The Swedish authorities

Läs mer

Hur påverkar kylmedlets absorptionsförmåga behovet av strålskydd för en rymdanpassad kärnkraftsreaktor?

Hur påverkar kylmedlets absorptionsförmåga behovet av strålskydd för en rymdanpassad kärnkraftsreaktor? Hur påverkar kylmedlets absorptionsförmåga behovet av strålskydd för en rymdanpassad kärnkraftsreaktor? William Hellberg whel@kth.se SA104X Examensarbete inom Teknisk Fysik, Grundnivå Handledare: Janne

Läs mer

Repetition kärnfysik

Repetition kärnfysik Repetition kärnfysik Egenskaper hos kärnan Massa Radie (ev. deformationsparameter) Relativ förekomst Sönderfallssätt (,,), halveringstid t 1/2 Reaktionssätt Tvärsnitt, spinn, magnetiskt/elektriskt dipolmoment

Läs mer

Sönderfallsserier N 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134. α-sönderfall. β -sönderfall. 21o

Sönderfallsserier N 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134. α-sönderfall. β -sönderfall. 21o Isotop Kemisk symbol Halveringstid Huvudsaklig strålning Uran-238 238 U 4,5 109 år α Torium-234 234 Th 24,1 d β- Protaktinium-234m 234m Pa 1,2 m β- Uran-234 234 U 2,5 105 år α Torium-230 230 Th 8,0 105

Läs mer

Föreläsning 09 Kärnfysiken: del 1

Föreläsning 09 Kärnfysiken: del 1 Föreläsning 09 Kärnfysiken: del 1 Storleken och strukturen av kärnan Bindningsenergi Den starka kärnkraften Strukturen av en kärna Kärnan upptäcktes av Rutherford, Geiger och Marsden år 1909 (föreläsning

Läs mer

Varje uppgift ger maximalt 3 poäng. För godkänt krävs minst 8,5 poäng och

Varje uppgift ger maximalt 3 poäng. För godkänt krävs minst 8,5 poäng och Institutionen för Fysik Göteborgs Universitet LÖSNINGAR TILL TENTAMEN I FYSIK A: MODERN FYSIK MED ASTROFYSIK Tid: Lördag 3 augusti 008, kl 8 30 13 30 Plats: V Examinator: Ulf Torkelsson, tel. 031-77 3136

Läs mer

Atomens historia. Slutet av 1800-talet trodde man att man hade en fullständig bild av alla fysikaliska fenomen.

Atomens historia. Slutet av 1800-talet trodde man att man hade en fullständig bild av alla fysikaliska fenomen. Atomfysik ht 2015 Atomens historia Atom = grekiskans a tomos som betyder odelbar Filosofen Demokritos, atomer. Stort motstånd, främst från Aristoteles Trodde på läran om de fyra elementen Alla ämnen bildas

Läs mer

Förslag till lösningar. Tentamen i Kärnkemi KKK

Förslag till lösningar. Tentamen i Kärnkemi KKK Förslag till lösningar. Tentamen i Kärnkemi KKK030-2002.12.14 Del A 1. Utgå ifrån hur bindningsenergin per nukleon beror av A för att förklara 2 olika sätt att producera energi mha den starka kärnkraften.

Läs mer

Laborationer i miljöfysik Gammaspektrometri

Laborationer i miljöfysik Gammaspektrometri Laborationer i miljöfysik Gammaspektrometri 1 Inledning Med gammaspektrometern kan man mäta på gammastrålning. Precis som ett GM-rör räknar gammaspektrometern de enskilda fotonerna i gammastrålningen.

Läs mer

TILLÄMPAD ATOMFYSIK Övningstenta 2

TILLÄMPAD ATOMFYSIK Övningstenta 2 TILLÄMPAD ATOMFYSIK Övningstenta 2 Skrivtid: 8 13 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ett nytt blad och skriv bara på en sida.

Läs mer

Innehållsförteckning:

Innehållsförteckning: Kärnkraft Innehållsförteckning: Sid. 2-3: Kärnkraftens Historia Sid. 4-5: Fission Sid. 6-7: Energiomvandlingar Sid. 12-13: Kärnkraftens framtid Sid. 14-15: Källförteckning Sid. 16-17: Bildkällor Sid.

Läs mer

TILLÄMPAD ATOMFYSIK Övningstenta 3

TILLÄMPAD ATOMFYSIK Övningstenta 3 TILLÄMPAD ATOMFYSIK Övningstenta 3 Skrivtid: 8 13 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ett nytt blad och skriv bara på en sida.

Läs mer

Tvärsnitt. Tvärsnitt (forts) Föreläsning 19. Thin foil target

Tvärsnitt. Tvärsnitt (forts) Föreläsning 19. Thin foil target Föreläsning 19 Tvärsnitt Thin foil target Betrakta ett antal mindre cirklar ritade på en krittavla. Sannolikheten att föreläsaren träffar cirklarna med en pingisboll beror av cirklarnas och bollens gemensamma

Läs mer

LÖSNINGSFÖRSLAG. 11. Kärnfysik. c 3, , J 3, ev 1,9 ev. E hc. 5, m 0,36 pm. hc 1, m 1,43 pm E 6, ,0 10 8

LÖSNINGSFÖRSLAG. 11. Kärnfysik. c 3, , J 3, ev 1,9 ev. E hc. 5, m 0,36 pm. hc 1, m 1,43 pm E 6, ,0 10 8 Kärnfysik 0-0. Se lärobokens facit. c 3,0 08 03. a) f Hz 4,6 0 4 Hz 6500 9 b) E hf 6,630 34 4,6 0 4 J 3, 0 9 J 3,0 9 J 3,09 ev,9 ev,6 09 Svar: a) 4,6 0 4 Hz b) 3, 0 9 J (,9 ev) 04. a) Kol är nr 6 i det

Läs mer

Bild 1 Kärnkraftsteknik Föredraget handlar huvudsakligen om ASEA-Atoms BWR. Vi startar med neutronfysiken.

Bild 1 Kärnkraftsteknik Föredraget handlar huvudsakligen om ASEA-Atoms BWR. Vi startar med neutronfysiken. Kärnkraftsteknik Föredrag av Bengt Lönnerberg på AFI 25 februari och 25 mars 2014. Kommentarer till visade bilder. Bilderna visas som miniatyrer i texten nedan. Fullstora bilder finns i separat fil. Bild

Läs mer

BFL 111/ BFL 120 Fysik del B2 för Tekniskt Basår/ Bastermin

BFL 111/ BFL 120 Fysik del B2 för Tekniskt Basår/ Bastermin Linköpings Universitet Institutionen för Fysik, Kemi och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag till Repetitionsuppgifter BFL 111/ BFL 120 Fysik del B2 för Tekniskt Basår/

Läs mer

Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111

Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111 Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Tentamen Tisdagen den 27:e maj 2008, kl 08:00 12:00 Fysik del B2 för tekniskt

Läs mer

Föreläsning 2, FMSF45 Slumpvariabel

Föreläsning 2, FMSF45 Slumpvariabel Föreläsning 2, FMSF45 Slumpvariabel Stas Volkov 2017-09-05 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp och beteckningar Utfall resultatet

Läs mer

Energi & Atom- och kärnfysik

Energi & Atom- och kärnfysik ! Energi & Atom- och kärnfysik Facit Energi s. 149 1. Vad är energi? Förmåga att utföra arbete. 2. Vad händer med energin när ett arbets görs? Den omvandlas till andra energiformer. 3. Vad är arbete i

Läs mer

Matematisk statistik 9hp Föreläsning 2: Slumpvariabel

Matematisk statistik 9hp Föreläsning 2: Slumpvariabel Matematisk statistik 9hp Föreläsning 2: Slumpvariabel Anna Lindgren 6+7 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp Utfall

Läs mer

Fysikaliska modeller

Fysikaliska modeller Fysikaliska modeller Olika syften med fysiken Grundforskarens syn Finna förklaringar på skeenden i naturen Ställa upp lagar för fysikaliska skeenden Kritiskt granska uppställda lagar Kontrollera uppställda

Läs mer

Tentamen: Atom och Kärnfysik (1FY801)

Tentamen: Atom och Kärnfysik (1FY801) Tentamen: Atom och Kärnfysik (1FY801) Torsdag 1 november 2012, 8.00-13.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum

Läs mer

11 Kärnfysik LÖSNINGSFÖRSLAG. 11. Kärnfysik. 3, J 3, ev 1,9 ev. c 3, E hc. 5, m 0,36 pm. hc 1, m 1,43 pm

11 Kärnfysik LÖSNINGSFÖRSLAG. 11. Kärnfysik. 3, J 3, ev 1,9 ev. c 3, E hc. 5, m 0,36 pm. hc 1, m 1,43 pm 11 Kärnfysik 1101-1102. Se lärobokens facit. c 3,0 108 1103. a) f Hz 4,6 10 14 Hz 65010 9 b) E hf 6,6310 34 4,610 14 J 3,1 10 19 J 3,110 19 J 3,11019 ev 1,9 ev 1,6 1019 Svar: a) 4,6 10 14 Hz b) 3,1 10

Läs mer

Lösningar Heureka 2 Kapitel 14 Atomen

Lösningar Heureka 2 Kapitel 14 Atomen Lösningar Heureka Kapitel 14 Atomen Andreas Josefsson Tullängsskolan Örebro Lo sningar Fysik Heureka Kapitel 14 14.1) a) Kulorna från A kan ramla på B, C, D, eller G (4 möjligheter). Från B kan de ramla

Läs mer

Torium En möjlig råvara för framtida kärnbränsle

Torium En möjlig råvara för framtida kärnbränsle Torium En möjlig råvara för framtida kärnbränsle Detta är Bakgrund nr 2 från 2008. Den kan även hämtas ned som pdf (1,0 MB) I dagens kärnkraftverk används uran som bränsle. Ett alternativ till uran är

Läs mer

Att sanera radioaktiva ämnen KARL ÖSTLUND, LUNDS UNIVERSITET

Att sanera radioaktiva ämnen KARL ÖSTLUND, LUNDS UNIVERSITET Att sanera radioaktiva ämnen KARL ÖSTLUND, LUNDS UNIVERSITET Förlorade/bortglömda strålkällor Presentationen, ämnen, begrepp mm. Vad vi menar med utsläpp från kärnteknisk anläggning. Orsaker till att det

Läs mer

Transmutationsteknik i acceleratordrivna hybridsystem

Transmutationsteknik i acceleratordrivna hybridsystem 1(1) Transmutationsteknik i acceleratordrivna hybridsystem Rapporten är framtagen av Örjan Bernander, CoreTech, på uppdrag av Analysgruppen vid KSU 1999 1 Inledning Det är ju något av ett naturens under

Läs mer

1. Ange de kemiska beteckningarna för grundämnena astat, americium, prometium och protaktinium. (2p). Svar: At, Am, Pm, Pa

1. Ange de kemiska beteckningarna för grundämnena astat, americium, prometium och protaktinium. (2p). Svar: At, Am, Pm, Pa Lösningar till tentamen i Kärnkemi ak den 6 februari 1999 Del A 1. Ange de kemiska beteckningarna för grundämnena astat, americium, prometium och protaktinium. (p). Svar: At, Am, Pm, Pa. a) Vilka nuklider

Läs mer

Tentamen i fysik B2 för tekniskt basår/termin VT 2014

Tentamen i fysik B2 för tekniskt basår/termin VT 2014 Tentamen i fysik B för tekniskt basår/termin VT 04 04-0-4 En sinusformad växelspänning u har amplituden,5 V. Det tar 50 μs från det att u har värdet 0,0 V till dess att u har antagit värdet,5 V. Vilken

Läs mer

5.5. α-, β- och γ-sönderfallet (forts.)

5.5. α-, β- och γ-sönderfallet (forts.) 5.5. α-, β- och γ-sönderfallet (forts.) [Understanding Physics: 21.5-21.10] I β sönderfallet kommer en elektron att sändas ut, vilket ökar kärnans positiva laddning med +e, medan det totala antalet nukleoner

Läs mer