8E Ma: Aritmetik och bråkbegreppet Under veckorna 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera matematiska begrepp och samband mellan begrepp, - välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter, - föra och följa matematiska resonemang, och - använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser. Centralt innehåll i undervisningen: - Reella tal och deras egenskaper samt deras användning i vardagliga och matematiska situationer. - Talsystemets utveckling från naturliga tal till reella tal. Metoder för beräkningar som använts i olika historiska och kulturella sammanhang. - Centrala metoder för beräkningar med tal i bråk- och decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digital teknik. Metodernas användning i olika situationer. - Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga och matematiska situationer och inom andra ämnesområden. - Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder. - Matematisk formulering av frågeställningar utifrån vardagliga situationer och olika ämnesområden.
Arbetsform under en vecka Tisdagar (60 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar från dagens arbete till torsdagens test. (Uppgifter i boken.) Torsdagar (45 min): Test på begrepp och metoder. Enskilt arbete med veckans problemlösningsuppgift. Läxa: Jobba vidare hemma med problemlösningsuppgiften (med mallen) Fredagar (70 min): Grupparbete med problemlösningsuppgiften. Redovisning i tvärgrupper av problemlösningsuppgiften. Sammanfattning i helklass. Arbete i boken med problemlösningsuppgifter. Läxa: Gå igenom din ifyllda problemlösningsmall hemma tills du känner att du förstår de olika delarna. Spara mallen att läsa på inför provet
Källor Matematikbokens kapitel 1 och 7. Se även kapitlet Verktygslådan. Digilär. Utvärderingsform Tester på förmågorna metoder och begrepp varje vecka. Övning på förmågorna resonemang och kommunikation varje vecka. Ett E-prov för bedömning av grundläggande kunskaper i förmågorna begrepp och metoder i slutet av arbetsområdet. Ett prov för bedömning av problemlösningsförmågan i slutet av arbetsområdet. Kunskapskrav (se följande sidor) Först kommer en matris som visar betygskriterierna för de fem förmågorna i läroplanen. Därefter kommer en matris som konkretiserar betygskraven för betygen E, C och A i förmågorna Begrepp och Metoder.
Matematik: Förmågor, kunskapskrav och betyg Förmågor Kunskapskrav Betyget E Betyget C Betyget A Problemlösning: Formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. Du löser problem på ett i huvudsak fungerande sätt. Du väljer metoder med viss anpassning till problemet. Du löser problem på ett relativt väl fungerande sätt. Du väljer metoder med förhållandevis god anpassning Eleven kan lösa olika problem i bekanta situationer på ett fungerande sätt genom att välja och använda strategier och metoder med anpassning till problemets karaktär samt formulera enkla matematiska modeller som kan tillämpas i sammanhanget. Eleven för underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativt tillvägagångssätt. Du bidrar till att formulera modeller som kan tillämpas. Du för enkla och till viss del underbyggda resonemang om val av tillvägagångssätt och svarets rimlighet. Du bidrar till att ge något förslag på alternativt tillvägagångssätt. till problemet. Du formulerar modeller som efter någon bearbetning kan tillämpas. Du för utvecklade och relativt väl underbyggda resonemang om val av tillvägagångssätt och svarets rimlighet. Du ger något förslag på alternativt tillvägagångssätt. Du löser problem på ett väl fungerande sätt. Du väljer metoder med god anpassning till problemet. Du formulerar modeller som kan tillämpas. Du för välutvecklade och väl underbyggda resonemang om val av tillvägagångssätt och svarets rimlighet. Du ger olika förslag på alternativa tillvägagångssätt. Begrepp: Använda och analysera matematiska begrepp och samband mellan begrepp. Eleven har kunskaper om matematiska begrepp och visar det genom att använda dem i sammanhang på ett fungerande sätt. Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett fungerande sätt. I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra resonemang kring hur begreppen relaterar till varandra. Du har grundläggande kunskaper om matematiska begrepp. Du använder begreppen i välkända sammanhang på ett i huvudsak fungerande sätt. Du beskriver olika begrepp på ett i huvudsak fungerande sätt. Du växlar mellan olika uttrycksformer och för enkla resonemang kring hur begreppen relaterar till varandra. Du har goda kunskaper om matematiska begrepp. Du använder begreppen i bekanta sammanhang på ett relativt väl fungerande sätt. Du beskriver olika begrepp på ett relativt väl fungerande sätt. Du växlar mellan olika uttrycksformer och för utvecklade resonemang kring hur begreppen relaterar till varandra. Du har mycket goda kunskaper om matematiska begrepp. Du använder begreppen i nya sammanhang på ett väl fungerande sätt. Du beskriver olika begrepp på ett väl fungerande sätt. Du växlar mellan olika uttrycksformer och för välutvecklade resonemang kring hur begreppen relaterar till varandra.
Förmågor Kunskapskrav Betyget E Betyget C Betyget A Metoder: Välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter. Du använder i huvudsak fungerande matematiska metoder. Du använder ändamålsenliga matematiska metoder. Eleven kan välja och använda matematiska metoder med anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring. Du väljer matematiska metoder med viss anpassning till sammanhanget. Du gör beräkningar och löser rutinuppgifter med tillfredsställande resultat. Du väljer matematiska metoder med relativt god anpassning till sammanhanget. Du gör beräkningar och löser rutinuppgifter med gott resultat. Du använder ändamålsenliga och effektiva matematiska metoder. Du väljer matematiska metoder med god anpassning till sammanhanget. Du gör beräkningar och löser rutinuppgifter med mycket gott resultat. Resonemang: Föra och följa matematiska resonemang. I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt. Du framför och bemöter matematiska argument på ett sätt som till viss del för resonemangen framåt. Du framför och bemöter matematiska argument på ett sätt som för resonemangen framåt. Du framför och bemöter matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem. Kommunikation: Använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser. Eleven kan redogöra för och samtala om tillvägagångssätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med anpassning till syfte och sammanhang. Du redogör för och samtalar om tillvägagångssätt på ett i huvudsak fungerande sätt. Du använder olika matematiska uttrycksformer med viss anpassning till syfte och sammanhang. Du redogör för och samtalar om tillvägagångssätt på ett ändamålsenligt sätt. Du använder olika matematiska uttrycksformer med förhållandevis god anpassning till syfte och sammanhang. Du redogör för och samtalar om tillvägagångssätt på ett ändamålsenligt och effektivt sätt. Du använder olika matematiska uttrycksformer med god anpassning till syfte och sammanhang.
Förmåga: Begrepp (åk8) - Aritmetik Använda och analysera matematiska begrepp och samband mellan begrepp. Kunskapskrav Betyget E Betyget C Betyget A Du har kunskaper om matematiska begrepp Reella tal och deras egenskaper samt deras användning i vardagliga och matematiska situationer. 1. a: Skriv med bokstäver vilka värden siffrorna har i talet 2345678,901 b: Vilket av tecknen < eller > ska vara mellan talen 400000 och 2300000. c: Skriv talen i storleksordning med det minsta först. 2,4 2,23 2,324 2,36 2,3 2. Rita en tallinje och markera talen 0,2 och 0,85. 3. Rita en tallinje och markera talen -2, 2, -8 och 0. 4. Vilka är orden? a: ord? + ord? = ord? b: ord? - ord? = ord? c: ord? ord? = ord? d: ord? / ord? = ord? Potensform för att uttrycka små och stora tal samt användning av prefix. 5. Skriv prefixets namn och talet det mot- 8. Skriv prefixen som tiopotenser. svarar med bokstäver och med siffror a: T b: G c: M d: k e: h a: T b: G c: M d: k e: h f: d g: c h: m i: µ f: d g: c h: m i: µ 9. a: Hur uttalar man 2? 8 b: Vad betyder 2? c: Vad är bas och vad är exponent? 8
Du använder matematiska begrepp i sammanhang på ett fungerande sätt. Reella tal och deras egenskaper samt deras användning i vardagliga och matematiska situationer. 10. Vilka av talen är delbara med sex? 6. Vilka av talen är delbara med a: två? b: fem? c: tio? d: tre? 210 230 246 259 267 274 285 295 210 230 246 259 267 274 285 295 13. a: Vilka primtal finns mellan 20 och 30? b: Dela upp talet 54 i primfaktorer. 7. Skriv utan prefix (i meter, liter eller gram). a: 23 km b: 230 kg c: 23 hl d: 230 hg e: 23 dm f: 230 dl g: 23 cm h: 230 cl i: 23 mm j: 2,3 ml k: 230 mg Potensform för att uttrycka små och stora tal samt användning av prefix. 11. Skriv i tiopotensform. 14. a: Skriv 23000 i grundpotensform. a: 2000 b: 23000 c: 0,02 2 12. Skriv talen i decimalform. a: 10 2 b: 10 8 c: 3 10 2 2 d: 34 10 e: 3 10 2 b: Skriv 3,4 10 decimalform.
Förmåga: Metoder (åk8) - Aritmetik Använda och analysera matematiska begrepp och samband mellan begrepp. Kunskapskrav Betyget E Betyget C Betyget A Du gör beräkningar och löser rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt Centrala metoder för beräkningar med tal i decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digital teknik. Metodernas användning i olika situationer. 1. Multiplikationstabellen. samband och förändring. 2. Beräkna med skriftlig huvudräkning. Skriv hur du tänker. a: 234 + 567 b: 234-56 c: 4 203 d: 4 392 3. Ställ upp och räkna ut exakt. a: 23,4 + 5,67 b: 5,6-2,34 c: 2,34 5,6 d: 230 450 e: 234 / 5 4. Avrunda 2345,678 till a: hundratal b: tiotal c: ental d: tiondel e: hundradel 5. Gör en överslagsräkning. Skriv avrundningarna. a: 23,4 + 56,7 b: 23,4-6,5 c: 2,3 45,6 d: 234,5 / 6,7 10. Ställ upp 23,46 / 0,6 och räkna ut exakt. 6. Skriv endast svar. a: 100 2,3 b: 2,3 / 100 c: 0,1 23 d: 0,01 0,23 7. Skriv endast svar. a: 2-8 b: -8 + 2 c: -8-2 d: -2 + 8 e: 8 + (-2) f: 2 + (-8) g: -8 + (-2) 8. Skriv endast svar. a: 8 (-2) b: (-8) 2 c: (-24) / 8 11. Skriv endast svar. a: 23 / 0,1 b: 2,34 / 0,01 12. Skriv endast svar. a: 0,2 0,08 b: 20 0,02 c: 2 / 0,5 d: 80 / 0,2 13. Skriv endast svar. a: 8 - (-2) b: -8 - (-2) c: -2 - (-8) 14. Skriv endast svar. a: (-8) (-2) b: -2 (-8) c: 24 / (-8) d: (-24) / (-8) e: -24 / (-8)
9. Beräkna a: 2 + 3 4 b: (2 + 3) 4 15. Beräkna 8 - (5-1)/2 8 2 16. Beräkna a: 2 b: 8 17. Bestäm följande kvadrater. 2 2 2 2 a: 23 b: 2,3 c: 0,2 d: 0,02 e: Beräkna kvadraten på 3 f: Beräkna 4 2 g: Lös ekvationen x = 64. 18. Skriv som en tiopotens. a: 10 2 10 8 b: 10 8 /10 2 19. Räkna ut 4 10 3 3 10 5 och svara i tiopotensform. 20. Skriv som en tiopotens. a: 10 2 10 8 b: 10 2 10 8 c: 10 2 10 8 21. Räkna ut (9 10 8 ) / (6 10 5 ) och svara i tiopotensform. 22. Räkna ut 4 10 3 3 10 5 och svara i grundpotensform.
Förmåga: Problemlösning (åk8) - Aritmetik Använda och analysera matematiska begrepp och samband mellan begrepp. Kunskapskrav Betyget E Betyget C Betyget A Du för underbyggda Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga och matematiska situationer och inom andra ämnesområden. resonemang om val av 6. Välj rätt volymenhet tillvägagångssätt och - a: Lastbilen körde 12? grus om resultatens rimlighet i förhållande till b: Tändsticksasken rymmer 30? problemsituationen. 1. Välj rätt enhet a: En säng är 2? lång b: En glasruta är 3? tjock c: En bok är 4? tjock d: En träningsrunda är 5? 2. Välj rätt volymenhet a: En matsked rymmer 15? b: Ett badkar rymmer 350? c: Ett dricksglas rymmer 2? d: En läskburk innehåller 33? 3. Välj rätt massenhet a: Ett nyfött barn: 3500? b: En lastbil 2500? c: En tablett: 750? d: Ett äpple: 1,5? 4. Vilket av gradtalen -10, 0, 4, 12, 23, 70 och 150 C passar för a: en simbassäng b: en skidtävling c: en varm dryck d: ett kylskåp 5. Välj rätt mått a: Dataskärm: 0,2; 2 eller 20 kvadratmeter b: Dörrmatta: 0,3; 3 ellerm30 kvadratmeter c: Spelkort: 0,5; 5 eller 50 kvadratcentimeter 7. Talen som man utgår ifrån vid beräkningarna är avrundade. Gör beräkningarna och avrunda resultaten till ett lämpligt antal siffror eller decimaler. a: 2,3 4,5 b: 2,30 4,50 c: 2,3 4,500 d: 23,4 + 5,67 e: 5,6-2,34