PRODUKTION OCH SÖNDERFALL
|
|
- Erik Patrik Hansson
- för 2 år sedan
- Visningar:
Transkript
1 PRODUKTION OCH SÖNDERFALL Inom arkeologin kan man bestämma fördelningen av grundämnen, t.ex. i ett mynt, genom att bestråla myntet med neutroner. Man skapar då radioisotoper som sönderfaller till andra stabila grundämnen. Strålningen avtar exponentiellt med tiden och genom att mäta den, kan man bestämma andelen av ett specifikt grundämne. För att skapa ett strålningsskydd med goda egenskaper krävs material som absorberar infallande strålning på ett så effektivt sätt som möjligt. Det är därför viktigt att man har bra kunskap om typen av strålning som ska blockeras samt vilka material man kan använda. Neutroner som saknar laddning, påverkas inte av elektriska krafter, vilket gör dem mycket svåra att stoppa. Syfte och mål Genom att bestråla naturligt silver med långsamma neutroner, så kallade termiska neutroner, skall ni bestämma halveringstiden för de radioaktiva isotoper som har producerats. Ni skall även göra en kvalitativ undersökning av absorption av termiska neutroner i aluminium och kadmium. Utrustning Mångkanalsanalysator Neutronkälla (Amerikum-241 & Beryllium-9) Tång Tidtagarur Dator OBS! Uppgift 1 och 2 skall göras innan laborationen genomförs. Genomförandet av vissa moment finns under Bilaga 1. Läs detta noga! Var noga med att använda gummihandskar när ni hanterar proverna eftersom strålningen annars kan vara farlig. 1
2 Neutronproduktion Snabba strålar av laddade partiklar kan produceras med hjälp av en accelerator på grund av att de har en elektrisk laddning. För neutroner, som är oladdade, existerar inte denna möjlighet. Neutroner kan dock produceras framgångsrikt med hjälp av olika kärnreaktioner. I den mäktigaste neutronkällan, uranreaktorn, är den neutronproducerande kärnreaktionen en fissionsprocess, dvs. tunga urankärnor klyvs med hjälp av neutroner till lättare grundämnen, samtidigt som det bildas fler neutroner. Flera neutronkällor av mer måttlig styrka bygger på principen att alfapartiklar (dvs. heliumkärnor) initierar en kärnreaktion med beryllium. Följande reaktion sker då: α + 4Be 0 n C Preparatet består då i regel av en alfaradioaktiv nuklid ( 226 Ra, 210 Po, 241 Am, mm) som sammanbakats med berylliumpulver. I många fall används nukliden 241 Am, eftersom dess sönderfall är förenat med mindre gammaproduktion än andra alfaradioaktiva nuklider. Då neutronerna bildas vid ovanstående kärnreaktion frigörs också energi, 5,71 MeV, som till största delen används som rörelseenergi hos neutronerna (då de är betydligt lättare än kolkärnorna). I detta experiment ska neutronerna åstadkomma en kärnreaktion med silverkärnor, och sannolikheten för denna reaktion beror på neutronernas rörelseenergi, därmed också på deras hastighet. Sannolikheten för en reaktion brukar anges som ett neutroninfångningstvärsnitt, σ, som kan tolkas som ett mått på storleken på den atomkärna med vilken neutronen ska reagera, ju större tvärsnitt desto större sannolikhet för reaktion. Neutroninfångningstvärsnittet är en funktion av 1/v, där v är neutronhastigheten. En långsam neutron har normalt större sannolikhet att åstadkomma en kärnreaktion än en snabb. De snabba neutronerna från preparatet behöver därför bromsas. Detta sker med så kallad moderering. Neutronerna undergår elastiska stötar med kärnor i materia så många gånger att de till slut har samma hastighetsfördelning som dessa. Neutronerna uppvisar då samma slags värmerörelse som andra partiklar i materien vid termisk jämvikt, och kallas därför termiska neutroner. Genom att utnyttja lagen om energins och rörelsemängdens bevarande hos de ingående isotoperna före och efter en kollision, kan man beräkna hur stor del av sin energi en neutron förlorar vid en rak elastisk stöt med en målpartikel, beroende på dennas massa. En neutron förlorar 1.9 % av sin energi till 208 Pb, 28.4 % till 12 C samt 50 % av sin energi till 1 H. 2
3 Neutronstrålning av silver Naturligt silver består av två isotoper, l07 Ag och 109 Ag i ungefär lika proportioner. Vid neutronbestrålning av silver sker följande reaktioner: Ag+ n Ag + γ Ag+ n Ag + γ 0 Båda de bildade nukliderna är radioaktiva, och sönderfaller under utsändande av betapartiklar, i detta fall elektroner. Dessa sönderfall kan beskrivas med följande formler: Ag Ag Cd + Cd + e e +υ +υ Vid bestrålningen ökar alltså antalet aktiva kärnor ( l08 Ag, 110 Ag) med tiden, men minskar samtidigt på grund av det radioaktiva sönderfallet. Efter en oändligt lång bestrålningstid uppnår man en mättnadsaktivitet, där jämvikt mellan antalet producerade aktiva kärnor och deras sönderfall råder. Hur snabbt man når mättnadsaktivitet, beror på sönderfallets halveringstid. Se figur 1. nedan. Figur 1. Antalet aktiva kärnor, N, som funktion av tiden. 3
4 Efter bestrålningens slut återstår endast det tidsberoende som förorsakas av det radioaktiva sönderfallet. Detta kan beskrivas som ett exponentiellt avtagande förlopp, med antalet aktiva kärnor, N λt = N 0 e (1) där No anger antalet aktiva kärnor vid det ögonblick då neutronbestrålningen avslutas, och λ = ln2/t 1/2, där T 1/2 anger isotopens halveringstid. Om man logaritmerar ovanstående uttryck, får man ett linjärt förhållande mellan ln N och tiden t, ln N = ln N λt 0 (2) Genom att plotta ln N som en funktion av t kan halveringstiden bestämmas med hjälp av lutningskoefficienten. Aktiviteten, som definieras som antalet sönderfall per tidsenhet, ges av A = Nλ (3) med enheten Bequerel (Bq). Vid en mätning av de från silverblecket emitterade betapartiklarna registreras aktiviteten från båda silverisotoperna samtidigt. Den totala aktiviteten fås då genom att addera aktiviteten för vardera isotop A A A tot = + (4) Detektorn registrerar då en räknehastighet som är proportionell mot denna aktivitet. Funktionen är en summa av två exponentiellt avklingande funktioner. Fundera över hur de kommer att se ut i ett logaritmiskt diagram där ln A, avsätts som funktion av tiden. 4
5 Neutronkälla Neutronkällans mekaniska uppbyggnad framgår av nedanstående figur. Observera att preparatstyrkan är 1 Ci varför försiktighet måste iakttas. Källan skall under hela experimentet vara placerad inne i ett låsbart preparatskåp. All hantering vid källa av paraffinpropp och absorbatorbehållare skall utföras med en 75 cm lång preparattång. Paraffinprop Absorbator Preparat tång AmBe källa Plexiglas Paraffin Stålhölje Figur 2. Schematisk bild över neutronkällans uppbyggnad. Sedan aktiveringen avslutats skall den radioaktiva silverplåten tas ur absorbatorbehållaren och placeras under detektorn, dock så nära denna som möjligt. Eftersom den mesta strålningen från plåten är av typ β, skall den som genomför överflyttningen av plåten använda gummihandske som skydd. Detektorn Då ett gammakvantum helt absorberas i NaI-kristallen kommer gammafotonen att annihileras. Den ger då hela sin energi till en elektron genom (fotoelektrisk effekt). Fotoelektronen kommer att excitera ett antal atomer under sin uppbromsning. Då de exciterade atomerna återgår till grundtillståndet avger de energi. Den avgivna energin fås i form av elektromagnetisk strålning dvs. fotoner. En del av dessa fotoner kommer att träffa en ljuskänslig elektrod (fotokatoden) där de i sin tur slår ut elektroner. I fotomultiplikatorröret finns ett antal elektroder (dynoder) som accelererar elektronerna. För varje elektron som träffar en dynod bildas ett antal nya elektroner dvs. antalet elektroner i röret kommer att multipliceras. Till anoden kommer ett mycket stort antal elektroner, vilka ger upphov till en elektrisk puls. Pulsens storlek kommer att bestämmas av antalet elektroner som når anoden. 5
6 Uppgifter Uppgift 1 till 2 skall göras innan du kommer in i laborationssalen. 1. Doshastighet Anledningen till att man använder en tång (ca 75 cm) för att preparera proverna är att dosen blir betydligt lägre. Antag att doshastigheten på 75 cm avstånd från en fritt strålande källa är x Gy/h. Vad är då doshastigheten på 7,5 cm avstånd? Rd sönderfall Hur lång tid tar det för ett 222 Rd (Radon T 1/2 =3.8 dygn) preparat att sönderfalla 89%? 3. Mät bakgrundsstrålningen Kontrollera att mångkanalsanalysatorn är inställd som flerkanalsräknare (se separat apparatinstruktion). Öppningstiden för varje kanal skall vara 3 sekunder. Mät bakgrunden och försök uppskatta medelräknehastigheten/kanal. 4. Bestämning av silverisotopens halveringstid Genomförandet av uppgiften finns under Bilaga 1. Bestäm ur den erhållna kurvan halveringstiden för den långlivade silverisotopen. Gör gärna detta med hjälp av ett regressionsprogram eller miniräknare. Principen är att man först anpassar en rät linje till punkter vid långa tider och bestämmer halveringstiden ur riktningskoefficienten. Kontrollera i ditt diagram vilka punkter som lämpligtvis bör inkluderas i denna analys. Linjen beskriver vid varje tid t o hur många kärnor av den mer långlivade isotopen som sönderfaller per tidsenhet. Subtrahera därför detta antal från kurvan som beskriver den adderade aktiviteten. Du får då en ny rät linje som beskriver sönderfall med en kortare halveringstid. Bestäm denna på samma sätt. Genom att extrapolera båda dessa linjer till tiden 0 kan man bestämma andelen kärnor av respektive isotop då bestrålningen avslutas. Tänk på att transporttiden 20 sekunder måste räknas in. 6
7 5. Absorptionsegenskaper hos Aluminium och Kadmium Använd nuklidkartan för att ta reda på neutroninfångningstvärsnitten för aluminium- och kadmiumnukliderna. På nuklidkartan anges vanligen tvärsnittet med beteckningen Q och ett siffervärde. Enheten 1 barn = m 2 är då underförstådd. För aluminiumisotopen är neutroninfångningstvärsnittet. Det största neutroninfångningstvärsnittet för en kadmiumisotop är. Det höga tvärsnittet för neutroninfångning i kadmium ( 113 Cd) är ett exempel på en resonans. Tvärsnittet avviker här från 1/v-lagen. Orsaken till detta är att dotternukliden 114 Cd har ett exciterat tillstånd (se figur 3.) som skiljer sig ifrån den ekvivalenta energinivån för 113 kadmiumkärna plus en fri neutron, ( 113 Cd + n), med endast 0,178 ev, dvs i omedelbar närhet av det termiska energiområdet. 114 Cdkärnan lämnas alltså efter neutronabsorption i ett exciterat tillstånd, men återgår till grundtillståndet genom gammaemission. Anledningen till den kraftiga neutronabsorptionen i kadmium är därför den höga sannolikheten för reaktionen vid vilken slutprodukten är den stabila nukliden 114 Cd. 113 Cd+n 9.05 MeV ev Excitationsenergi 114 Cd för 114 Cd Figur 3. Resonans infångning vid ett exciterat tillstånd hos en sammansatt kärna vid reaktionen 113Cd(n,γ)114Cd. Genomförandet av uppgiften finns under Bilaga 2. 7
8 Bilaga 1 Genomförande av uppgift 4. Lägg en silverplåt och en paraffinpropp i absorbatorhållaren. Med hjälp av en stav för du sedan ned behållaren i neutronkällan varvid aktiveringen av silverplåten startas. Under den tid som aktiveringen tar, ca 10 min, kan du använda för att förbereda mätförfarandet. I samma ögonblick som aktiveringen avbryts, dvs. behållaren tas ur neutronkällan, skall ett stoppur startas. Den aktiverade silverplåten tas sedan ut ur hållaren, placeras på avsedd plåt och skjuts in i översta stativfacket. OBS! Gummihandsken skall användas när man tar i den aktiverade silverplåten. Analysatorn skall startas genom att ANALYZE intrycks exakt 20,0 sek efter det att aktiveringen avbrutits. Mät denna tid med stoppur. Därefter sköts datainsamlingen automatiskt och nästa mätserie kan förberedas genom att en ny silverplåt placeras i neutronkällan och tiduret startas. Efter 256 x 3 sek (~13 min) är analysatorn klar och ett diagram visas på skärmen. Kanal 0 innehåller en etta som svarar mot att analysatorn genomfört ett tidssvep. Upprepa mätning och aktivering tills dess att 3 mätserier fullbordats. Den kurva som sedan visas på analysatorns bildskärm skall nu överföras till en tabell samt föras in i ett dataprogram. Glöm inte att subtrahera bakgrunden du har mätt. 8
9 Bilaga 2 Genomförande av uppgift 5. Aktivera en silverplåt på samma sätt som tidigare. Mät denna gång med DWELL TIME i läge EXT. När nu analysatorn startas kommer endast kanal 1 att hållas öppen till insamlingen avbryts med READOUT. Mät under 2 min (kronometer) och anteckna värdet. Lägg sedan in silverplattan mellan två stycken aluminium plattor. Aktivera och utför mätning under lika lång tid som ovan. Upprepa experimentet men placera nu silverplattan mellan två kadmiumplattor. Medan plåten aktiveras kan du i nuklidkartan söka fram neutroninfångningstvärsnittet, (barn), för Al och Cd. Försök att med ledning av dessa tal förutsäga den förväntade skillnaden. Som sista del skall mätningen utföras med endast en kadmiumplatta placerad under silverplattan. 9
Laboration 36: Nils Grundbäck, e99 ngr@e.kth.se Gustaf Räntilä, e99 gra@e.kth.se Mikael Wånggren, e99 mwa@e.kth.se. 8 Maj, 2001 Stockholm, Sverige
Laboration 36: Kärnfysik Nils Grundbäck, e99 ngr@e.kth.se Gustaf Räntilä, e99 gra@e.kth.se Mikael Wånggren, e99 mwa@e.kth.se 8 Maj, 2001 Stockholm, Sverige Assistent: Roberto Liotta Modern fysik (kurskod
Atom- och Kärnfysik. Namn: Mentor: Datum:
Atom- och Kärnfysik Namn: Mentor: Datum: Atomkärnan Väteatomens kärna (hos den vanligaste väteisotopen) består endast av en proton. Kring kärnan kretsar en elektron som hålls kvar i sin bana p g a den
3.7 γ strålning. Absorptionslagen
3.7 γ strålning γ strålningen är elektromagnetisk strålning. Liksom α partiklarnas energier är strålningen kvantiserad; strålningen kan ha endast bestämda energier. Detta beror på att γ strålningen utsänds
Radioaktivt sönderfall Atomers (grundämnens) sammansättning
Radioaktivitet Radioaktivt sönderfall Atomers (grundämnens) sammansättning En atom består av kärna (neutroner + protoner) med omgivande elektroner Kärnan är antingen stabil eller instabil En instabil kärna
1. Mätning av gammaspektra
1. Mätning av gammaspektra 1.1 Laborationens syfte Att undersöka några egenskaper hos en NaI-detektor. Att bestämma energin för okänd gammastrålning. Att bestämma den isotop som ger upphov till gammastrålningen.
Laborationer i miljöfysik Gammaspektrometri
Laborationer i miljöfysik Gammaspektrometri 1 Inledning Med gammaspektrometern kan man mäta på gammastrålning. Precis som ett GM-rör räknar gammaspektrometern de enskilda fotonerna i gammastrålningen.
Kärnfysik och radioaktivitet. Kapitel 41-42
Kärnfysik och radioaktivitet Kapitel 41-42 Tentförberedelser (ANMÄL ER!) Maximipoäng i tenten är 25 p. Tenten består av 5 uppgifter, varje uppgift ger max 5 p. Uppgifterna baserar sig på bokens kapitel,
ABSORPTION AV GAMMASTRÅLNING
ABSORPTION AV GAMMASTRÅLNING Uppgift: Materiel: Teori: Att bestämma ett samband för den intensitet av gammastrålning som passerar en absorbator, som funktion av absorbatorns tjocklek. Att bestämma halveringstjockleken
Fysiska institutionen, UDIF. Laboration 7 Neutronaktivering och Halveringstidsbestämning
Fysiska institutionen, UDIF Laboration 7 Neutronaktivering och Halveringstidsbestämning LABORATION 7 NEUTRONAKTIVERING OCH HALVERINGSTIDSBESTÄMNINGAR UPPGIFT 1 a. Studier av GM-rörets funktion. b. Framställning
4 Halveringstiden för 214 Pb
4 Halveringstiden för Pb 4.1 Laborationens syfte Att bestämma halveringstiden för det radioaktiva sönderfallet av Pb. 4.2 Materiel NaI-detektor med tillbehör, dator, högspänningsaggregat (cirka 5 kv),
Kärnenergi. Kärnkraft
Kärnenergi Kärnkraft Isotoper Alla grundämnen finns i olika varianter som kallas för isotoper. Ofta finns en variant som är absolut vanligast. Isotoper av ett ämne har samma antal protoner och elektroner,
Föreläsning 3. Radioaktivitet, alfa-, beta-, gammasönderfall
Radioaktivitet, alfa-, beta-, gammasönderfall Halveringstid (MP 11-3, s. 522-525) Alfa-sönderfall (MP 11-4, s. 525-530) Beta-sönderfall (MP 11-4, s. 530-535) Gamma-sönderfall (MP 11-4, s. 535-537) Se även
ATOM OCH KÄRNFYSIK. Masstal - anger antal protoner och neutroner i atomkärnan. Atomnummer - anger hur många protoner det är i atomkärnan.
Atomens uppbyggnad Atomen består av tre elementarpartiklar: Protoner (p + ) Elektroner (e - ) Neutroner (n) Elektronerna rör sig runt kärnan i bestämda banor med så stor hastighet att de bildar ett skal.
Tillämpad kvantmekanik Neutronaktivering. Utförd den 30 mars 2012
Tillämpad kvantmekanik Neutronaktivering Utförd den 30 mars 2012 Rapporten färdigställd den 12 april 2012 Innehåll 1 Bakgrund 1 2 Utförande 3 2.1 Efterbehandling.......................... 3 2.1.1 Bestämning
2. Hur många elektroner får det plats i K, L och M skal?
Testa dig själv 12.1 Atom och kärnfysik sidan 229 1. En atom består av tre olika partiklar. Vad heter partiklarna och vilken laddning har de? En atom kan ha tre olika elementära partiklar, neutron med
7. Radioaktivitet. 7.1 Sönderfall och halveringstid
7. Radioaktivitet Vissa grundämnens atomkärnor är instabila de kan sönderfalla av sig själva. Då en atomkärna sönderfaller bildas en mindre atomkärna, och energi skickas ut från kärnan i form av partiklar
Fysik. Laboration 4. Radioaktiv strålning
Tekniskt basår, Laboration 4: Radioaktiv strålning 2007-03-18, 7.04 em Fysik Laboration 4 Radioaktiv strålning Laborationens syfte är att ge dig grundläggande kunskap om: Radioaktiva strålningens ursprung
Fotoelektriska effekten
Fotoelektriska effekten Bakgrund År 1887 upptäckte den tyska fysikern Heinrich Hertz att då man belyser ytan på en metallkropp med ultraviolett ljus avges elektriska laddningar från ytan. Noggrannare undersökningar
GAMMASPEKTRUM 2008-12-07. 1. Inledning
GAMMASPEKTRUM 2008-12-07 1. Inledning I den här laborationen ska du göra mätningar på gammastrålning från ämnen som betasönderfaller. Du kommer under laborationens gång att lära dig hur ett gammaspektrum
Tentamen i FUF050 Subatomär Fysik, F3
Tentamen i FUF050 Subatomär Fysik, F3 Tid: 2012-08-30 em Hjälpmedel: Physics Handbook, nuklidkarta, Beta, Chalmersgodkänd räknare Poäng: Totalt 75 poäng, för betyg 3 krävs 40 poäng, för betyg 4 krävs 60
Atomens uppbyggnad. Atomen består av tre elementarpartiklar: Protoner (+) Elektroner (-) Neutroner (neutral)
Atom- och kärnfysik Atomens uppbyggnad Atomen består av tre elementarpartiklar: Protoner (+) Elektroner (-) Neutroner (neutral) Elektronerna rör sig runt kärnan i bestämda banor med så stor hastighet att
Atomens historia. Slutet av 1800-talet trodde man att man hade en fullständig bild av alla fysikaliska fenomen.
Atomfysik ht 2015 Atomens historia Atom = grekiskans a tomos som betyder odelbar Filosofen Demokritos, atomer. Stort motstånd, främst från Aristoteles Trodde på läran om de fyra elementen Alla ämnen bildas
Fission och fusion - från reaktion till reaktor
Fission och fusion - från reaktion till reaktor Fission och fusion Fission, eller kärnklyvning, är en process där en tung atomkärna delas i två eller fler mindre kärnor som kallas fissionsprodukter och
BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin 12. Kärnfysik 1 2014. Kärnfysik 1
Kärnfysik 1 Atomens och atomkärnans uppbyggnad Tidigare har atomen beskrivits som bestående av en positiv kärna kring vilken det i den neutrala atomen befinner sig lika många elektroner som det finns positiva
Till exempel om vi tar den första kol atomen, så har den: 6 protoner, 12 6=6 neutroner, 6 elektroner; atommassan är också 6 men masstalet är 12!
1) Till exempel om vi tar den första kol atomen, så har den: 6 protoner, 12 6=6 neutroner, 6 elektroner; atommassan är också 6 men masstalet är 12! Om vi tar den tredje kol atomen, så är protonerna 6,
Sönderfallsserier N 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134. α-sönderfall. β -sönderfall. 21o
Isotop Kemisk symbol Halveringstid Huvudsaklig strålning Uran-238 238 U 4,5 109 år α Torium-234 234 Th 24,1 d β- Protaktinium-234m 234m Pa 1,2 m β- Uran-234 234 U 2,5 105 år α Torium-230 230 Th 8,0 105
Atomens uppbyggnad. Atomen består av tre elementarpartiklar: Protoner (+) Elektroner (-) Neutroner (neutral)
Atom- och kärnfysik Atomens uppbyggnad Atomen består av tre elementarpartiklar: Protoner (+) Elektroner (-) Neutroner (neutral) Elektronerna rör sig runt kärnan i bestämda banor med så stor hastighet att
TILLÄMPAD ATOMFYSIK Övningstenta 3
TILLÄMPAD ATOMFYSIK Övningstenta 3 Skrivtid: 8 13 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ett nytt blad och skriv bara på en sida.
Lösningsförslag. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111
Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Fredagen den 29:e maj 2009, kl 08:00 12:00 Fysik del B2 för tekniskt / naturvetenskapligt
Från atomkärnor till neutronstjärnor Christoph Bargholtz
Z N Från atomkärnor till neutronstjärnor Christoph Bargholtz 2006-06-29 1 C + O 2 CO 2 + värme? E = mc 2 (mc 2 ) före > (mc 2 ) efter m = m efter -m före Exempel: förbränning av kol m m = 10 10 (-0.0000000001
Kärnenergi. Kärnkraft
Kärnenergi Kärnkraft Isotoper Alla grundämnen finns i olika varianter som kallas för isotoper. Ofta finns en variant som är absolut vanligast. Isotoper av ett ämne har samma antal protoner och elektroner,
Stora namn inom kärnfysiken. Marie Curie radioaktivitet Lise Meitner fission Ernest Rutherford atomkärnan (Niels Bohr atommodellen)
Atom- och kärnfysik Stora namn inom kärnfysiken Marie Curie radioaktivitet Lise Meitner fission Ernest Rutherford atomkärnan (Niels Bohr atommodellen) Atomens uppbyggnad Atomen består av tre elementarpartiklar:
Laborationsrapport neutronaktivering
Laborationsrapport neutronaktivering Av Daniel Tingdahl. Medlaborant: Lennart Olofsson Sammanfattning I denna laboration bestämdes dels halveringstiden för 116m In, dels reaktionstvärsnittet för termiska
7 Comptonspridning. 7.1 Laborationens syfte. 7.2 Materiel. 7.3 Teori. Att undersöka comptonspridning i och utanför detektorkristallen.
7 Comptonspridning 7.1 Laborationens syfte Att undersöka comptonspridning i och utanför detektorkristallen. 7.2 Materiel NaI-detektor med tillbehör, dator, spridare av aluminium, koppar eller stål, blybleck
Vågrörelselära & Kvantfysik, FK januari 2012
Räkneövning 10 Vågrörelselära & Kvantfysik, FK2002 9 januari 20 Problem 42.1 Vad är det orbitala rörelsemängdsmomentet, L, för en elektron i a) 3p-tillståndet b) 4f-tillståndet? Det orbitala rörelsemängdsmomentet
tentaplugg.nu av studenter för studenter
tentaplugg.nu av studenter för studenter Kurskod F0006T Kursnamn Fysik 3 Datum LP4 10-11 Material Laborationsrapport radioaktivitet Kursexaminator Betygsgränser Tentamenspoäng Övrig kommentar Sammanfattning
Marie Curie, kärnfysiker, 1867 1934. Atomfysik. Heliumatom. Partikelacceleratorn i Cern, Schweiz.
Marie Curie, kärnfysiker, 1867 1934. Atomfysik Heliumatom Partikelacceleratorn i Cern, Schweiz. Atom (grek. odelbar) Ordet atom användes för att beskriva materians minsta beståndsdel. Nu vet vi att atomen
Fysik del B2 för tekniskt basår / teknisk bastermin BFL 120/ BFL 111
Linköpings Universitet Institutionen för Fysik, Kemi och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Tentamen Torsdagen den 5:e juni 2008, kl. 08:00 12:00 Fysik del B2 för tekniskt
Tentamen i FUF050 Subatomär Fysik, F3
Tentamen i FUF050 Subatomär Fysik, F3 Tid: 013-05-30 fm Hjälpmedel: Physics Handbook, nuklidkarta, Beta, Chalmersgodkänd räknare Poäng: Totalt 75 poäng, för betyg 3 krävs 40 poäng, för betyg 4 krävs 60
Materiens Struktur. Lösningar
Materiens Struktur Räkneövning 4 Lösningar 1. Sök på internet efter information om det senast upptäckta grundämnet. Vilket masstal och ordningsnummer har det och vilka är de angivna egenskaperna? Hur har
WALLENBERGS FYSIKPRIS
WALLENBERGS FYSIKPRIS KVALIFICERINGSTÄVLING 23 januari 2014 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG 1. (a) När bilens fart är 50 km/h är rörelseenergin W k ( ) 2 1,5 10 3 50 3,6 2 J 145 10 3 J. Om verkningsgraden
7. Atomfysik väteatomen
Partiklars vågegenskaper Som kunnat konstateras uppträder elektromagnetisk strålning ljus som en dubbelnatur, ibland behöver man beskriva ljus som vågrörelser och ibland är det nödvändigt att betrakta
LEKTION 27. Delkurs 4 PROCESSER I ATOMKÄRNAN MATERIENS INNERSTA STRUKTUR
GÖTEBORGS UNIVERSITET Fysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 april 1998 Distanskurs LEKTION 27 Delkurs 4 PROCESSER I ATOMKÄRNAN MATERIENS
Lösningar till tentamen i kärnkemi ak
Lösningar till tentamen i kärnkemi ak 1999.118 Del A 1. Det finns radioaktiva sönderfall som leder till utsändning av monoenergetisk joniserande strålning? Vad är detta för strålslag? (2p) Svar: Alfastrålning
Tentamen: Atom och Kärnfysik (1FY801)
Tentamen: Atom och Kärnfysik (1FY801) Torsdag 1 november 2012, 8.00-13.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum
Uppgift: Bestäm det arbete W som åtgår att Iyfta kroppen på det sätt som beskrivits ovan och bestäm och så kroppens densitet ρ.
Uppgift 1. I en 1-liters bägare fylld med 600 ml vatten sänker man ned en kropp i form av cylinder som är spetsad i ena änden. Den övre ytan på kroppen skall ligga precis i vattenytan. Sedan lyfter man
En resa från Demokritos ( f.kr) till atombomben 1945
En resa från Demokritos (460-370 f.kr) till atombomben 1945 kapitel 10.1 plus lite framåt: s279 Currie atomer skapar ljus - elektromagnetisk strålning s277 röntgen s278 atomklyvning s289 CERN s274 och
BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin 13. Kärnfysik Föreläsning 13. Kärnfysik 2
Föreläsning 13 Kärnfysik 2 Sönderfallslagen Låt oss börja med ett tankeexperiment (som man med visst tålamod också kan utföra rent praktiskt). Säg att man kastar en tärning en gång. Innan man kastat tärningen
Mer om E = mc 2. Version 0.4
1 (6) Mer om E = mc Version 0.4 Varifrån kommer formeln? För en partikel med massan m som rör sig med farten v har vi lärt oss att rörelseenergin är E k = mv. Denna formel är dock inte korrekt, även om
Föreläsning 3. Radioaktivitet, alfa-, beta-, gammasönderfall
Radioaktivitet, alfa-, beta-, gammasönderfall Halveringstid (MP 11-3, s. 522-525) Alfa-sönderfall (MP 11-4, s. 525-530) Beta-sönderfall (MP 11-4, s. 530-535) Gamma-sönderfall (MP 11-4, s. 535-537) Se även
Fysik, atom- och kärnfysik
Fysik, atom- och kärnfysik T.o.m. vecka 39 arbetar vi med atom- och kärnfysik. Under tiden får vi arbeta med boken Spektrumfysik f.o.m. sidan 229 t.o.m.sidan 255. Det finns ljudfiler i mp3 format. http://www.liber.se/kampanjer/grundskola-kampanj/spektrum/spektrum-fysik/spektrum-fysikmp3/
Röntgenteknik. Vad är röntgenstrålning? - Joniserande strålning - Vad behövs för att få till denna bild? Vad behövs för att få till en röntgenbild?
joniser ande part ikelst rålni definit ion Röntgenteknik Vad behövs för att få till denna bild? Danielle van Westen Neuroröntgen, USiL Vad behövs för att få till en röntgenbild? Röntgenstrålning ioniserande
1. Elektromagnetisk strålning
1. Elektromagnetisk strålning Kursens första del behandlar olika aspekter av den elektromagnetiska strålningen. James Clerk Maxwell formulerade lagarnas som beskriver strålningen år 1864. 1.1 Uppkomst
1.5 Våg partikeldualism
1.5 Våg partikeldualism 1.5.1 Elektromagnetisk strålning Ljus uppvisar vågegenskaper. Det är bland annat möjligt att åstadkomma interferensmönster med ljus det visades av Young redan 1803. Interferens
Föreläsning 11 Kärnfysiken: del 3
Föreläsning Kärnfysiken: del 3 Kärnreaktioner Fission Kärnreaktor Fusion U=-e /4πε 0 r Coulombpotential Energinivåer i atomer Fotonemission när en elektron/atom/molekyl undergår en övergång Kvantfysiken
Miljöfysik. Föreläsning 5. Användningen av kärnenergi Hanteringen av avfall Radioaktivitet Dosbegrepp Strålningsmiljö Fusion
Miljöfysik Föreläsning 5 Användningen av kärnenergi Hanteringen av avfall Radioaktivitet Dosbegrepp Strålningsmiljö Fusion Energikällor Kärnkraftverk i världen Fråga Ange tre fördelar och tre nackdelar
Studiematerial till kärnfysik del II. Jan Pallon 2012
Frågor att diskutera Kapitel 4, The force between nucleons 1. Ange egenskaperna för den starka kraften (växelverkan) mellan nukleoner. 2. Deuterium är en mycket speciell nuklid när det gäller bindningsenergi
8 Röntgenfluorescens. 8.1 Laborationens syfte. 8.2 Materiel. 8.3 Teori. 8.3.1 Comptonspridning
8 Röntgenfluorescens 8.1 Laborationens syfte Att undersöka röntgenfluorescens i olika material samt använda röntgenfluorescens för att identifiera grundämnen som ingår i okända material. 8. Materiel NaI-detektor
Atomen - Periodiska systemet. Kap 3 Att ordna materian
Atomen - Periodiska systemet Kap 3 Att ordna materian Av vad består materian? 400fKr (före år noll) Empedokles: fyra element, jord, eld, luft, vatten Demokritos: små odelbara partiklar! -------------------------
1. Elektromagnetisk strålning
1. Elektromagnetisk strålning Kursens första del behandlar olika aspekter av den elektromagnetiska strålningen. James Clerk Maxwell formulerade lagarnas som beskriver strålningen år 1864. 1.1 Uppkomst
Materiens Struktur. Lösningar
Materiens Struktur Räkneövning 5 Lösningar 1. Massorna för de nedan uppräknade A = isobarerna är 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 63,935812u 63,927968u 63,929766u 63,929146u 63,936827u Tabell 1: Tabellen
Miljöfysik FYSA15 2015. Laboration 6. Absorption av joniserande strålning + Radioaktivitet i vår omgivning
Miljöfysik FYSA15 2015 Laboration 6 Absorption av joniserande strålning + Radioaktivitet i vår omgivning Förberedelser: Läs i Reistad & Stenström, Energi- och Miljöfysik (2015), Del 2 (eller motsvarande
Intro till Framtida Nukleära Energisystem. Carl Hellesen
Intro till Framtida Nukleära Energisystem Carl Hellesen Problem med dagens kärnkraft Avfall (idag)! Fissionsprodukter kortlivade (några hundra år)! Aktinider (, Am, Cm ) långlivade (100 000 års lagringstid)!
KEMI 1 MÄNNISKANS KEMI OCH KEMIN I LIVSMILJÖ
KEMI 1 MÄNNISKANS KEMI OCH KEMIN I LIVSMILJÖ FYSIK BIOLOGI KEMI MEDICIN TEKNIK Laborationer Ett praktiskt och konkret experiment Analys av t ex en reaktion Bevisar en teori eller lägger grunden för en
Småsaker ska man inte bry sig om, eller vad tycker du? av: Sofie Nilsson 1
Småsaker ska man inte bry sig om, eller vad tycker du? av: Sofie Nilsson 1 Ger oss elektrisk ström. Ger oss ljus. Ger oss röntgen och medicinsk strålning. Ger oss radioaktivitet. av: Sofie Nilsson 2 Strålning
12 Elektromagnetisk strålning
LÖSNINGSFÖRSLAG Fysik: Fysik oc Kapitel lektromagnetisk strålning Värmestrålning. ffekt anger energi omvandlad per tidsenet, t.ex. den energi ett föremål emitterar per sekund. P t ffekt kan uttryckas i
Theory Swedish (Sweden)
Q3-1 Large Hadron Collider (10 poäng) Läs anvisningarna i det separata kuvertet innan du börjar. I denna uppgift kommer fysiken i partikelacceleratorn LHC (Large Hadron Collider) vid CERN att diskuteras.
Atom- och kärnfysik! Sid 223-241 i fysikboken
Atom- och kärnfysik! Sid 223-241 i fysikboken 1. Atomen Kort repetition av Elin Film: Vetenskap-Atom: Upptäckten När du har srepeterat och sett filmen om ATOMEN ska du kunna beskriva hur en atom är uppbyggd
Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 19, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik
Fysik 8 Modern fysik Innehåll Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik 1. Relativitetsteori Speciella relativitetsteorin Allmänna relativitetsteorin Two Postulates Special Relativity
Tentamen i fysik B2 för tekniskt basår/termin VT 2014
Tentamen i fysik B för tekniskt basår/termin VT 04 04-0-4 En sinusformad växelspänning u har amplituden,5 V. Det tar 50 μs från det att u har värdet 0,0 V till dess att u har antagit värdet,5 V. Vilken
Lösningsförslag - Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 122 / BFL 111
Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag - Tentamen Torsdagen den 26:e maj 2011, kl 08:00 12:00 Fysik del B2 för
Kurs: Kemi/Fysik 2 Fysikdelen Kurskod LUI103. Examinator: Anna-Carin Larsson Tentamens datum 060822
OMTENTAMEN DEL 2 Kurs: Kemi/Fysik 2 Fysikdelen Kurskod LUI103 Examinator: Anna-Carin Larsson Tentamens datum 060822 Jourhavande lärare: Anna-Carin Larsson 070-2699141 Skrivtid 9-14 Resultat meddelas senast:
Statistisk precision vid radioaktivitetsmätning och Aktivitetsbestämning ur uppmätt räknehastighet
Institutionen för medicin och vård Avdelningen för radiofysik Hälsouniversitetet Statistisk precision vid radioaktivitetsmätning och Aktivitetsbestämning ur uppmätt räknehastighet Gudrun Alm Carlsson och
Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00
Institutionen för teknik, fysik och matematik Nils Olander och Herje Westman Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Max: 30 p A-uppgifterna 1-8 besvaras genom att ange det korrekta
Utveckling mot vågbeskrivning av elektroner. En orientering
Utveckling mot vågbeskrivning av elektroner En orientering Nikodemus Karlsson Februari 00 . Bohrs Postulat Niels Bohr (885-96) ställde utifrån iakttagelser upp fyra postulat gällande väteatomen ¹:. Elektronen
Tentamen: Atom och Kärnfysik (1FY801)
Tentamen: Atom och Kärnfysik (1FY801) Onsdag 30 november 2013, 8.00-13.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum
Stora namn inom kärnfysiken. Marie Curie radioaktivitet Lise Meitner fission Ernest Rutherford atomkärnan (Niels Bohr atommodellen)
Atom- och kärnfysik Stora namn inom kärnfysiken Marie Curie radioaktivitet Lise Meitner fission Ernest Rutherford atomkärnan (Niels Bohr atommodellen) Atomens uppbyggnad Atomen består av tre elementarpartiklar:
Kvantfysik - introduktion
Föreläsning 6 Ljusets dubbelnatur Det som bestämmer vilken färg vi uppfattar att ett visst ljus (från t.ex. s.k. neonskyltar) har är ljusvågornas våglängd. violett grönt orange IR λ < 400 nm λ > 750 nm
Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 12, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik
Fysik 8 Modern fysik Innehåll Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik 1. Relativitetsteori Speciella relativitetsteorin Allmänna relativitetsteorin Two Postulates Special Relativity
Tentamen i Modern fysik, TFYA11/TENA
IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11/TENA Torsdagen den 29/8 2013 kl. 14.00-18.00 i TER2 Tentamen består av 2 A4-blad (inklusive detta)
Strålning. Laboration
... Laboration Innehåll 1 Förberedelseuppgifter och miniprojekt 2 3 4 α-strålnings räckvidd i luft γ-strålnings attenuering i aluminium och bly Mätning av stråldosen i olika utomhusmiljöer Strålning Radioaktivitet
Experimentell fysik. Janne Wallenius. Reaktorfysik KTH
Experimentell fysik Janne Wallenius Reaktorfysik KTH Återkoppling från förra mötet: Många tyckte att det var spännade att lära sig något om 1. Osäkerhetsrelationen 2. Att antipartiklar finns och kan färdas
Kvantmekanik. Kapitel Natalie Segercrantz
Kvantmekanik Kapitel 38-39 Natalie Segercrantz Centrala begrepp Schrödinger ekvationen i en dimension Fotoelektriska effekten De Broglie: partikel-våg dualismen W 0 beror av materialet i katoden minimifrekvens!
M0038M Differentialkalkyl, Lekt 4, H15
M0038M Differentialkalkyl, Lekt 4, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 28 Lekt 3 Om f (x) = 2 x 2 och g(x) = x + 2, bestäm nedanstående funktion och dess definitionsmängd.
Hur mycket betyder Higgspartikeln? MASSOR!
Hur mycket betyder Higgspartikeln? MASSOR! 1 Introduktion = Ni kanske har hört nyheten i somras att mina kollegor i CERN hade hittat Higgspartikeln. (Försnacket till nobellpriset) = Vad är Higgspartikeln
KEM A02 Allmän- och oorganisk kemi. KÄRNKEMI FOKUS: användbara(radio)nuklider A: Kap
KEM A02 Allmän- och oorganisk kemi KÄRNKEMI FOKUS: användbara(radio)nuklider A: Kap 17.6 17.8 Periodiska systemet finns alla grundämnen? SVAR: NEJ! Exempel på lätta kärnor som inte finns, dvs ej stabila:
Tentamen, Kvantfysikens principer FK2003, 7,5 hp
Tentamen, Kvantfysikens principer FK2003, 7,5 hp Tid: 17:00-22:00, tisdag 3/3 2015 Hjälpmedel: utdelad formelsamling, utdelad miniräknare Var noga med att förklara införda beteckningar och att motivera
Varje uppgift ger maximalt 3 poäng. För godkänt krävs minst 8,5 poäng och
Institutionen för Fysik Göteborgs Universitet LÖSNINGAR TILL TENTAMEN I FYSIK A: MODERN FYSIK MED ASTROFYSIK Tid: Lördag 3 augusti 008, kl 8 30 13 30 Plats: V Examinator: Ulf Torkelsson, tel. 031-77 3136
Periodiska systemet. Atomens delar och kemiska bindningar
Periodiska systemet Atomens delar och kemiska bindningar Atomens delar I mitten av atomen finns atomkärnan där protonerna finns. Protoner är positivt laddade partiklar Det är antalet protoner som avgör
Prov 3 2014-10-13. (b) Hur stor är kraften som verkar på en elektron mellan plattorna? [1/0/0]
Namn: Område: Elektromagnetism Datum: 13 Oktober 2014 Tid: 100 minuter Hjälpmedel: Räknare och formelsamling. Betyg: E: 25. C: 35, 10 på A/C-nivå. A: 45, 14 på C-nivå, 2 på A-nivå. Tot: 60 (34/21/5). Instruktioner:
TEKNISKA HÖGSKOLAN I LULEÅ lp2 96 Avd. för Fysik Per Arve. Laboration i Kvantfysik för F
TEKNISKA HÖGSKOLAN I LULEÅ lp2 96 Avd. för Fysik Per Arve Laboration i Kvantfysik för F Syfte Laborationen syftar till att demonstrera två fysikaliska system, väteatomen och elektroner som strömmar genom
Kaströrelse. 3,3 m. 1,1 m
Kaströrelse 1. En liten kula, som vi kallar kula 1, släpps ifrån en höjd över marken. Exakt samtidigt skjuts kula 2 parallellt med marken ifrån samma höjd som kula 1. Luftmotståndet som verkar på kulorna
27,8 19,4 3,2 = = 1500 2,63 = 3945 N = + 1 2. = 27,8 3,2 1 2,63 3,2 = 75,49 m 2
Lina Rogström linro@ifm.liu.se Lösningar till tentamen 150407, Fysik 1 för Basåret, BFL101 Del A A1. (2p) Eva kör en bil med massan 1500 kg med den konstanta hastigheten 100 km/h. Längre fram på vägen
Tentamen: Atom och Kärnfysik (1FY801) Lördag 15 december 2012,
Tentamen: Atom och Kärnfysik (1FY801) Lördag 15 december 2012, 9.00-14.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum
Lösningar till problem del I och repetitionsuppgifter R = r 0 A 13
Lösningar till problem del I och repetitionsuppgifter 0 Problem I. 6 0 08 Beräkna kärnradien hos 8 O8, 50 Sn70 och 8 Pb6. Använd r 0 =, fm. L I. Enligt relation R = r 0 A 3 får vi R =. 6 3 = 3. 0 fm, R
Atom- och kärnfysik. Arbetshäfte. Namn: Klass: 9a
Atom- och kärnfysik Arbetshäfte Namn: Klass: 9a 1 Syftet med undervisningen är att du ska träna din förmåga att: använda kunskaper i fysik för att granska information, kommunicera och ta ställning i frågor
Lösningar - Rätt val anges med fet stil i förekommande fall (obs att svaren på essäfrågorna inte är uttömmande).
STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Materiens Minsta Byggstenar, 5p. Lördag den 15 juli, kl. 9.00 14.00 Lösningar - Rätt val anges med fet stil i förekommande fall (obs att svaren på essäfrågorna
RADIOAKTIVITET OCH STRÅLNING
RADIOAKTIVITET OCH STRÅLNING 1 Inledning 1.1 Radioaktivt sönderfall och strålning Atomens kärna består av positivt laddade positroner och neutrala neutroner. Ett grundämne har alltid ett konstant antal
Repetitionsuppgifter. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111
Repetitionsuppgifter Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL
Föreläsningsserien k&p
Föreläsningsserien k&p 1. "Begrepp bevarandelagar, relativistiska beräkningar" 1-3,1-4,1-5,2-2 2. "Modeller av atomkärnan" 11-1, 11-2, 11-6 3. "Radioaktivitet, alfa-, beta-, gammasönderfall" 11-3, 11-4