Simulering av slumpvariabler i R. 1 Normalfördelningen. Uppgift 1. Uppgift 2

Storlek: px
Starta visningen från sidan:

Download "Simulering av slumpvariabler i R. 1 Normalfördelningen. Uppgift 1. Uppgift 2"

Transkript

1 Lunds univrsitet Matematikcentrum Matematisk statistik Biostatistisk grundkurs, MASB11 Laboration 3 VT-2015, Fördelningsanpassning och Centrala Gränsvärdes Satsen Introduktion Syftet med laborationen är dels att vi skall bekanta oss med normalfördelningen, s.v. X N(µ, σ 2 ), vad som sker med sannolikhetsfördelning när man bildar summor av slumpvariabler (Centrala gränsvärdessatsen) och dels med några metoder och funktioner som finns i R för att kunna skatta, studera och jämföra fördelningen hos ett eller flera stickprov, empirisk fördelningsfunktion, F (x) och olika typer av fördelningsplottar. Datamaterialen och script finns på kursens hemsida under namnet Laborationen redovisas med en skriftlig rapport som ska vara inlämnad senast Rapporten baseras på korta svar från respektive Uppgift 1-9, vid behov kan också lämplig figur bifogas. Förberedelseuppgifterna ska vara handskrivna och kan lämnas in tillsammans med rapporten. Förberedelseuppgifter 1. Serum kolesterol hos amerikanska kvinnor i åldrarna 20 år och uppåt är (enligt National Health and Nutrition Examination Survey) normalfördelad med väntevärde 206 mg/dl och standardavvikelse 44.7 mg/dl. (a) Hur stor andel av de amerikanska kvinnor som är 20 år eller äldre har en serum kolesterol som understiger 230mg/dl? (b) Hur stor andel av de amerikanska kvinnor som är 20 är eller äldre har en serum kolesterol mellan 150 och 250mg/dl? 2. Vid läkemedelstillverkning är det viktigt att mängden aktiv substans hålls så konstant som möjligt. En viss variation är emellertid omöjlig att undvika, oftast kan den beskrivas med hjälp av en normalfördelning. För ett visst läkemedel gäller att mängden aktiv substans (mg) i en tablett antas vara N ( 2, 0.1 2). Mängden aktiv substans i en tablett påverkas inte av de andra tabletternas tillverkning. Tabletterna ordineras patienterna i förpackningar som innehåller 20 tabletter. (a) Vad är sannolikheten av mängden aktiv substans i en tablett i förpackningen understiger mg? (b) Låt X i vara mängden aktiv substans i tablett nr i. Hur kan då Y = mängden aktiv substans i hela förpackningen tecknas? (c) Vad är fördelningen för Y? (d) Vad är sannolikheten av mängden aktiv substans i hela förpackningen understiger 39.5 mg?

2 Simulering av slumpvariabler i R Simulering i R görs genom färdiga funktioner unika för respektive fördelning. Exempel på några av dessa funktioner finns i efterföljande tabell. Fördelning Funktion i R Exempel i R Binomial rbinom(antal,n,p) rbinom(100,10,0.5) Poisson rpois(antal,mean) rpois(100,2) Normal rnorm(antal,mean,stddev) rnorm(100,10,15) Likformig (Rektangel) runif(antal,min,max) runif(100,10,20) Exponential rexp(antal,scale) (yr) rexp(100,1) mean = väntevärdet, µ, i fördelningen stddev = standardavvikelsen, σ, i fördelningen scale = 1/väntevärdet i exponentialfördelningen 1 Normalfördelningen Om man till exempel vill ha ett antal slumptal (50 stycken) från en normalfördelning med väntevärdet (populationsmedelvärdet) 100 och standardavvikelsen 15 skriver man följande kommando: a1 <- rnorm(50,100,15) I variabeln a1 lagras då de genererade värdena. Vill man kolla på värdena skriver man bara a1 så får man en lista på värdena. Vill man beräkna basstatistiken för datamaterialet kan man skriva: a1sum <- summary(a1) En boxplot får man genoma att skriva boxplot(a1) och ett histogram genom att skriva hist(a1). Prova dessa kommandon så du ser vad som händer. Vill du veta mer om ett kommando kan du skriva kommandot med ett frågetecken framför t.ex:?hist,?boxplot, etz. Uppgift 1 Skapa nu ett stickprov normal om 10 slumptal från en normalfördelning med väntevärdet 10 och standardavvikelsen 2. Bilda sedan ett andra stickprov som heter uni och innehåller 10 slumptal från en likformig fördelning mellan 10 och 20. Ledning: rnorm(10,10,2) och runif(10,10,20). Observera att slumptalen kan ses som stickprov om 10 observationer från två kända populationer. Kontrollera nu med hjälp av kommandot hist(normal) och hist(uni) hur väl stickproven överensstämmer med populationerna. För ett stort stickprov bör de se ut som den teoretiska fördelningen tex så här: Hur väl stämmer stickproven överens med populationerna? Upprepa nu förfarandet för stickprovsstorlek n=50 observationer samt n=500. Bör överensstämmelsen bli bättre eller sämre? Uppgift 2 Skapa nu tre stickprov om n=1000 observationer från följande fördelningar (kalla dem t.ex. norm1, uni1 resp. exp1): Normal(10, 2). Rektangelfördelning Uniform(10, 20). Exponential med väntevärdet 1 (rexp(1000,1)). Kontrollera med histogrammet hur fördelningarna ser ut. 2

3 Figur 1: Normal(10,4) samt Uniform(10,20). 2 QQ-plot och qqnorm Om man vill kontrollera hur pass nära ett stickprov är en viss teoretisk fördelning kan man använda olika grafiska metoder. En sådan metod är en s.k. Q-Q plot (Q=Quantile). I en Q-Q plot jämför man de verkliga värdena i stickprovet med det man kunde förvänta sig från en viss teoretisk fördelning. Om de observerade värdena överensstämmer med de förväntade så kommer punkterna i en Q-Q plot att följa en rät linje. Jämför nu de tre stickproven ovan med vad vi kunde förvänta oss från en normalfördelning. I R finns det en standardfunktion qqnorm(stickprovsnamn) där man jämför kvantilerna i ett stickprov med normalfördelningen. I kommandofönstret: qqnorm(norm1) qqnorm(uni1) qqnorm(exp1) Dina figurer bör se ut ungefär som i Figur 2 nedan. Notera att olika avvikelser från normalfördelning resulterar i olika former på kurvan. Uppgift 3 I de tidigare uppgifterna har vi simulerat vad som händer om vi tar stickprov av olika storlekar från olika kända fördelningar. Vi skall nu gå vidare och undersöka vad som händer om vi bildar olika storheter i stickprovet. Vilka egenskaper får då dessa storheter? Det är framförallt väntevärdet E[X], variansen V [X] och fördelningen F X (x) som vi intresserar oss för. Vi börjar med att undersöka vilken fördelningen summan av två observationer från en normalfördelning med väntevärde 10 och standardavvikelse 2 har. Börja med generera två nya stickprov om 1000 observationer norm1 och norm2: norm1 <- rnorm(1000,10,2) norm2 <- rnorm(1000,10,2) När vi kör dessa kommandon kommer det att bildas två nya variabler som heter norm1 och norm2 och som innehåller 1000 slumptal var. Bilda nu summan (sum12) av de två kolumnerna norm1 och norm2. Undersök vilken fördelning summan har genom att göra ett histogram och en Q-Q plot. sum12 <- norm1+norm2 Vilken fördelning har summan? Vad bör väntevärdet bli? Standardavvikelsen? (Använd gärna R, x beräknas med sqrt(x)) Beräkna också medelvärdet av sum12 med mean(sum12) och stickprovsstandardavvikelsen sd(sum12). Hur passar de med de teoretiska värdena? 3

4 Normal Q Q Plot norm1 Normal Q Q Plot uni1 Sample Quantiles Sample Quantiles Theoretical Quantiles Theoretical Quantiles Normal Q Q Plot exp1 Sample Quantiles Theoretical Quantiles Figur 2: QQ-plot för Normal-, Likformig- samt Exp-fördelning. Centrala gränsvärdessatsen Lägger man ihop, adderar, (eller beräknar medelvärdet) av flera oberoende normalfördelade slumpvariabler är summan också normalfördelad. Men vad händer om man lägger ihop flera variabler som alla är rektangelfördelade? Vilken fördelning fås om man adderar exponentialfördelade variabler? Centrala gränsvärdessatsen säger att om man adderar ett stort antal oberoende variabler från en godtycklig fördelning blir summan (eller medelvärdet) normalfördelad. Detta märkliga faktum ska du i denna uppgift undersöka med hjälp av den interaktiva rutinen cgs(). Konkret kan vi tänka oss att du gör ett antal mätningar av en intressant (bio)variabel, du bildar summan av mätningarna (eller medelvärdet). Det du ska undersöka är hur summan kommer att variera från mätserie till mätserie? Beror det på ursprungsfördelningen hos den uppmätta variabeln? Så här använder du rutinen cgs i RStudio När du skriver cgs() får du möjlighet att välja mellan ett antal fördelningar med givna parametrar eller kan du konstruera en egen diskret sannolikhetsfördelning. Välj ett av alternativen 4

5 genom att mata in tillhörande siffra. Du får en figur med täthetsfunktion eller sannolikhetsfunktion för din valda fördelning. Välj nu hur många mätningar du ska göra från denna fördelning och mata in detta antal. I kommandofönstret visas resultatet av din mätningar (de 10 första om du valt ett stort antal), d.v.s. R har hämtat slumptal från din valda fördelning. Summan av alla mätningarna skrivs ut. I din figur markeras mätningarna med kryss. Antag nu att du gör upprepade serier med det antal mätningar, n, som du valt. För varje serie beräknas summan av dina mätningar. Hur varierar då summan? Mera matematiskt beskrivet: Om X 1, X 2,..., Xn är oberoende med den fördelning du valt, vad är då fördelningen för summan X 1 + X Xn? Undersök detta genom att simulera N serier med det antal mätningar (n) du valt. Rutinen ritar sedan upp ett histogram för summan. Ange alltså ett värde på N, tänk på att välja N tillräckligt stort så att du kan få en uppfattning av fördelningen i histogrammet. Centrala gränsvärdessatsen säger att om du valt ett tillräckligt stort antal mätningar kommer fördelningen för summan att bli ungefär normalfördelning. Rutinen ger dig möjlighet att anpassa en normalfördelning till data. Du kan låta R sköta om det och din uppgift blir då att undersöka grafiskt om du tycker att approximationen verkar bra. Till din hjälp har du också en Q-Q plot där du kan se om summan verkar passa till en normalfördelning. Du kan också anpassa normalfördelningen själv och måste då fundera på vilka värden på väntevärde och standardavvikelse som gäller (prova gärna detta själv som en utmärkt övning!). Om du vill köra rutinen igen kan du undvika den interaktiva fasen genom att direkt skriva in dina val i anropet. Exempelvis ger cgs(2,10,1000,1) att 1000 serier med vardera 10 mätningar slumpas från en likformig fördelning, R(0, 4). Histogramet för de 1000 summorna plottas, normalfördelning anpassas och en Q-Q plot ritas. Uppgift 4 1. Välj rektangelfördelning, antal=2 i R-funktionen cgs(). Vilka värden kan summan av två mätningar ligga mellan? Verkar histogrammet rimligt? 2. Öka antalet mätningar i rektangelfördelningen. Vad händer om du tar antalet mätningar till 5? Eller ökar till 10? 3. Försök anpassa rätt normalfördelning till histogrammet, d.v.s. tänk ut värdena på väntevärde och standardavvikelse. Ledning: Om s.v. X är uniform(a,b): E[X] = a+b 2 och att V [X] = (b a) Exponentialfördelning: Gör nu motsvarande för exponentialfördelningen. Hur många mätningar behöver ni ta innan ni tycker att summan är ungefär normalfördelat? Verkar fördelningen gå snabbare eller långsammare mot en normalfördelning än det gjorde för den likformiga fördelningen. Vad beror detta på? 5. Normalfördelning: Vad händer om ni tar antal=2? Kan du förklara detta? 6. Undersök gärna på motsvarande sätt vad som händer då man bildar summor från binomialeller poissonfördelningen. 7. Testa gärna med en egen diskret fördelning, tex binomialfördelningen. 8. Du har tittat på vad som händer med summor av variabler. Vad händer om man i stället tar medelvärdet av variablerna (mätningarna)? 5

6 3 Fördelningsanpassning 3.1 Empiriska fördelningsfunktionen F (x) normalfördelningspapper Grafiska metoder används främst för tre ändamäl: skattning av parametrar, validering av fördelning samt skattning av kvantiler. Den grafiska tekniken bygger kort på att, vid givet slumpmässigt stickprov x 1, x 2,...,x n : 1. Först ordnas stickprovet, betecknas x (1), x (2),...,x (n). 2. Man skattar fördelningsfunktionen F(x) med det vi kallar för den empiriska fördelningsfunktionen F (x). Den definieras som: 0 ; x < x (1) F (x) = i/n ; x (i) x < x (i+1) 1 ; x (n) x 3. Därefter plottas de n stycken talparen (x (i), ( i n )). Plottningspositionen i n som vi använder för den empiriska fördelningsfunktionen har en del fördelar men också vissa nackdelar, tex. att x (n) kommer att vara den position som svarar mot 1 hos fördelningsfunktionen. Andra val av plottningspositioner förekommer: exempelvis, (x (i), ( i n+1 ) eller (x (i), ( i 1/2 n ), se Holmquist B. Matematisk statistik för M och V, Kompletteringar och tillämpningar, I R kan F (x) ritas med hjälp av funktionen plot(...,type="s",...). Nedansåtende kommandorader exemplifierar teckniken med hjälp av 100 observationer från en s.v. X N(2, 1). > X<-rnorm(100,2,1) > sortx<-sort(x) > Fn<-seq(1,length(sortX),1)/(length(sortX)+1) # plotposition foer F_n > plot(sortx,fn,type="s",col="blue") > grid() På y-axeln har vi F (x). Använd denna för att skatta medelvärdet, kvartilerna samt medianen i fördelningen. Eftersom vi känner µ och σ i det här fallet kan vi komplettera figuren med den riktiga fördelningsfunktionen, F X (x). Gör det, glöm inte att använda points(...) istället för plot(...) innan du plottar ovanpå F (x). 3.2 Normplot i R-package nsrfa Om vi vet eller misstänker att stickprovet kommer från en normalfördelning kan vi istället plotta det ordnade stickprovet i ett normalfördelningspapper. Skalan på y-axeln i ett normalfördelningspapper är anpassad så att observationerna kommer att följa en rät linje om de är normalfördelade. Jämför teknken med qqnorm. Om vi får någon kurvatur indikerar detta alltså att observationerna inte är normalfördelade. Om man har installerat ett packages som heter nsrfa i R kan man direkt plotta ett eller flera stickprov i ett normalfördelningspapper med kommandot normplot() och normpoints(). Använd?normplot för att komma underfund med funktionen. Plotta därefter stickprovet X i ett normalfördelningspapper. >?normplot > normplot(x) Uppgift 5 Skatta nu medelvärdet µ och standardavvikelsen σ i normalfördelningsplotten, skattningstekniken är en direkt tillämpning av moment 2 i Lektionsblad 4. Stämmer skattningarna med det använda 6

7 stickprovet? Om R-packages nsrfa inte redan finns installerat i din dator kan man enkelt göra det i RStudio genom att välja flicken packages i nedre högra fönstret och därefter kryssa för de packages man vill installera. Det finns en hel del olika fördelnnigspapper man kan ha nytta av i nsrfa. 3.3 Jordbävningar Vi ska nu studera ett datamaterial där data insamlats under perioden den 16 december 1902 t.o.m. den 4 mars Det rör sig om tidsintervall, mätt i dagar, mellan kraftiga jordbävningar världen runt. Jordbävningar med en magnitud på åtminstone 7,5 på Richterskalan finns representerade, alternativt jordbävningar med över 1000 dödsoffer. Datamaterialet finns på kursens material-hemsida under namnet Quakes.RData. Läs in filen genom kommandot load("quakes.rdata"). De numeriska värdena finns lagrade i en vektor med namn quakeper. Använd length för att finna antalet tidsperioder. Som tidigare ritar vi histogram och beräknar diverse läges- och spridningsmått: > hist(quakeper,freq=false) # histogrammets totala area blir 1, taethetsfuktion# > m<-mean(quakeper) > med<- median(quakeper) > s<-sd(quakeper) > s2<- var(quakeper) > myrange<-range(quakeper) Uppgift 6 Använd data och fundera: verkar det troligt att det kan gå längre period än 5 år mellan kraftiga jordbävningar? Hur ofta inträffar de? I R finns en del användbara villkorssatser som gör det enkelt att skapa nya vektorer och matriser med hjälp av lämpliga bivillkor, Man kan alltså på så sätt i en given vektor eller matris finna element som uppfyller ett aller annat intressant villkor. För att exmpelvis finna de perioder mellan jordbävningar med längd kortare än 1000 dagar (c:a 3 år) kan man skriva: > less1000 <- quakeper[quakeper < 1000]; > length(less1000) Första kommandot skapar en vektor som vi kan kalla vad som helst, tex. less1000. Den innehåller de element i ursprungsvektorn quakeper vilka uppfyller villkoret. För att få reda på hur många element som uppfyller villkoret använder vi helt enkelt length(less1000). Uppgift 7 Vi vill uppskatta sannolikheten för att en period mellan jordbävningar är kortare än 1000 dagar genom att beräkna motsvarande andel i datamaterialet Vi har i själva verket beräknat täljaren fall i kommandoserien ovan, och nämnaren ges helt enkelt av length(quakeper). Beräkna nu den intressanta kvoten och notera ditt svar. Hur stor är sannolikheten att det dröer mer än 200 dagar mellan två stora jordbäningar? Anmärkning. Den storhet som beräknades som mean(quakeper) benämnes ibland återkomst-tid (engelska: return period), beteckna den tex. med T r, detta är egentligen en skattning av vänteärdet. Intensiteten av de händelser som studeras kan beräknas som 1/T och studeras ofta i statistisk riskanalys, brukar betecknas med λ. 7

8 3.4 Anpassning till standardfördelning Enligt gängse statistisk teori är tidsavståndet för två händelser som uppträder slumpmässigt i tiden efter varandra exponentialfördelade, s.v. T Exp(λ). (Se sid 98 i kurboken). Dess Fördelningsfunktion kan då skrivas som F T (t) = 1 e λ t, t > 0. Uppgift 8 Avgör nu om tidsavståndet mellan två efterföljande jordbävningar är exponentialfördelad genom att jämföra den empiriska fördelningsfunktionen, F (t), med den teoretiska, F T (t) R-tips: > sortx<-sort(quakeper) > Fn<-seq(1,length(sortX),1)/(length(sortX)+1) # plotposition foer F_n > plot(sortx,fn,type="s",col="blue") > grid() > taxis<-seg(0.01,max(quakeper,1)) > FT<- 1-exp(-\lambda*taxis) > points(taxis,ft,type="l",col="red") Uppgift 9 Centrala gränsvärdessatsen i praktiken: På 35 patienter med Hodgkins sjukdom mätte man antalet T4 celler i blodet (antal/mm 3 ). Samtidigt mätte man motsvarande antal hos 35 patienter som hade andra sjukdomar (Non-Hodgkins). Data ligger i filen Hodgkindata.RData som du hittar på kursens hemsida. Läs in data via Workspace-fönstrets öppna-ikon. Du har nu fått två nya variabler Hodgkin och NonHodgkin. Undersök om antalet celler i blodet är normalfördelat för de båda grupperna. För att avgöra om två datamaterial, stickprov, är lika ska de ha samma fördelning de ska ju vara stickprov från samma population. Avgör nu om de två stickproven i datamaterialet Hodgkindata.RData har samma fördelning med hjälp av dess empiriska fördelningsfunktioner och normalfördelningspapperet, normplot(). Tips små storheters.v., X, som är positiva men med värden nära noll kan ofta modelleras med hjälp av en lognormalfördelning, s.v. log X N(µ, σ 2 ). Ett annat alternativ är att använda en X transformation. Stämmer detta? Det är också möjligt jämföra grupperna genom att bilda differensen mellan de två gruppmedelvärdena. Kan du använda dig av centrala gränsvärdessatsen i detta fall? Kan du säga något om vilken fördelning differensen i medelvärden har? är det ett stort problem att variabeln inte är normalfördelad i de båda grupperna från början? Kan man åtgärda detta på något sätt? Vad händer med fördelningen för stickprovsmedelvärdet om man istället använder en transformation av värdena, till exempel X eller log X. 8

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3 Laboration 2 Fördelningar och simulering Introduktion 2014-02-06 Syftet med laborationen är dels

Läs mer

1 Sannolikhet enligt frekvenstolkningen Kast med tärning

1 Sannolikhet enligt frekvenstolkningen Kast med tärning Lunds univrsitet Matematikcentrum Matematisk statistik Biostatistisk grundkurs, MASB11 Laboration 2 HT-2014, 141212 Fördelningar och simulering Introduktion Syftet med laborationen är dels att vi skall

Läs mer

träna på att använda olika grafiska metoder för att undersöka vilka fördelningar ett datamaterial kan komma från

träna på att använda olika grafiska metoder för att undersöka vilka fördelningar ett datamaterial kan komma från Matematikcentrum Matematisk statistik MASB11: BIOSTATISTISK GRUNDKURS DATORLABORATION 1, 1 APRIL 215 FÖRDELNINGAR, SIMULERING OCH FÖRDELNINGSANPASSNING Syfte Syftet med dagens laboration är att du ska

Läs mer

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT007 Laboration Simulering Grupp A: 007-11-1, 8.15-.00 Grupp B: 007-11-1, 13.15-15.00 Introduktion Syftet

Läs mer

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet Per-Erik Isberg. Laboration 1. Simulering

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet Per-Erik Isberg. Laboration 1. Simulering Matematikcentrum (7) Matematisk Statistik Lunds Universitet Per-Erik Isberg Laboration Simulering HT 006 Introduktion Syftet med laborationen är dels att vi skall bekanta oss med lite av de olika funktioner

Läs mer

Laboration 3: Parameterskattning och Fördelningsanpassning

Laboration 3: Parameterskattning och Fördelningsanpassning LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 3 MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 3: Parameterskattning och Fördelningsanpassning 1 Syfte Syftet

Läs mer

repetera begreppen sannolikhetsfunktion, frekvensfunktion och fördelningsfunktion

repetera begreppen sannolikhetsfunktion, frekvensfunktion och fördelningsfunktion Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF25: MATEMATISK STATISTIK KOMPLETTERANDE PROJEKT DATORLABORATION 1, 14 NOVEMBER 2017 Syfte Syftet med dagens laboration är att du ska träna

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Lunds univrsitet Matematikcentrum Matematisk statistik

Lunds univrsitet Matematikcentrum Matematisk statistik Lunds univrsitet Matematikcentrum Matematisk statistik Biostatistisk grundkurs, MASB11 Laboration 2 VT-2015, 150205 Felrisker Fördelningar och Simulering Introduktion Syftet med laborationen är dels att

Läs mer

Laboration 1: Beskrivande statistik

Laboration 1: Beskrivande statistik LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 1 MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 1: Beskrivande statistik 1 Syfte Syftet med den här laborationen

Läs mer

Föreläsning 7. Statistikens grunder.

Föreläsning 7. Statistikens grunder. Föreläsning 7. Statistikens grunder. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Föreläsningens innehåll Översikt, dagens föreläsning: Inledande

Läs mer

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 3 Matematisk statistik AK för CDIFysiker, FMS012/MASB03, HT15 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla

Läs mer

DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03. bli bekant med summor av stokastiska variabler.

DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03. bli bekant med summor av stokastiska variabler. LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03 Syfte: Syftet med dagens laborationen är att du skall: få förståelse

Läs mer

Datorövning 1: Fördelningar

Datorövning 1: Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, VT-17 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och

Läs mer

bli bekant med summor av stokastiska variabler.

bli bekant med summor av stokastiska variabler. LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR E FMSF20 Syfte: Syftet med dagens laborationen är att du skall: få förståelse för diskreta, bivariate

Läs mer

Två parametrar: µ (väntevärdet) och σ (standardavvikelsen) µ bestämmer normalfördelningens läge

Två parametrar: µ (väntevärdet) och σ (standardavvikelsen) µ bestämmer normalfördelningens läge Lunds tekniska högskola Matematikcentrum Matematisk statistik Matematisk statistik AK för ekosystemteknik, FMSF75 OH-bilder 28-9-3 Normalfördelningen, X N(µ, σ) f(x) = e (x µ)2 2σ 2, < x < 2π σ.4 N(2,).35.3.25.2.5..5

Läs mer

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Läs mer

Målet för D3 är att studenterna ska kunna följande: Dra slumptal från olika sannolikhetsfördelningar med hjälp av SAS

Målet för D3 är att studenterna ska kunna följande: Dra slumptal från olika sannolikhetsfördelningar med hjälp av SAS Datorövning 3 Statistisk teori med tillämpningar Simulering i SAS Syfte Att simulera data är en metod som ofta används inom forskning inom ett stort antal ämnen, exempelvis nationalekonomi, fysik, miljövetenskap

Läs mer

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Läs mer

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 2: Om väntevärden och fördelningar 1 Syfte I denna laboration skall vi försöka

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

Samplingfördelningar 1

Samplingfördelningar 1 Samplingfördelningar 1 Parametrar och statistikor En parameter är en konstant som karakteriserar en population eller en modell. Exempel: Populationsmedelvärdet Parametern p i binomialfördelningen 2 Vi

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer

1 Stora talens lag. Laboration 2 Matematisk statistik allmän kurs, MASA01:A, HT Teori. 1.2 Uppgifter

1 Stora talens lag. Laboration 2 Matematisk statistik allmän kurs, MASA01:A, HT Teori. 1.2 Uppgifter Lunds universitet Matematikcentrum Matematisk statistik Laboration 2 Matematisk statistik allmän kurs, MASA01:A, HT-15 Syftet med denna laboration är att du skall bli förtrogen med två viktiga områden

Läs mer

Kap 2. Sannolikhetsteorins grunder

Kap 2. Sannolikhetsteorins grunder Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser

Läs mer

Demonstration av laboration 2, SF1901

Demonstration av laboration 2, SF1901 KTH 29 November 2017 Laboration 2 Målet med dagens föreläsning är att repetera några viktiga begrepp från kursen och illustrera dem med hjälp av MATLAB. Laboration 2 har följande delar Fördelningsfunktion

Läs mer

TMS136. Föreläsning 4

TMS136. Föreläsning 4 TMS136 Föreläsning 4 Kontinuerliga stokastiska variabler Kontinuerliga stokastiska variabler är stokastiska variabler som tar värden i intervall av den reella axeln Det kan handla om längder, temperaturer,

Läs mer

TMS136. Föreläsning 7

TMS136. Föreläsning 7 TMS136 Föreläsning 7 Stickprov När vi pysslar med statistik handlar det ofta om att baserat på stickprovsinformation göra utlåtanden om den population stickprovet är draget ifrån Situationen skulle kunna

Läs mer

I den här datorövningen ser vi hur R kan utnyttjas för att kontrollera modellantaganden och beräkna konfidensintervall.

I den här datorövningen ser vi hur R kan utnyttjas för att kontrollera modellantaganden och beräkna konfidensintervall. UPPSALA UNIVERSITET Matematiska institutionen Måns Thulin Statistik för ingenjörer 1MS008 VT 2011 DATORÖVNING 2: SKATTNINGAR OCH KONFIDENSINTERVALL 1 Inledning I den här datorövningen ser vi hur R kan

Läs mer

Datorövning 1 Fördelningar

Datorövning 1 Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF20: MATEMATISK STATISTIK, ALLMÄN KURS, 7.5HP FÖR E, HT-15 Datorövning 1 Fördelningar I denna datorövning ska du utforska begreppen sannolikhet

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det finns inget så praktiskt som en bra teori" November 2011 Repetition Vad vi gjort hitills Vi har börjat med att studera olika typer av mätningar och sedan successivt tagit fram olika beskrivande mått

Läs mer

Målet för D2 är att studenterna ska kunna följande: Dra slumptal från olika sannolikhetsfördelningar med hjälp av SAS

Målet för D2 är att studenterna ska kunna följande: Dra slumptal från olika sannolikhetsfördelningar med hjälp av SAS Datorövning 2 Statistisk teori med tillämpningar Simulering i SAS Syfte Att simulera data är en metod som ofta används inom forskning inom ett stort antal ämnen, exempelvis nationalekonomi, fysik, miljövetenskap

Läs mer

histogram över 1000 observerade väntetider minuter 0.06 f(x) täthetsfkn x väntetid 1

histogram över 1000 observerade väntetider minuter 0.06 f(x) täthetsfkn x väntetid 1 Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF5: Matematisk statistik för L och V OH-bilder på föreläsning 4, 27--8 EXEMPEL: buss. Från en busshållplats avgår en buss var 2 min (inga

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, OCH INFÖR ÖVNING 4

BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, OCH INFÖR ÖVNING 4 LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, 216-4-6 OCH INFÖR ÖVNING 4 Övningens mål: Du ska förstå begreppet slumpvariabel och skilja

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala

Läs mer

Datorövning 1: Fördelningar

Datorövning 1: Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF45/MASB03: MATEMATISK STATISTIK, 9 HP, VT-18 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och

Läs mer

Laboration 1: Introduktion till R och Deskriptiv statistik

Laboration 1: Introduktion till R och Deskriptiv statistik STOCKHOLMS UNIVERSITET 13 februari 2009 Matematiska institutionen Avd. för matematisk statistik Gudrun Brattström Laboration 1: Introduktion till R och Deskriptiv statistik Denna första datorlaboration

Läs mer

Laboration med Minitab

Laboration med Minitab MATEMATIK OCH STATISTIK NV1 2005 02 07 UPPSALA UNIVERSITET Matematiska institutionen Silvelyn Zwanzig, Tel. 471 31 84 Laboration med Minitab I denna laboration skall du få stifta bekantskap med ett statistiskt

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 3 Johan Lindström 4 september 7 Johan Lindström - johanl@maths.lth.se FMSF7/MASB F3 /3 fördelningsplot log- Johan Lindström - johanl@maths.lth.se

Läs mer

PROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd

PROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren PROGRAMFÖRKLARING I Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/4 Statistik

Läs mer

histogram över 1000 observerade väntetider minuter 0.06 f(x) täthetsfkn x väntetid

histogram över 1000 observerade väntetider minuter 0.06 f(x) täthetsfkn x väntetid Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 4, 28-3-27 EXEMPEL: buss. Från en busshållplats avgår en buss var 2 min (inga

Läs mer

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 3 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla

Läs mer

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.

Läs mer

Laboration 3: Enkla punktskattningar, styrkefunktion och bootstrap

Laboration 3: Enkla punktskattningar, styrkefunktion och bootstrap LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 3, HT -06 MATEMATISK STATISTIK FÖR F, PI OCH NANO, FMS 012 MATEMATISK STATISTIK FÖR FYSIKER, MAS 233 Laboration 3: Enkla punktskattningar,

Läs mer

Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen

Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, HT-16 Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen Syftet med den här laborationen

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 4 7 november 2017 1 / 29 Idag Förra gången Viktiga kontinuerliga fördelningar (Kap. 3.6) Fördelningsfunktion (Kap. 3.7) Funktioner av stokastiska

Läs mer

Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen

Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen Kap 6: Normalfördelningen Normalfördelningen Normalfördelningen som approximation till binomialfördelningen σ μ 1 Sats 6 A Om vi ändrar läge och/eller skala på en normalfördelning så har vi fortfarande

Läs mer

Föreläsning 3, Matematisk statistik Π + E

Föreläsning 3, Matematisk statistik Π + E Repetition Kvantil Presentation Slumptal Transformer Inversmetoden Föreläsning 3, Matematisk statistik Π + E Sören Vang Andersen 13 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F3 1/19 Repetition

Läs mer

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 4 KONTINUERLIGA STOKASTISKA VARIABLER Tatjana Pavlenko 7 september 2016 PLAN FÖR DAGENS FÖRELÄSNING Repetition av diskreta stokastiska variabler. Väntevärde

Läs mer

LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg

LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg Simulering i MINITAB Det finns goda möjligheter att utföra olika typer av simuleringar i Minitab. Gemensamt för dessa är att man börjar

Läs mer

Finansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 2. Diskreta Sannolikhetsfördelningar. (LLL Kap 6) Stokastisk Variabel

Finansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 2. Diskreta Sannolikhetsfördelningar. (LLL Kap 6) Stokastisk Variabel Finansiell Statistik (GN, 7,5 hp,, VT 009) Föreläsning Diskreta (LLL Kap 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS,

Läs mer

Diskussionsproblem för Statistik för ingenjörer

Diskussionsproblem för Statistik för ingenjörer Diskussionsproblem för Statistik för ingenjörer Måns Thulin thulin@math.uu.se Senast uppdaterad 20 februari 2013 Diskussionsproblem till Lektion 3 1. En projektledare i ett byggföretaget ska undersöka

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Kontinuerliga fördelningar Uwe Menzel, 8 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.

Läs mer

Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13

Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13 Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare

Läs mer

MVE051/MSG Föreläsning 7

MVE051/MSG Föreläsning 7 MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 1 MATEMATISK STATISTIK AK FÖR F OCH FYSIKER, FMS012/MASB03, VT15 Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Läs mer

Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat.

Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Ytterligare begrepp Viktiga

Läs mer

SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2

SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 Matematisk Statistik SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 1 Introduktion Denna laboration är inte poänggivande utan är till för den som vill bekanta sig med MATLAB. Fokusera

Läs mer

Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6):

Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6): EM-fotboll 2012 några grafer Sport är en verksamhet som genererar mängder av numerisk information som följs med stort intresse EM i fotboll är inget undantag och detta dokument visar några grafer med kommentarer

Läs mer

1 Syfte. 2 Moment hos och faltning av fördelningar MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT Angående grafisk presentation

1 Syfte. 2 Moment hos och faltning av fördelningar MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT Angående grafisk presentation UNDS TEKNISKA ÖGSKOA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR, FMS 33, T-3!"$&' (*) 1 Syfte I den första delen av detta projekt skall vi försöka hitta begripliga tolkningar av

Läs mer

Kap 3: Diskreta fördelningar

Kap 3: Diskreta fördelningar Kap 3: Diskreta fördelningar Sannolikhetsfördelningar Slumpvariabler Fördelningsfunktion Diskreta fördelningar Likformiga fördelningen Binomialfördelningen Hypergeometriska fördelningen Poisson fördelningen

Läs mer

DATORÖVNING 2: STATISTISK INFERENS.

DATORÖVNING 2: STATISTISK INFERENS. DATORÖVNING 2: STATISTISK INFERENS. START Logga in och starta Minitab. Se till att du kan skriva Minitab-kommandon direkt i Session-fönstret (se föregående datorövning). CENTRALA GRÄNSVÄRDESSATSEN Enligt

Läs mer

Statistiska metoder för säkerhetsanalys

Statistiska metoder för säkerhetsanalys F3: Slumpvariaber och fördelningar Diskret Kontinuerlig Slumpvariabler Slumpvariabler = stokastiska variabler = random variables = s.v. Heter ofta X, Y, T. Diskreta kan anta ändligt eller uppräkneligt

Läs mer

Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 1 Statistik; teori och tillämpning i biologi 1 Kursens uppbyggnad 9 föreläsningar Föreläsningsunderlag läggs ut på kurshemsidan 5 lektioner Uppgifter från kursboken enligt planering 5 laborationer

Läs mer

1 Syfte. 2 Förberedelseuppgifter DATORLABORATION 1 MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-03

1 Syfte. 2 Förberedelseuppgifter DATORLABORATION 1 MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-03 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 1 MATEMATISK STATISTIK, AK FÖR L, FMS 0, HT-0! "$&%')(+*,-./01.02% 1 Syfte Syftet med den här laborationen är att du ska bli

Läs mer

4 Diskret stokastisk variabel

4 Diskret stokastisk variabel 4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används

Läs mer

Repetitionsföreläsning

Repetitionsföreläsning Slumpförsök Repetitionsföreläsning Föreläsning 15 Sannolikhet och Statistik 5 hp Med händelser A B... avses delmängder av ett utfallsrum. Slumpförsök = utfallsrummet + ett sannolikhetsmått P. Fredrik Jonsson

Läs mer

Introduktion och laboration : Minitab

Introduktion och laboration : Minitab Robert Parviainen, Tel. 471 31 86 E-post: robert@math.uu.se Matematisk Statistik IT VT 2004 Introduktion och laboration : Minitab Den här laborationen går ut på att stifta bekantskap med ett statistiskt

Läs mer

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 01, HT-07 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen, enkla punktskattningar

Läs mer

Vi har en ursprungspopulation/-fördelning med medelvärde µ.

Vi har en ursprungspopulation/-fördelning med medelvärde µ. P-värde P=probability Sannolikhetsvärde som är resultat av en statistisk test. Anger sannolikheten för att göra den observation vi har gjort eller ett sämre / mer extremt utfall om H 0 är sann. Vi har

Läs mer

Mer om slumpvariabler

Mer om slumpvariabler 1/20 Mer om slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/2 2013 2/20 Dagens föreläsning Diskreta slumpvariabler Vilket kretskort ska man välja? Väntevärde

Läs mer

Datorövning 3 Bootstrap och Bayesiansk analys

Datorövning 3 Bootstrap och Bayesiansk analys Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-17 Datorövning 3 Bootstrap och Bayesiansk analys I denna datorövning ska vi fokusera på

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 7 15 november 2017 1 / 28 Lite om kontrollskrivning och laborationer Kontrollskrivningen omfattar Kap. 1 5 i boken, alltså Föreläsning

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data

Läs mer

FÖRELÄSNING 7:

FÖRELÄSNING 7: FÖRELÄSNING 7: 2016-05-10 LÄRANDEMÅL Normalfördelningen Standardnormalfördelning Centrala gränsvärdessatsen Konfidensintervall Konfidensnivå Konfidensintervall för väntevärdet då variansen är känd Samla

Läs mer

Hur måttsätta osäkerheter?

Hur måttsätta osäkerheter? Geotekniska osäkerheter och deras hantering Hur måttsätta osäkerheter? Lars Olsson Geostatistik AB 11-04-07 Hur måttsätta osäkerheter _LO 1 Sannolikheter Vi måste kunna sätta mått på osäkerheterna för

Läs mer

SF1901 Sannolikhetsteori och statistik: HT 2014 Lab 1 för CSAMHS, CINEKI, och CL

SF1901 Sannolikhetsteori och statistik: HT 2014 Lab 1 för CSAMHS, CINEKI, och CL Matematisk Statistik SF1901 Sannolikhetsteori och statistik: HT 2014 Lab 1 för CSAMHS, CINEKI, och CL Introduktion Detta är handledningen till Laboration 1, ta med en en utskriven kopia av den till laborationen.

Läs mer

Matematisk statistik 9hp Föreläsning 2: Slumpvariabel

Matematisk statistik 9hp Föreläsning 2: Slumpvariabel Matematisk statistik 9hp Föreläsning 2: Slumpvariabel Anna Lindgren 6+7 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp Utfall

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29)

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29) LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29) Aktuella avsnitt i boken: Kap 61 65 Lektionens mål: Du ska

Läs mer

TAMS65 - Föreläsning 1 Introduktion till Statistisk Teori och Repetition av Sannolikhetslära

TAMS65 - Föreläsning 1 Introduktion till Statistisk Teori och Repetition av Sannolikhetslära TAMS65 - Föreläsning 1 Introduktion till Statistisk Teori och Repetition av Sannolikhetslära Martin Singull Matematisk statistik Matematiska institutionen TAMS65 - Mål Kursens övergripande mål är att ge

Läs mer

F9 Konfidensintervall

F9 Konfidensintervall 1/16 F9 Konfidensintervall Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 18/2 2013 2/16 Kursinformation och repetition Första inlämningsuppgiften rättas nu i veckan. För att

Läs mer

Lunds tekniska högskola Matematikcentrum Matematisk statistik

Lunds tekniska högskola Matematikcentrum Matematisk statistik Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS035: MATEMATISK STATISTIK FÖR M DATORLABORATION 1, 2012-03-30 Syfte Syftet med dagens laboration är att du ska träna på att hantera olika

Läs mer

DATORÖVNING 6: CENTRALA GRÄNSVÄRDES-

DATORÖVNING 6: CENTRALA GRÄNSVÄRDES- DATORÖVNING 6: CENTRALA GRÄNSVÄRDES- SATSEN OCH FELMARGINALER I denna datorövning ska du använda Minitab för att empiriskt studera hur den centrala gränsvärdessatsen fungerar, samt empiriskt utvärdera

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2017-08-22 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Jourhavande lärare: Mykola

Läs mer

Gör uppgift 6.10 i arbetsmaterialet (ingår på övningen 16 maj). För 10 torskar har vi värden på variablerna Längd (cm) och Ålder (år).

Gör uppgift 6.10 i arbetsmaterialet (ingår på övningen 16 maj). För 10 torskar har vi värden på variablerna Längd (cm) och Ålder (år). Matematikcentrum Matematisk statistik MASB11: BIOSTATISTISK GRUNDKURS DATORLABORATION 4, 21 MAJ 2018 REGRESSION OCH FORTSÄTTNING PÅ MINIPROJEKT II Syfte Syftet med dagens laboration är att du ska bekanta

Läs mer

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,

Läs mer

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys) Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10 Laboration Regressionsanalys (Sambandsanalys) Grupp A: 2010-11-24, 13.15 15.00 Grupp B: 2010-11-24, 15.15 17.00 Grupp C: 2010-11-25,

Läs mer

4.1 Grundläggande sannolikhetslära

4.1 Grundläggande sannolikhetslära 4.1 Grundläggande sannolikhetslära När osäkerhet förekommer kan man aldrig uttala sig tvärsäkert. Istället använder vi sannolikheter, väntevärden, standardavvikelser osv. Sannolikhet är ett tal mellan

Läs mer

Föreläsning 3. Sannolikhetsfördelningar

Föreläsning 3. Sannolikhetsfördelningar Föreläsning 3. Sannolikhetsfördelningar Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Slumpvariabel? Resultatet av ett slumpmässigt försök utgörs

Läs mer

FÖRELÄSNING 8:

FÖRELÄSNING 8: FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data

Läs mer

Datorövning 1 Introduktion till Matlab Fördelningar

Datorövning 1 Introduktion till Matlab Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-12 Datorövning 1 Introduktion till Matlab Fördelningar I denna datorövning ska du först

Läs mer

Föreläsning 4, Matematisk statistik för M

Föreläsning 4, Matematisk statistik för M Föreläsning 4, Matematisk statistik för M Erik Lindström 1 april 2015 Erik Lindström - erikl@maths.lth.se FMS012 F4 1/19 Binomialfördelning Beteckning: X Bin(n, p) Förekomst: Ett slumpmässigt försök med

Läs mer

Institutionen för teknikvetenskap och matematik, S0001M LABORATION 2

Institutionen för teknikvetenskap och matematik, S0001M LABORATION 2 Institutionen för teknikvetenskap och matematik, S0001M LABORATION 2 Laborationen avser att illustrera användandet av normalfördelningsdiagram, konfidensintervall vid jämförelser samt teckentest. En viktig

Läs mer

FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått

FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD 208-08-26 Sannolikhetsteori Följande gäller för sannolikheter: 0 P(A P(Ω = P(A

Läs mer

Simulering av Poissonprocesser Olle Nerman, Grupprojekt i MSG110,GU HT 2015 (max 5 personer/grupp)

Simulering av Poissonprocesser Olle Nerman, Grupprojekt i MSG110,GU HT 2015 (max 5 personer/grupp) Simulering av Poissonprocesser Olle Nerman, 2015-09-28 Grupprojekt i MSG110,GU HT 2015 (max 5 personer/grupp) Frågeställning: Hur åstadkommer man en realisering av en Poissonprocess på ett tidsintervall

Läs mer

SF1911: Statistik för bioteknik

SF1911: Statistik för bioteknik SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion

Läs mer

Bestäm med hjälp av en lämplig och välmotiverad approximation P (X > 50). (10 p)

Bestäm med hjälp av en lämplig och välmotiverad approximation P (X > 50). (10 p) Avd. Matematisk statistik TENTAMEN I SF1901, SF1905, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel-

Läs mer