Kvalificeringstävling den 30 september 2008



Relevanta dokument
Kvalificeringstävling den 26 september 2017

Matematiska uppgifter

Matematiska uppgifter

Finaltävling i Stockholm den 22 november 2008

Finaltävling i Lund den 19 november 2016

SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet. Lösningsförslag till naltävlingen den 20 november 2004

Högstadiets matematiktävling 2018/19 Finaltävling 19 januari 2019 Lösningsförslag

Kvalificeringstävling den 30 september 2014

Lösningar till udda övningsuppgifter

Lösningsförslag Junior 2018

i=1 β i a i. (Rudolf Tabbe.) i=1 b i a i n

Ekvationer och system av ekvationer

4. Bestäm alla trippler n 2, n, n + 2 av heltal som samtliga är primtal. 5. Skriv upp additions- och multiplikationstabellen för räkning modulo 4.

Högstadiets matematiktävling 2016/17 Finaltävling 21 januari 2017 Lösningsförslag

Repetition inför tentamen

Svar och arbeta vidare med Student 2008

Matematik CD för TB. x + 2y 6 = 0. Figur 1:

Kap Globala extremvärden, extremproblem med bivillkor.

Finaltävling i Uppsala den 24 november 2018

Avdelning 1, trepoängsproblem

vilket är intervallet (0, ).

Kvalificeringstävling den 29 september 2009

Välkommen till Kängurutävlingen Matematikens hopp 17 mars Student för elever på kurs Ma 4 och Ma 5

Student. a: 5 b: 6 c: 7 d: 8 e: 3

Trepoängsproblem. Kängurutävlingen 2014 Junior. 1 Bilden visar tre kurvor med längderna a, b respektive c. Vilket av följande påståenden är korrekt?

Lösningar till Algebra och kombinatorik

Sidor i boken 8-9, 90-93

x ( f u 2y + f v 2x) xy = 24 och C = f

Konsten att lösa icke-linjära ekvationssystem

= ( 1) ( 1) = 4 0.

Där a = (1, 2,0), b = (1, 1,2) och c = (0,3, 1) Problem 10. Vilket är det enda värdet hos x för vilket det finns a och b så att

Vektorn w definieras som. 3. Lös ekvationssystemet algebraiskt: (2p) 4. Förenkla uttrycket så långt det går. (2p)

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.

MVE365, Geometriproblem

Högstadiets matematiktävling 2017/18 Kvalificeringstävling 14 november 2017 Lösningsförslag och bedömningsmall

Tentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic

. b. x + 2 y 3 z = 1 3 x y + 2 z = a x 5 y + 8 z = 1 lösning?

Funktioner. Räta linjen

Avdelning 1, trepoängsproblem

1 Vektorer i koordinatsystem

Kvalificeringstävling den 28 september 2010

Finaltävling i Umeå den 18 november 2017

===================================================

Enklare matematiska uppgifter

1 Addition, subtraktion och multiplikation av (reella) tal

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR

Diskret matematik: Övningstentamen 1

Lösningar till utvalda uppgifter i kapitel 5

Matematiska uppgifter

Moment 4.2.1, 4.2.2, 4.2.3, Viktiga exempel 4.1, 4.3, 4.4, 4.5, 4.6, 4.13, 4.14 Övningsuppgifter 4.1 a-h, 4.2, 4.3, 4.4, 4.5, 4.

Lösningar till Algebra och kombinatorik

e 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2

Matematiska uppgifter

x+2y 3z = 7 x+ay+11z = 17 2x y+z = 2

Enklare uppgifter, avsedda för skolstadiet

Tentamen 973G10 Matematik för lärare årskurs 4-6, del2, 15 hp delmoment Geometri 4,5 hp, , kl. 8-13

Inledande kurs i matematik, avsnitt P.4

Känguru 2012 Student sid 1 / 8 (gymnasiet åk 2 och 3) i samarbete med Jan-Anders Salenius vid Brändö gymnasiet

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret.

P Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R

Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6

Enklare matematiska uppgifter

z = 4 + 3t P R = (5 + 2t, 4 + 2t, 4 + 3t) (1, 1, 3) = (4 + 2t, 3 + 2t, 1 + 3t)

NMCC Semifinal

Bestäm ekvationen för det plan som går genom punkten (1,1, 2 ) på kurvan och som spänns

Ordlista 5A:1. term. faktor. täljare. nämnare. Dessa ord ska du träna. Öva orden

Riksfinal. Del 1: 6 uppgifter Tid: 60 min Maxpoäng: 18 (3p/uppgift) OBS! Skriv varje uppgift på separat papper och lagets namn på samtliga papper.

Student för elever på kurs Ma 4 och Ma 5

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR

Explorativ övning Vektorer

Avdelning 1, trepoängsproblem

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.

Fler uppgifter på andragradsfunktioner

Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen.

Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 11 april, 2002

TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor

INNEHÅLL XYZ. Hösten 2011 provpass 2 12 provpass Våren 2012 provpass 3 20 provpass Övningsprovet 28 KVA

Räta linjens ekvation & Ekvationssystem

Enklare matematiska uppgifter

Datum: 24 okt Betygsgränser: För. finns på. Skriv endast på en. omslaget) Denna. Uppgift. Uppgift Beräkna. Uppgift Låt z. Var god. vänd.

Sidor i boken f(x) = a x 2 +b x+c

KS övning 1. Problem 1. Beräkna Problem 2. Förenkla. (x 1 3 y

Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen

Matematikcirkel Katedralskolan 4 december 2013 Gott och Blandat

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2

Känguru 2014 Student sida 1 / 8 (gymnasiet åk 2 och 3)

Sidor i boken Figur 1: Sträckor

TENTAMEN. Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Onsdagen 25 september 2013 Tentamen består av 3 sidor

4 Dividera höjningen (0,5 %) med räntesatsen från början (1 %). 7 Du kan pröva dig fram till exempel så här: Från Till Procent- Procent enheter

A: 3 B: 4 C: 5 D: 6 E: 7 Ryssland

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013

Välkommen till. Kängurutävlingen Matematikens hopp 2009 Student för elever på kurs D och E. Kängurutävlingen 2009 Student.

Repetition inför kontrollskrivning 2

Högskoleverket. Delprov NOG

Om ellipsen och hyperbelns optiska egenskaper

Explorativ övning euklidisk geometri

TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter

Explorativ övning euklidisk geometri

Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät. tan u = OP. tan(180 v) = RS. cos v = sin v = tan v, tan v = RS.

Transkript:

SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 30 september 2008 Förslag till lösningar Problem 1 Tre rader med tal är skrivna på ett papper Varje rad innehåller tre olika positiva heltal För varje rad bildas summan och produkten av de tre talen Talen är sådana att de tre radsummorna är lika, medan de tre produkterna är olika; produkten är minst för den första raden och störst för den tredje Om det är givet att radsumman är den minsta möjliga som kan fås under villkoren ovan, bestäm denna summa och ange för varje rad de tre tal som ingår Lösning: Eftersom radsummorna är lika medan produkterna skiljer sig åt kan två rader ha högst ett tal gemensamt Vi söker alltså tre olika taltripplar som är sådana att två tripplar kan ha högst ett tal gemensamt och där summan av talen, som ska vara densamma i varje trippel, är så liten som möjligt Vi noterar att ordningen mellan talen inte spelar någon roll, det enda som har betydelse är vilka tal som ingår Låt oss beteckna den gemensamma summan med S För S = 6 finns bara trippeln {1, 2, 3}, för S = 7 finns bara {1, 2, 4} medan det för S = 8 finns två olika tripplar, {1, 2, 5} och {1, 3, 4} För S = 9 däremot finns det tre olika tripplar: {1, 2, 6}, {1, 3, 5} och {2, 3, 4} Villkoren är uppfyllda: produkterna är resp 12, 15, och 24, dvs tripplarna anger i den ordning de står talen i raderna 1, 2 och 3 Svar: Den minsta möjliga summan är 9 och talen i raderna 1, 2 och 3 är resp {1, 2, 6}, {1, 3, 5} och {2, 3, 4} Problem 2 Givet är en spetsvinklig triangel Två cirklar ritas med två av triangelns sidor som diametrar Visa att en av cirklarnas skärningspunkter ligger på triangelns tredje sida Lösning: Låt triangeln ha hörn i punkterna A, B och C som figuren visar Vi bildar två cirklar med AB resp AC som diametrar Den första cirkeln skär sidan BC, eller dess förlängning, i punkten B och i ytterligare en punkt, D, som är skild från B, eftersom vinkeln vid B inte är rät Enligt randvinkelsatsen är vinkeln ADB rät, eftersom denna står på cirkeldiametern AB Det betyder att punkten D utgör fotpunkten för höjden i triangeln ABC genom hörnet A mot sidan BC Då triangeln är spetsvinklig måste höjdens fotpunkt ligga mellan B och C, dvs på triangelsidan Med samma argument finner vi att den andra cirkeln, som har AC som diameter, också skär sidan BC i punkten D Men detta innebär att de båda cirklarna skär varandra i punkten D (de skär dessutom varandra i punkten A) Cirklarna har alltså en skärningspunkt på sidan BC och påståendet är visat A B D C

Problem 3 Bestäm alla positiva heltal a b c sådana att a 3 + b 3 + c 3 = 2008 Låt oss börja med att lista n jämte dess kub n 3 för n = 1, 2, Eftersom 12 3 = 1728 < 2008 och 13 3 > 2008 räcker det att studera n-värden som är mindre än eller lika med 12 n n 3 rest vid div med 8 1 1 1 2 8 0 3 27 3 4 64 0 5 125 5 6 216 0 7 343 7 8 512 0 9 729 1 10 1000 0 11 1331 3 12 1728 0 Eftersom 2008 är ett jämnt tal, har vi två möjligheter: antingen är a, b och c alla jämna, eller så är två av talen udda och det tredje jämnt Fall 1 Talen a, b, c är jämna Låt oss sätta a = 2r, b = 2s, t = 2s Vi söker nu alla positiva heltal r s t, som är sådana att (8r) 3 + (8s) 3 + (8t) 3 = 2008, dvs sådana att r 3 + s 3 + t 3 = 251 Ingen av talens kuber kan överstiga 251 Vidare måste den största av de tre talens kuber måste vara minst så stort som 251/3 Enligt tabellen är den största tredjepotensen, t 3, antingen 125 eller 216 Om t 3 = 125 måste r 3 + s 3 = 251 125 = 126 Från tabellen ser vi att denna summa bara kan fås på ett sätt, nämligen som 125 + 1 Vi får alltså 1 + 125 + 125 = 251, varav r = 1, s = t = 5, vilket efter multiplikation med 2 ger a = 2, b = 10, c = 10 och kubsumman 8 + 1000 + 1000 = 2008 Om t 3 = 216, måste r 3 + s 3 = 251 216 = 35 Vi finner snart att 27 och 8 är de enda kuberna som ger summan 35 Vi får r = 2, s = 3 och t = 6, vilket efter multiplikation med 2 ger a = 4, b = 6 och c = 12 och kubsumman 64 + 216 + 1728 = 2008 Vi har därmed hittat alla lösningar i jämna heltal a, b och c Fall 2 Två av talen är udda och det tredje är jämnt Låt oss bortse från villkoret a b c och enbart anta att a, b och c är positiva heltal Antag vidare att a och b är udda tal och att c är jämnt I likheten a 3 + b 3 + c 3 = 2008 är 2008 delbart med 8 och detsamma gäller enligt antagandet c 3, varför a 3 + b 3 också måste vara delbart med 8 Sökandet kan förenklas något genom att vi för varje kubiskt tal bestämmer resten när talet divideras med 8 Alla jämna tal är ju delbara med 8, dvs ger resten är 0, medan de udda har någon av resterna 1,3, 5 eller 7 (se tabellen ovan) För att summan av de udda kuberna ska vara delbar med 8, krävs att summan av resterna också är det Här räcker det i själva verket att restsumman är lika med 8 Det finns fyra sådana fall; summorna blir 1 + 343 = 344, 27 + 125 = 152, 125 + 1331 = 1456, 343 + 729 = 1072 Det återstår att undersöka om det tal som återstår för att ge summan 2008 är en kub i något av dess fyra fall Eftersom c 3 ska vara delbart med 8 räcker det att utföra prövningen efter division med detta värde Vi får differenserna 2008 344 = 1664, 2008 152 = 1856, 2008 1456 = 552 och 2008 1072 = 936 Efter division med 8 får vi talen 208, 232, 69 och 117, men inget av dessa tal är kuben på något heltal I fall 2 går det alltså inte att hitta tre kuber med summan 2008

Alternativ lösning: Den största av de tre kuberna, c 3, måste vara minst 2008/3, vilket är uppfyllt för c-värdena 9, 10, 11, 12 med motsvarande kuber 729, 1000, 1331, 1728 För att totalsumman ska bli 2008 måste summan av de två återstående kuberna vara resp 1279, 1008, 677, 280 Eftersom b 3 är störst av de sistnämnda, måste värdet vara minst lika med hälften av den återstående summan Dessutom är b 3 högst lika med c 3 och mindre än den återstående summan (den sista kuben, a 3, är minst lika med 1) Vi hänvisar till tabellen ovan Fall 1 Med c = 9 och c 3 = 729 gäller att 1279/2 < b 3 729 Enda möjlighet är b 3 = 729, men 2008 729 729 = 550 är inte en heltalskub Fall 2 Med c = 10 och c 3 = 1000 gäller att 1008/2 b 3 1000 Prövning med kubtalen 512, 729 och 1000 visar att bara det sistnämnda fungerar: b 3 = 1000 och a 3 = 8, dvs b = 10, a = 2 och lösningen (a, b, c) = (2, 10, 10) Fall 3 Med c = 11 och c 3 = 1331 gäller att 677/2 < b 3 < 677, dvs b 3 = 343 och b 3 = 512 är enda möjligheter, men varken 2008 1331 343 = 334 eller 2008 1331 512 = 165 är någon heltalskub Fall 4 Med c = 12 och c 3 = 1728 gäller att 280/2 b 3 < 280 Då har vi b 3 = 216, vilket ger a 3 = 64, dvs b = 6, a = 4 och lösningen (a, b, c) = (4, 6, 12) Svar: (a, b, c) = (2, 10, 10) och (4, 6, 12) Problem 4 Finn alla icke-negativa lösningar till ekvationssystemet x 2 yz = x y 2 zx = y z 2 xy = z Lösning: Bilda differensen mellan ekv 1 och ekv 2 samt mellan ekv 2 och ekv 3 Vi får ekvationerna { (x 2 y 2 ) + (xz yz) = x y (y 2 z 2 ) + (xy xz) = y z, som kan omformas till { (x y)(x + y + z 1) = 0 (y z)(x + y + z 1) = 0 En lösning till systemet måste uppfylla x = y = z och/eller x + y + z = 1 (om minst en av differenserna x y och y z är skild från 0, måste x + y + z = 1) Fallet x = y = z Insättning i ursprungsekvationerna ger x = y = z = 0, vilket således är en lösning till ekvationssystemet Fallet x + y + z = 1 Summering av de tre ursprungsekvationerna ger (1) (x 2 + y 2 + z 2 ) (xy + yz + zx) = x + y + z Vi har också utvecklingen (2) (x + y + z) 2 = (x 2 + y 2 + z 2 ) + 2(xy + yz + zx) Summering av ekvationerna (1) och (2) ger 3(xy + yz + zx) = (x + y + z) 2 (x + y + z) = 0 Det betyder att xy = yz = zx = 0, eftersom xy, yz och zx antogs vara icke-negativa Om det ursprungliga ekvationssystemet skrivs på formen x(x 1) = yz y(y 1) = zx, z(z 1) = xy

ser vi direkt att enda möjliga värden på x, y, z är 0 eller 1 Men då summan av talen är 1, återstår endast möjligheterna (x, y, z) = (1, 0, 0), (0, 1, 0) och (0, 0, 1) Kontroll visar att dessa är lösningar till ekvationssystemet Svar: (x, y, z) = (0, 0, 0), (1,0,0), (0,1,0), (0,0,1) Problem 5 Visa att xy + 2x 2 y 2 x 2 + y 2 + xy 3 för alla 0 x 1, 0 y 1 Lösning: Vi samlar alla termer i högerledet och visar att det så erhållna uttrycket är 0 för alla x och y i definitionsmängden För överskådlighets skull parar vi ihop termerna två och två Faktorn y x dyker upp i vissa deluttryck, varför det blir naturligt att dela upp problemet i två fall: 0 y x 1 och 0 x < y 1 Fall 1 0 x y 1 Vi skriver olikheten som xy + x 2 y 2 + x 2 y 2 y 2 + x 2 + xy 3 och parar ihop varje term i vänsterledet med motsvarande term i högerledet och får 0 (y 2 xy) + (x 2 x 2 y 2 ) + (xy 3 x 2 y 2 ) eller 0 y(y x) + x 2 (1 y 2 ) + xy 2 (y x) Varje term i det sista ledet är under de givna villkoren 0, dvs vi har visat att olikheten gäller i det första fallet Fall 2 0 y < x 1 I detta fall använder vi i princip olikheten i dess ursprungliga form, xy + x 2 y 2 + x 2 y 2 x 2 + y 2 + xy 3, och parar ihop termerna i de bägge leden på samma sätt som tidigare: 0 (x 2 xy) + (y 2 x 2 y 2 ) + (xy 3 x 2 y 2 ) eller 0 x(x y) + y 2 (1 x 2 ) + xy 2 (y x) Här kan den sista termen i högerledet bli negativ till skillnad från de två första Men om vi adderar den första termen till den tredje får vi 0 y 2 (1 x 2 ) + x(1 y 2 )(x y), där de båda deluttrycken i det sista ledet är 0 Vi har alltså visat att olikheten gäller också i fall 2 och därmed för alla x och y i den ursprungliga definitionsmängden Alternativ lösning: Det går att lösa olikheten direkt utan att göra en uppdelning i olika fall Vi omformar olikheten på följande sätt: Högerledet kan nu skrivas som 0 (x 2 + y 2 2xy) + (xy 3 2x 2 y 2 + xy) (x y) 2 + xy(y 2 2xy + 1) Men eftersom xy 0 och 2xy 2y, är högerledet större än eller lika med (x y) 2 + xy(y 2 2y + 1) = (x y) 2 + xy(y 1) 2

Båda termerna i det sista ledet är 0 för alla x och y i definitionsmängden och olikheten är därmed visad Problem 6 Låt P 1, P 2,, P n vara n olika punkter i planet Man markerar med blå färg mittpunkterna på alla möjliga sträckor mellan skilda punkter, dvs P i P j, 1 i < j n Vilket är det minsta möjliga antalet olika blå punkter? Lösning: Låt l vara en linje som inte är parallell med någon av sträckorna P i P j En sådan linje måste finnas, eftersom det endast finns ett ändligt antal sträckor Genom varje punkt P i drar vi en linje, l i, parallell med l Enligt förutsättningarna är linjerna l 1, l 2,, l n alla skilda åt Låt nu l vara en linje som inte är parallell med l Den skär linjerna l 1, l 2,, l n i punkterna Q 1, Q 2,, Q n, säg Punkterna Q 1, Q 2,, Q n utgör sk parallellprojektioner (parallellt med l) på l av punkterna P 1, P 2,, P n På varje sträcka Q i Q j, i j, färgar vi nu mittpunkten gul De gula punkterna kommer likaså att bilda parallellprojektioner (parallellt med l) på l av de blå punkterna, eftersom parallellförflyttningen bibehåller alla avståndsförhållanden oförändrade Det kan dock inträffa att flera blå punkter genom parallellförflyttningen kan ge upphov till samma gula punkt (se figuren nedan, där ofyllda ringar markerar punkterna P i, fyllda ringar punkterna Q i, fyrkanter markerar två av de blå punkterna som övergår i en gemensam gul punkt, markerad med en stjärna) Antalet gula punkter måste därför bli högst lika med antalet blå punkter l l Vilket är det minsta antalet gula punkter som kan förekomma? Låt A och B beteckna de båda ytterpunkterna av punkterna Q 1, Q 2,, Q n Mellan A och B på linjen l ligger alltså de n 2 övriga punkterna Q i Låt oss beteckna mittpunkten på sträckan AB med C 1) Betrakta först mittpunkterna på sträckorna AQ i för de punkter Q i som ligger mellan A och B (och inte sammanfaller med någon av dessa) Dessa mittpunkter måste hamna i gula punkter på ett avstånd från A som är strikt mindre än halva avståndet mellan A och B De gula punkterna måste alla vara skilda åt, eftersom punkterna Q i är skilda åt 2) Betrakta sedan mittpunkterna på sträckorna BQ i för nämnda punkter Q i mellan A och B Dessa mittpunkter måste hamna i gula punkter på ett avstånd från B som är strikt mindre än halva avståndet mellan A och B Ånyo konstaterar vi att dessa gula punkter ligger skilda åt och dessutom är skilda från den första uppsättningen punkter, eftersom uppsättningarna ligger på var sin hälft av sträckan AB 3) Slutligen konstaterar vi att mittpunkten C på sträckan AB också hamnar i en gul punkt, skild från övriga mittpunkter bildade under 1) och 2)

l A C B l Figuren illustrerar fallet n = 4 Punkterna P i är markerade med ofyllda ringar och punkterna Q i med fyllda Stjärnorna på linjen l markerar de enligt 1), 2) och 3) garanterat olika gula punkterna En blå punkt (mittpunkten på det streckade linjestycket) är markerad med en fyrkant och övergår genom parallellförflyttningen i en gul punkt Sammanfattningsvis gäller att det måste finnas minst (n 2)+(n 2)+1 = 2n 3 olika gula punkter och således minst lika många olika blå punkter Frågan är om det finns en placering av punkterna Q 1, Q 2,, Q n som är sådan att antalet gula punkter är exakt 2n 3 Jo, en sådan finns Om vi nämligen placerar punkterna Q i på lika avstånd, exempelvis med koordinaterna (1, 0), (2, 0),, (n, 0) och bildar de mittpunkter som beskrivs under 1), 2) och 3), finner vi att punkterna med koordinaterna (2, 0), (3, 0),, (n 1, 0), samt ( 1 2, 0), (1 + 1 2, 0), (2 + 1 2, 0),, ((n 1) + 1 2, 0) alla färgas gula Antalet sådana punkter är (n 2) + (n 1) = 2n 3 Några andra gula punkter finns inte i detta fall Om vi från början låter punkterna P i ha koordinaterna (1, 0), (2, 0),, (n, 0), blir följaktligen antalet blå punkter lika med 2n 3 Svar: Minsta antalet blå punkter är 2n 3