3. Ljus 3.1 Det elektromagnetiska spektret Synligt ljus är elektromagnetisk vågrörelse. Det följer samma regler som vi tidigare gått igenom för mekanisk vågrörelse; reflexion, brytning, totalreflexion osv. Till skillnad från mekanisk vågrörelse behöver elektromagnetisk vågrörelse inget medium. Elektromagnetisk vågrörelse är transversell vågrörelse, som skapas av svängande elektriska och magnetiska fält. Den kan indelas i olika klasser beroende på våglängden. Det synliga ljuset utgör bara en liten del av den elektromagnetiska vågrörelsen. Eftersom ljuset är vågrörelse följer det vågrörelsens grundekvation, v = fλ. Ljusets hastighet brukar betecknas med c, så ekvationen får formen c = fλ. Ljusets hastighet är konstant i vakuum (c har i vakuum värdet 299792458 m/s). Känner vi till frekvensen hos ljuset kan vi alltså räkna ut våglängden. 1
3.2 Belysning, illuminans Vi ser olika bra beroende på om det finns mycket eller litet ljus i omgivningen. Finns det för litet ljus ser vi inget alls men det betyder inte att det inte finns ljus omkring oss, utan att våra ögon är inte tillräckligt känsliga. Vi kan mäta mängden ljus med ljusmätare. Storheten ljusflöde avser mängden ljus som utstrålas från en ljuskälla per tidsenhet. Eftersom ljuset som sänds ut påverkas av hur ljuskällan ser ut kan ljusflödet variera på olika positioner kring ljuskällan. Med hjälp av storheten ljusstyrka beskrivs ljusmängden som sänds ut i en bestämd riktning. Ju större ljusflöde mot en yta, desto ljusare verkar ytan. Detta beskrivs med storheten illuminans, eller ljusflödet dividerat med ytan som träffas. Vi kan skriva det matematiskt: Φ är symbolen för ljusflöde, A är ytan som träffas, E är symbolen för illuminans. Illuminansen är omvänt proportionell mot kvadraten på avståndet från ljuskällan så belysningen minskar kraftigt då avståndet till ljuskällan ökar. Matematiskt skrivs detta som E ~ 1/r 2. Jämför med ljudets intensitet från en megafon! 2
3.3 Ljus som vågrörelse Eftersom ljuset är en vågrörelse har det alla de egenskaper vi gått igenom reflexion, brytning, diffraktion (=spridning), interferens etc. Vi repeterar : Reflexionslagen: Infallsvinkeln för en ljusstråle är lika stor som reflexionsvinkeln ljus kan alltså studsa mot föremål. En del av ljuset kommer alltid att reflekteras. Beroende på materialet reflekteras olika mycket ljus ju slätare material desto större reflektion. Om ytan är oregelbunden reflekteras infallande ljus åt olika håll. Brytningslagen: Då ljus färdas mellan två olika medier gäller (19) α1 är infallsvinkeln och α2 är brytningsvinkeln. c 1 och c 2 är ljusets hastighet i ämne 1 och ämne 2. n 12 kallas brytningsindexet för övergången. Brytningsindex för ett ämne Vi kan även definiera brytningsindexet n för ett enskilt ämne. Detta görs genom att jämföra ljushastigheten i vakuum med ljushastigheten i ämnet som undersöks. (20) Ju större värde brytningsindexet får, desto optiskt tätare är ämnet. Om brytningsindexet är litet, sägs ämnet vara optiskt tunnare. I ett optiskt tätare ämne är ljusets hastighet långsammare än i ett optiskt tunnare ämne. 3
Ex. 10 Grönt ljus färdas genom kronglas med hastigheten 1,99*10 8 m/s. Vad är kronglasets brytningsindex? 4
Vi kan med hjälp av brytningsindexet skriva brytningslagen i en annan form. Då ljuset färdas mellan två medium med brytningsindexen n 1 och n 2 gäller: (21) Vid brytningsfenomen ändras inte frekvensen hos vågrörelsen. Då hastigheten ändras måste alltså också våglängden ändras. Detta leder till att vi kan uttrycka brytningsindexet med hjälp av våglängden. Några mellanräkningar: Vilket leder till att: Vi vet att: Vi kan slutligen ta brytningslagen och skriva den i formen (22) 5
Ex. 11 Hur stor är brytningsvinkeln? Ex. 12 Vad är brytningsindexet för ämne 2? Läs sid. 78 88 Lös uppgifter 3 7, 3 9 3 15, 3 18, 3 22 6