Mer om Rainflowcykler

Relevanta dokument
Grundläggande Lastanalys

Mätosäkerhet och kundlaster

2. Förklara vad en egenfrekvens är. English: Explain what en eigenfrequency is.

Preschool Kindergarten

This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum

1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)

Grafisk teknik IMCDP IMCDP IMCDP. IMCDP(filter) Sasan Gooran (HT 2006) Assumptions:

EXAMINATION L Ö S N I N G A R ---- S O L U T I O N S

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version

Gradientbaserad Optimering,

PFC and EMI filtering

Grafisk teknik IMCDP. Sasan Gooran (HT 2006) Assumptions:

Pre-Test 1: M0030M - Linear Algebra.

Chapter 2: Random Variables

Grafisk teknik. Sasan Gooran (HT 2006)

LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik

12.6 Heat equation, Wave equation

8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers.

Webbregistrering pa kurs och termin

Swedish Championship 2010 and COPS CUP XVIII. Kallebäck Göteborg LEVEL III

Isometries of the plane

Measuring void content with GPR Current test with PaveScan and a comparison with traditional GPR systems. Martin Wiström, Ramboll RST

denna del en poäng. 1. (Dugga 1.1) och v = (a) Beräkna u (2u 2u v) om u = . (1p) och som är parallell

Fatigue Properties in Additive manufactured Titanium & Inconell

Webbreg öppen: 26/ /

Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås

Lösning: ω e. = k M = EA LM

GERDA Cryostat Rn emanation

Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm

PRESS FÄLLKONSTRUKTION FOLDING INSTRUCTIONS

Adding active and blended learning to an introductory mechanics course

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00. English Version

EXAM IN MODELING AND SIMULATION (TSRT62)

Par m 328 feet. Lång höger sväng. Korgen står placerad i en skogsglänta OB-linje på vänster sida.

Styrteknik: Binära tal, talsystem och koder D3:1

and u = och x + y z 2w = 3 (a) Finn alla lösningar till ekvationssystemet

Examples on Analog Transmission

Datasäkerhet och integritet

Theory 1. Summer Term 2010

English Version. Number of sold cakes Number of days

1. Förpackningsmaskin / Packaging machine

ERS (Electrical Road System) Slide-in project within FFI program

Solutions to exam in SF1811 Optimization, June 3, 2014

CHARMEC project SP13 Alarm limits for wheel damage / Larmgränser för hjulskador

1. Varje bevissteg ska motiveras formellt (informella bevis ger 0 poang)

Support for Artist Residencies

PRESS FÄLLKONSTRUKTION FOLDING INSTRUCTIONS

Sammanfattning hydraulik

Rastercell. Digital Rastrering. AM & FM Raster. Rastercell. AM & FM Raster. Sasan Gooran (VT 2007) Rastrering. Rastercell. Konventionellt, AM

WindPRO version feb SHADOW - Main Result. Calculation: inkl Halmstad SWT 2.3. Assumptions for shadow calculations. Shadow receptor-input

VHDL testbänk. Mall-programmets funktion. Låset öppnas när tangenten 1 trycks ned och sedan släpps. William Sandqvist

ASSEMBLY INSTRUCTIONS SCALE CIRCLE - STANDARD

Kurskod: TAMS24 / Provkod: TEN (8:00-12:00) English Version

ASSEMBLY INSTRUCTIONS SCALE SQUARE - STANDARD

Second handbook of research on mathematics teaching and learning (NCTM)

Linköpings Universitet Hållfasthetslära, IKP

SAMMANFATTNING AV SUMMARY OF

FÖRBERED UNDERLAG FÖR BEDÖMNING SÅ HÄR


CANALKLER 250S. Gänga i tum Thread in inch

Datorövning 5. Statistisk teori med tillämpningar. Lära sig beräkna konfidensintervall och utföra hypotestest för:

Isolda Purchase - EDI

State Examinations Commission

In Bloom CAL - Maskbeskrivningar / Stitch tutorials

Stiftelsen Allmänna Barnhuset KARLSTADS UNIVERSITET

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00. English Version

Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås

INSTALLATION INSTRUCTIONS

Kurskod: TAMS11 Provkod: TENB 07 April 2015, 14:00-18:00. English Version

BRUKSANVISNING. Oscilla 910

MOLECULAR SHAPES MOLECULAR SHAPES

STORSEMINARIET 3. Amplitud. frekvens. frekvens uppgift 9.4 (cylindriskt rör)

Graphs (chapter 14) 1

Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås

Immigration Studying. Studying - University. Stating that you want to enroll. Stating that you want to apply for a course.


Tentamen i Matematik 2: M0030M.

VHDL Basics. Component model Code model Entity Architecture Identifiers and objects Operations for relations. Bengt Oelmann -- copyright

FORTA M315. Installation. 218 mm.

Undergraduate research:

A QUEST FOR MISSING PULSARS

F ξ (x) = f(y, x)dydx = 1. We say that a random variable ξ has a distribution F (x), if. F (x) =

Boiler with heatpump / Värmepumpsberedare

Senaste trenderna från testforskningen: Passar de industrin? Robert Feldt,

Installation Instructions

Klimatpåverkan och de stora osäkerheterna - I Pathways bör CO2-reduktion/mål hanteras inom ett osäkerhetsintervall

P650 - Takscreen. Installationsguide EN

Mid-Semester Evals. CS 188: Artificial Intelligence Spring Outline. Contest. Conditional Independence. Recap: Reasoning Over Time

Module 6: Integrals and applications

Tentamen MMG610 Diskret Matematik, GU

SOLUTION

Swedish adaptation of ISO TC 211 Quality principles. Erik Stenborg

Tentamen i Matematik 3: M0031M.

Har Du frågor angående uppgifterna: kontakta någon av lärarna, vid lektionerna, via e-post eller på deras rum:

Vägytans tillstånd, historik och framtid. Johan Lang

x 2 2(x + 2), f(x) = by utilizing the guidance given by asymptotes and stationary points. γ : 8xy x 2 y 3 = 12 x + 3

7.5 Experiment with a single factor having more than two levels

EXAMINATION L Ö S N I N G A R ---- S O L U T I O N S

Metodprov för kontroll av svetsmutterförband Kontrollbestämmelse Method test for inspection of joints of weld nut Inspection specification

Mekanik FK2002m. Kraft och rörelse II

Transkript:

Mer om Kurs i Lastanalys för Utmattning SP Bygg och Mekanik Pär Johannesson Par.Johannesson@sp.se Nivåkorsningar Lastspektrum Rainflowmatris Rainflow Cycle Counting: Hysteresis and rate independence Rainflow counting reflects Masing rule and Material memory rules and counts load events leading to local hysteresis cycles. stress standing Hysteresis model (cyclic stress-strain curve, Masing and Memory rules) hanging strain PJ/211-9-29 2 1

From Outer Load to Local Load Rainflow cycle counting is motivated by considering local stresses and strains (hysteresis models), but often applied to outer loads. When and why do the local arguments apply to outer loads? If σ(t) = ϕ(l(t)) ( * ), then load cycles and local stress-strain cycles open and close at the same time (e.g. ( * ) holds for forces acting on a stiff component and stresses calculated from linear FEA and Neuber s rule) L L σ σ, ε L ε ε Rainflow counting of external loads is well justified in such cases! PJ/211-9-29 3 Definition av rainflowcykler Rychlik Definitionen av rainflowcykler av Rychlik (1987): För varje lokalt maximum ska man försöka nå upp till samma nivå, baklänges eller framlänges, genom att tappa så lite höjd som möjligt. Den k:te rainflowcykeln definieras alltså som (m k rfc,m k ), där m k rfc =max(m k+,m k- ). Denna definition är ekvivalent med andra definitioner: Endo s, ASTM, 4-point,... (även Range-Pair) Räknar hysteres-cykler i lasten. PJ/211-9-29 4 2

Definition av rainflowcykler Endo s Original (i) 1. Vrid diagrammet så tiden går nedåt 2. Börja från toppen och låt en droppe per maximum (eller min) rinna neråt 3. Stanna om något av följande gäller a) Passerar större max (mindre min) än startpunktens b) Korsar tidigare droppes väg 4. Identifiera slutna loopar last tid PJ/211-9-29 5 Definition av rainflowcykler Endo s Original (ii) last tid PJ/211-9-29 6 3

Rainflow Cycle Counting: Algorithmic description Application of the 4-point rule to the discretized turning point signal x 1. Initialize an empty N by N matrix RFM and an empty residual vector RES (r=). 2. Initialize the 4 point stack (s 1, s 2, s 3, s 4 ) = (x 1, x 2, x 3, x 4 ), and set k = 5 (next point). 3. Apply the counting rule: if min(s 1, s 4 ) s 2, s 3 max(s 1, s 4 ), then store the cycle (s 2, s 3 ), RFM(s 2, s 3 ) = RFM(s 2, s 3 ) +1, delete (s 2, s 3 ) from the stack and refill it: a) if r = : (s 1, s 2, s 3, s 4 ) = (s 1, s 4, x k, x k+1 ), k = k+2 b) if r = 1: (s 1, s 2, s 3, s 4 ) = (RES r, s 1, s 4, x k ), k = k+1, r = r - 1 c) if r > 1: (s 1, s 2, s 3, s 4 ) = (RES r-1, RES r, s 1,s 4 ), r = r 2 else, go to the next point: r = r + 1, RES r = s 1, (s 1, s 2, s 3, s 4 ) = (s 2, s 3, s 4, x k ), k = k + 1 4. Repeat step 3 until the signal is exhausted. PJ/211-9-29 7 Simple Example Sequence of 14 turning points with 8 levels. Demonstrate the different counting methods. PJ/211-9-29 8 4

Rainflow Cycle Counting: Simple example x = (2, 7, 4, 8, 2, 5, 4, 6, 1, 7, 4, 5, 2, 5) Load 8 7 6 5 4 3 2 1 5 1 15 Time Cycles: (7, 4) (5, 4) (2, 6) (4, 5) RES = (2, 8, 1, 7, 2, 5) PJ/211-9-29 9 Övning: Räkna rainflowcykler Räkna rainflowcyklerna i signalen x = (1, 4, 2, 3, 2, 5, 3, 4, 3, 4) PJ/211-9-29 1 5

M 1 M 2 M 1 M 2 M 1 M 1 M 1 M 1 M 2 M 2 M 1 M 2 M 1 M 2 M 1 Kurs i Lastanalys för Utmattning Rainflow Cycle Counting: The residual An example for first and repeated runs Stress signal: (, 36, -2, 4, 24, 44, ) Counting results 4-point counting gives RFM = (4,24), RES = (, 36, -2, 44, ) Closed cycles after first run: (4,24) and (36,-2) Closed cycles in second run: (, 36), (44, -2) and (4,24) stress [MPa] stress [MPa] 5 first run second run -5 5 1 15 2 sample 5 4 3 2 1-1 -2 1 2 3 4 5 6 strain x 1-3 PJ/211-9-29 11 Rainflow Cycle Counting: The residual (ctd.) An example for first and repeated runs stress [MPa] 4 M 2 1-2 2 4 6 strain x 1-3 Total damage: d = 1/ N 1 = N d + d + ( N 1) d d + d2 d = 1 d + d 5 2 1 2 1 2 3 4 Type of cycles Cycles Algorithm Damage First run as well as second run 2, 4 (identical) 4-point count d First run only 1 Extra rule on the residual Second run only 3 and 5 Extra rule on the residual For short signals: d 1, d 2 can t be neglected since they may contain large cycles. For long signals: d >> d 1, d 2 (typically) d d (4-point-count) d 1 d 2 For HCF, N >> 1 : d d +d 2 = RFM + 4-point-count(RES,RES) PJ/211-9-29 12 6

Markov Counting Definition of the Markov matrix M M(i,j) = Number of transitions from bin i to bin j PJ/211-9-29 13 Markov Counting (ctd.) Ex 1: Vertical wheel force (country road) The Markov matrix contains the number of transitions in the discretized turning point signal from one level (row) to the next level (column) Ex 2: Ramp + noise and sinusoidal + noise Both signals have similar Markov matrices but different Rainflow matrices. Damage(Markov) << Damage(Rainflow). Differences become small for narrow band loads. 3 1.8 (b) Markov matrix 25 2 2 1 From 5 1 15 2 from.6.4 15 1 3 5 1 15 2 25 5 1 15 2 25 To.2.5 1 to 5 2 1 From 5 1 15 2 5 1 15 2 25 5 1 15 2 25 To PJ/211-9-29 14 7

Markov Load Model for Turning Points Load Measurement Turning Points Markov Matrix TP-filter Model Extract peaks & valleys Frequencies of transition Assumptions: Markov Model: Markov Property: Frequency content not important. Stationarity Markov Chain of Turning Points. Frequency of transitions given by Markov matrix. Next value only depends on the current value, not on complete history of values. PJ/211-9-29 15 Example: Markov load PJ/211-9-29 16 8

Example: Five Simulated Markov loads All 5 simulations are different. Damage Exponent = 5 PJ/211-9-29 17 Example: Five Simulated Markov loads Level crossings Load spectrum Blue: five simulated Markov loads PJ/211-9-29 18 9

Limiting rainflow matrix What is the typical shape of the rainflow matrix for a random load? Limiting shape of rainflow matrix Definition: The shape of the rainflow matrix for a very long observation. n = 1 n = 1 n = 1 n = PJ/211-9-29 19 Example: Markov load Limiting rainflow matrix PJ/211-9-29 2 1

Example: Five Simulated Markov loads Level crossings Load spectrum Blue: five simulated Markov loads Red: Obtained from theoretically computed limiting rainflow martix PJ/211-9-29 21 Rainflow damage: upper & lower bounds Input Expected rainflow damage Example: Previous Markov model Level crossings Upper Bound Markov Load Model Markov matrix True value --- Limiting Rainflow matrix Upper Bound:.313 Markov model:.36 Lower bound:.165 Markov count Lower Bound PJ/211-9-29 22 11

Cycle Counting Overview of Methods Time signals 2D methods Rainflow Markov 1D methods Range-pair count Levelcrossing Range count Damage Rainflow damage Upper bound Lower bound PJ/211-9-29 23 och multi-input-laster Kurs i Lastanalys för Utmattning SP Bygg och Mekanik Pär Johannesson Par.Johannesson@sp.se Nivåkorsningar Lastspektrum Rainflowmatris PJ/211-9-29 24 12

Realistic Example Measured Service Loads Vertical wheel force measured on the front left wheel of a truck. Three road types: City, Highway and Country. PJ/211-9-29 25 Definition av rainflowcykler Rychlik Definitionen av rainflowcykler av Rychlik (1987): För varje lokalt maximum ska man försöka nå upp till samma nivå, baklänges eller framlänges, genom att tappa så lite höjd som möjligt. Den k:te rainflowcykeln definieras alltså som (m k rfc,m k ), där m k rfc =max(m k+,m k- ). Denna definition är ekvivalent med andra definitioner: Endo s, ASTM, 4-point,... (även Range-Pair) Räknar hysteres-cykler i lasten. PJ/211-9-29 26 13

Service load example Rainflow counting Demonstrate counting methods using realistic service loads. Different ways of plotting and presenting the result. Discussion and interpretation of results. PJ/211-9-29 27 Service load example Level crossing & Range-pair Range pair & level crossing can be used as display options for rainflow matrices Comparison of different signals by overlaid plotting RP and LC hold somewhat complementary information wheel force z front left [] 1.9.8.7.6.5.4.3 level crossing city highway country road wheel force z front left [].35.3.25.2.15.1.5 range pair city highway country road.2 1 1 1 1 2 1 3 1 4 count 1 1 5 count PJ/211-9-29 28 14

Multidimensionella laster Vändpunkter & Accelerering Multidimensionella laster eller multi-input laster: Lasten har flera införingspunkter, eller lasten påförs i flera riktningar. Hur reducera lasten? Hur definiera vändpunkter för multi-input lasten? Hur accelerera lasten? PJ/211-9-29 29 2D-last Tidssignal & Vändpunkter Vändpunkter för 2D-last: Behåll värden vid de tidpunkter då antingen X 1 eller X 2 har en vändpunkt. PJ/211-9-29 3 15

2D-last Vändpunkter & Rainflowfilter Vändpunkter för 2D-last: Vändpunkterna är värdena då antingen X 1 eller X 2 har en vändpunkt. PJ/211-9-29 31 2D-last Vändpunkter i 4 riktningar Vändpunkter i 4 riktningar (X 1, X 2, X 1 +X 2 och X 1 -X 2 ) för 2D-last : För att bättre bevara fasen mellan signalerna studeras linjärkombinationer. Behåll värdena då någon av signalerna X 1, X 2, X 1 +X 2 eller X 1 -X 2 har en vändpunkt. PJ/211-9-29 32 16

2D-last Fasplan & rainflowfilter 1 (a) TP, 2 riktningar 1 (b) TP, 4 riktningar X 2, kraft höger / kn.5.5 X 2, kraft höger / kn.5.5 1 1.5.5 1 X 1, kraft vänster / kn 1 1.5.5 1 X 1, kraft vänster / kn 1 (c) Rainflow filter, 2 riktningar 1 (d) Rainflow filter, 4 riktningar X 2, kraft höger / kn.5.5 X 2, kraft höger / kn.5.5 1 1.5.5 1 X 1, kraft vänster / kn 1 1.5.5 1 X 1, kraft vänster / kn PJ/211-9-29 33 Multi-input Loads: From Outer Load to Local Load Rainflow cycle counting is motivated by considering local stresses and strains (hysteresis models), but often applied to outer loads. When and why do the local arguments apply to outer loads? For one input: If σ(t) = ϕ(l(t)) ( * ), then load cycles and local stress-strain cycles open and close at the same time (e.g. ( * ) holds for forces acting on a stiff component and stresses calculated from linear FEA and Neuber s rule) σ, ε L L σ L 2 ε ε L 1 Superposition principle: σ=c 1 L 1+ c 2 L 2 Rainflow counting of linear combinations of external loads is well justified in such cases! PJ/211-9-29 34 17

Rainflow Projection (RP) Method input projections c 1,1 L 1 + c 1,2 L 2 + c 1,3 L 3 Rainflow matrices projection Rainflow - counting c 2,1 L 1 + c 2,2 L 2 + c 2,3 L 3 PJ/211-9-29 35 Rainflow Projection (RP) Method RP- visualisation - load-influence-sphere y L 2 projektion Rainflow - counting damageaccumulation z -L 1 (- L 1 - L 2 + L 3 )/ (3) L 3 damage - potential L 1 x PJ/211-9-29 36 18

Rainflow Projection (RP) Method RP- visualisation - histogram projektion Rainflow - counting damageaccumulation PJ/211-9-29 37 19