Att förstå tal Tal i bråkform Kapitlet behandlar Test Användning av hälften och fjärdedel 2 Representation i bråkform av del av antal och av del av helhet 3, 4 Bråkform i vardagssituationer 4 Stambråk, bråkuttryck med 1 i täljaren 5 Storleken på tal i bråkform 5, 6, 7 Utbytbara bråkuttryck 5, 6, 7, 8 Relativa storleken på tal i bråkform 6, 7, 8 Tal i bråkform på tallinjen 6, 7, 8 4 Bråk kan användas för att uttrycka andelar av en kvantitet eller mängd. Bråken behövs ibland för att resultatet av en division av två hela tal ska kunna uttryckas exakt och enkelt. Det är förstås en svaghet i det annars så värdefulla decimalsystemet, som också kan uttrycka små delar av en enhet, att det inte duger till att uttrycka resultatet av vissa divisioner exakt, inte ens något så enkelt som en tredjedel. Många divisioner ger upphov till en oändlig periodisk decimalutveckling, vilket kan vara svårt att hantera och förstå sig på. I Sverige använder vi i vardagslivet inte längre tal i bråkform så mycket som förr i tiden. Men de är ändå viktiga för att förstå och kunna uttrycka storleken av olika andelar och de är därmed också grundläggande för att förstå både tal i decimalform och procentbegreppet. Baskunskaper om bråkformen och bråkräkning är också nödvändiga när man skall lära sig algebra. Termen bråk används på lite olika sätt i olika läromedel, ibland avses ett visst slags tal, ibland avses ett sätt att beteckna ett tal. I denna handbok väljer vi det senare, d v s vi menar att t ex 1 och 3 2 6 är två olika bråk men att båda betecknar samma tal. För tydlighets skull skriver vi oftast bråkform och bråkuttryck istället för bråk. Förstå och använda tal en handbok 27
Lärarhandledning För de flesta är den vardagliga användningen av tal i bråkform begränsad till hälften av och fjärdedelar av samt uttryck som en bråkdel av. När vi säger dela upp den i fjärdedelar eller till det här receptet behövs det en halvliter menar vi vanligtvis inte exakta mått eller precis uppdelning i lika stora delar, utan mer ungefärliga mått. Vi gör också ofta sådana mätningar utan tanke på att de tillhör tal i ett vidare perspektiv. Naturligtvis är det så att många vardagliga situationer som rör uppdelning, där de vuxna uppfattar sambandet med hjälp av bråk, också kan ge elever värdefulla grundläggande erfarenheter. Men för eleverna måste sambandet mellan delning och bråkform göras tydligt. Bråkuttryck är nära knutet till resultatet av en division. När en mängd delas i lika delar kan det ses som en form av division, och själva kvoten kan skrivas i bråkform. På samma sätt kan vi uppfatta bråkuttrycket som delar av något slags helhet eller från en samling föremål. Det är särskilt viktigt att vi då uppmärksammar att det handlar om delning i exakt lika stora delar. När man delar en samling föremål eller en helhet i ett antal lika stora delar kan varje sådan del uttryckas med ett stambråk en halv, en tredjedel, en fjärdedel, en femtedel osv av en hel. Detta är själva grunden för att förstå bråkformen. Historiskt sett har termen nämnare använts för att ge namn åt andelen, t ex sjundedel, medan termen täljare talar om hur många andelarna ska vara, t ex tre. Svenskans tälja är ett ålderdomligt uttryck som kan betyda både berätta och räkna antal, jämför det engelska tell med samma dubbla innebörd. På norska heter täljare teller. Vi kan klara oss långt utan att behöva använda bråkuttryck. Ibland mäter vi avstånd genom att använda enheten meter. När vi vill mäta ett avstånd som är kortare använder vi en ny enhet, t ex centimeter eller millimeter, och räknar antalet sådana enheter. På detta sätt kan vi hålla oss till de hela talen och undvika både bråk och decimaluttryck. Övergången till en ny sorts tal, som behöver uttryckas med hjälp av beteckningar för två tal, det antal delar som helheten är uppdelad i och antalet sådana delar innebär att eleven också måste kunna hålla kvar relationen mellan båda talen samtidigt. Att utveckla förståelse när det gäller bråkuttryck är en process där kunskapen gradvis breddas och fördjupas. Så småningom kommer bråkformen att sättas i samband med resultatet av en division, d v s som ett sätt att beteckna en kvot, t ex 3 4 = 3 4 och med skalförhållanden, t ex 3 : 4. Eleverna bör dock först möta bråk via den grundläggande idén om uppdelning i lika delar och hur dessa ska benämnas. Övergången från de hela talen till tal i bråkform (och till tal i decimalform) är en kritisk punkt för de flesta elever. Steget är stort och kan orsaka svårigheter för eleverna, vilket inte är så konstigt med tanke på att det tog 28 Nationellt centrum för matematikutbildning
Att förstå tal mänskligheten århundraden att utveckla detta system. Traditionellt sett har undervisning i bråk inte givit eleverna tillräcklig med tid och möjligheter för att utveckla förståelse för vad bråk är. Däremot har mycket tid lagts på att lära ut regler för de fyra räknesätten. Dessa är svåra nog i sig själva och blir ännu svårare om man inte förstår de tal som man skall operera med. När det gäller hela tal har elever i allmänhet inte särskilt svårt för att avgöra vilket av två tal som är störst. De har oftast rimliga föreställningar om hur stora tal är, åtminstone upp till 1 000. När det gäller elevernas förståelse för bråk så kan den bäst bedömas utifrån förmågan att uppfatta storleken på ett tal i bråkform i förhållande till tre referensmärken: noll, en halv och ett, där ett motsvaras av det hela som delats i lika delar. Inledningsvis behöver elever förstå fyra grundläggande aspekter av bråk: alla delar måste vara lika stora för att de ska vara bråkdelar (delarna behöver inte nödvändigtvis ha samma form och utseende i konkreta exempel) nämnaren visar i hur många delar en hel har delats ju större nämnaren är när täljaren är densamma, d v s ju fler delar helheten är delad i, desto mindre är bråket eftersom varje del ju blir mindre täljaren visar hur många delar av helheten vi har. Att förstå att två olika bråkuttryck kan representera samma tal som inte är detsamma som att kunna jämföra dem mekaniskt är centralt för att förstå bråkformen och en förutsättning för att kunna räkna med bråk. Två bråk kan se helt olika ut men ändå beteckna samma tal eller andel av något. Vi kan till exempel dela in en rektangel i två, fyra eller sex lika stora delar. Hälften, två fjärdedelar och tre sjättedelar är lika stor del av rektangeln, men delen beskrivs med symboler på olika sätt, 1, 2, 3. Andelarna är lika stora och vi säger därför 2 4 6 att bråken är utbytbara. Ett sätt att avgöra om bråkuttryck är utbytbara är att göra dem liknämniga. Får de då samma täljare är de utbytbara. Det vanliga sättet att göra liknämnigt är att finna lämpliga tal och sedan multiplicera täljare och nämnare med samma tal. En sådan regel blir dock bara symbolmanipulation och skapar ingen förståelse om den inte grundläggs med laborativt arbete. Ett sätt att göra bråk liknämniga är att multiplicera de ursprungliga bråken med 1. Genom att uttrycka 1 på lämpligt sätt (d v s som 2 eller 3, 4 ) kan vi få lika nämnare. Detta 2 3 4 kallas ofta för förlängning. Att multiplicera med 1 förändrar inte ett bråks värde, vi får ett nytt bråkuttryck med samma värde. För att inse värdet av denna generalisering måste man vara övertygad om att 1 = 2 = 3 = 4 = 5 2 3 4 5 Om man gör liknämnigt utan att förstå vad man gör kan det leda till att man tror att när man t ex multiplicerar med 3 så är det detsamma som att 3 Förstå och använda tal en handbok 29
Lärarhandledning multiplicera med 3, och inte 1, eftersom man multiplicerar täljare och nämnare med 3. Traditionellt har undervisning lärt oss att det finns ett enda korrekt sätt att jämföra bråkuttryck, nämligen att göra dem liknämniga. Det fungerar för alla tänkbara fall, men är inte det enda sättet och inte alltid det bästa. Att alltid lita till den metoden hämmar utvecklingen av god taluppfattning eftersom det inte uppmuntrar eleverna att tänka på de individuella bråken och vad de vet om dem. Ett sätt att stödja ett mer flexibelt tänkande för att jämföra bråks storlek är att placera ut dem på en (tom) tallinje. Närmare anvisningar om denna aktivitet finns i Aktiviteter, Tomma tallinjen. Kända svårigheter och missuppfattningar I Användning av hälften och fjärdedel Representation i bråkform av del av antal och av del av helhet Bråkform i vardagssituationer Stambråk, bråkuttryck med 1 i täljaren De erfarenheter av bråk som barn i allmänhet har när de börjar skolan rör bråk som uttryck för del av en mängd, exempelvis pengar, godis, leksaker och som delar av en helhet, t ex en pizza eller en kaka. Det vanligaste problemet när det handlar om halvor och fjärdedelar är att man inte uppfattar att delarna måste vara lika stora, förutom när det handlar om att dela rättvist. Små barn kan säga jag vill ha den största halvan. Så länge vi håller oss till halvor och fjärdedelar är det ofta lätt både att dela upp mängder av föremål och att dela hela föremål. Detsamma gäller åttondelar, som man också kan få genom upprepad halvering. Tredjedel och femtedel introduceras ofta närmast efter halv och fjärdedel. Vid introduktion av en tredjedel finns dock en möjlig risk för missuppfattningar. Att dela något i fjärde delar innebär oftast att först dela i halvor och sedan halvera båda halvorna. Detta leder ibland till att barn tror att om de delar det hela och sedan delar ena halva får de tre delar, alltså tredjedelar. De kan exempelvis försöka dela en pappersremsa i tredjedelar genom att vika den på mitten och sedan ta den ena biten och vika den på mitten igen. Eftersom vi vet att begreppet tredjedel kan vara problematiskt för många elever är det särskilt viktigt att lägga mycket tid och omsorg på hur det introduceras. Vårt sätt att muntligt uttrycka bråk kan skapa osäkerhet. Eleverna har mött ordet tredje som ett ordningstal (första, andra, tredje osv) och det kan komma i konflikt med hur ordet tredje-del ska tolkas. 30 Nationellt centrum för matematikutbildning
Att förstå tal Vårt sätt att skriva bråk, med två tal åtskiljda med ett streck, skiljer sig från de sätt att skriva tal som eleverna mött tidigare. Det kan vara svårt att förstå att ett tal skrivet i bråkform är ett tal, när det är skrivet som två tal på varsin rad. Men, bråk måste ses tillsammans med helheten. Det är lätt att peka på två eller tre kakor och fråga hur många det är, men vi kan inte peka på några kakor och fråga hur stor andel de utgör utan att relatera till hela mängden. Har vi sex kakor är varje kaka 1 6 av helheten, men om vi har tre kakor är varje kaka 1 3 av helheten. Elever kan också ha svårare att föreställa sig ett bråk som något annat än ett helt tal. De behöver därför många tillfällen att åskådliggöra och samtala om delar av olika helheter. Kända svårigheter och missuppfattningar II Storleken hos tal i bråkform Utbytbara bråk Relativa storleken på tal i bråkform Tal i bråkform på tallinjen Det förekommer i huvudsak två missuppfattningar om storleken hos tal i bråkform. Den ena är att en stor nämnare betyder att det är ett större tal och den andra att 9 i nämnaren betyder att talet är nästan en hel. Båda dessa uppfattningar härrör från att eleverna överför sina kunskaper om hela tal till bråkformen och antar att samma regler kan tillämpas. Eftersom nio är större än tre antar en del elever att en niondel är stor och en tredjedel ganska liten. Ofta undervisar vi om tal i bråkform och tal i decimalform nästan samtidigt vilket kan leda till en del sammanblandningar. Eftersom 0,9 nästan är 1,0 uppfattar en del elever en niondel och en tiondel som nästan en hel eller nära en hel. En del tror att en femtedel ( 1 5 ) och 0,5 är uttryck för samma tal och till och med att två femtedelar ( 2 5 ) och två och en halv (2,5) betyder samma sak. Sådana missförstånd kan undvikas eller rättas till genom att eleverna får utveckla god taluppfattning om begreppet bråk och inte bara utföra beräkningar med bråkuttryck där beteckningarnas innebörd är oklar. För en del elever kan det verka märkligt att två bråkuttryck är utbytbara, om de tänker sig en konkret situation. Även om 1 2 tårta matematiskt sett är lika stor som 50 100 tårta är det ju en viss skillnad i verkligheten. De vanligaste problemen hör annars samman med att man inte förstår syftet med att göra bråkuttrycken liknämniga eller att eleverna har lärt sig en regel utan att förstå vad den innebär. Förstå och använda tal en handbok 31
Lärarhandledning Varför behöver vi ofta liknämniga bråkuttryck för att kunna addera? Varför kan vi behöva finna bråkuttryck för att kunna jämföra, det behöver vi ju inte med tal i decimalform? Sådana frågor ska vi diskutera med eleverna så att de inser varför de behöver kunna konstruera utbytbara bråkuttryck och också vilka problem dessa hjälper till att lösa. Förtrogenhet med utbytbara bråkuttryck kan hjälpa till att undanröja missuppfattningen att det inte finns några tal i bråkform mellan t ex 3 och 4 5 5. Om man istället skriver dem som 6 och 8 ger det en annan bild. Samma sak gäller 10 10 för t ex 1 och 1, där 10 och 12 6 5 ger en tydlig bild av talens relativa position. Den 60 60 huvudsakliga missuppfattningen beträffande utbytbara bråkuttryck är att man tror att när man gör t ex nio tolftedelar liknämnigt med tre fjärdedelar så multiplicerar man tre fjärdedelar med tre, när det är både täljare och nämnare som multipliceras med tre, d v s en multiplikation med 1. De huvudsakliga missuppfattningarna och svårigheterna när eleverna jämför bråkuttryck har redan berörts, d v s att en större nämnare automatiskt skulle indikera vilket tal som är störst, en större täljare skulle indikera ett större tal och att ju större summan av täljare och nämnare är desto större är talet. Uppfattningen att en större nämnare anger ett större tal är mycket vanlig och uppstår när man överför kunskaper om relationer mellan hela tal till bråkformen. Den andra uppfattningen har samma ursprung men är mindre vanlig, medan den tredje är ett resultat av att eleverna uppfinner regler som de ser som rimliga. Alla tre missuppfattningarna har sin grund i att man arbetar med bråkuttryck isolerade från verkligheten, istället för att arbeta konkret och resonera tillsammans. Några exempel Eleven tror att en tredjedel är ett större tal än en halv eftersom en tredjedel av en stor kaka är större än hälften av en liten. Eleven tror att en tredjedel betyder att det är tre. Eleven markerar vid tre fjärdedelar på uppmaningen att visa en tredjedel. (Blandar ihop tre i en tredjedel med tre fjärdedelar). 1 2 3 0 1 4 4 4 32 Nationellt centrum för matematikutbildning
Att förstå tal Eleven bedömer att en tredjedel är ett ganska litet bråk och placerar det på en punkt ungefär en tredjedel av avståndet mellan noll och ett på en tom tallinje. En femtedel uppfattas som större eftersom fem är större än tre, och en tiondel placeras nära ett. Eleven tror att en femtedel betyder 0,5. Eleven tror att man måste göra bråken liknämniga för att jämföra dem. (En elev med god taluppfattning inser att tre sjundedelar helt klart är mindre än en halv, och att det är onödigt att göra liknämnigt om det ska jämföras med exempelvis åtta fjortondelar). Eleven tror att sex femtondelar alltid är ett mindre korrekt sätt att uttrycka två femtedelar. (Uttrycken är utbytbara. Båda är användbara och passar i olika sammanhang. Två femtedelar är det enklaste sättet talet kan skrivas på.) Om undervisningen Inledningsvis kan man nöja sig med att uttrycka bråk muntligt. Vi bör uppmuntra eleverna att använda de språkliga uttrycken halv och fjärdedel när de delar i två eller fyra lika delar. En idé kan vara att säga dela lika istället för dela då bråkformen introduceras. Skapa situationer där de naturligt får berätta om sambandet mellan hälften av en halv, hälften av hälften igen och fjärdedelar och använda ord för att uttrycka delning av en mängd av föremål och delning av en hel. Eftersom elever är bra på att dubbla och halvera kan vi uppmuntra dem att använda det då de sätter ord på de olika delarna av en mängd. Det är tolv ägg i kartongen, hälften av det är sex ägg och en fjärdedel är tre ägg. En del barn känner till en tredjedel och det kan också introduceras muntligt. Innebörden av notationen för 1, och kan få vara underförstådda tills att 2 1 3 4 4 man går vidare till ytterligare bråkuttryck, eftersom eleverna inte förrän då kan börja uppskatta finessen med hur bråkuttryck generellt skrivs. Introduktion av bråkformen bör följa den allmänna principen i denna bok: nya begrepp introduceras laborativt, i aktiviteter där man samtalar kring vad som händer. Dessa hjälper eleven att skapa inre föreställningar och så småningom undersöker vi hur bråk kan uttryckas med skrivna symboler. Låt eleverna möta och handskas med bråkdelar i många olika sammanhang: klippa isär, rita, dela områden och föremål. De måste få uttrycka storleken hos tal i bråkform muntligt men också skriva dem med ord och siffersymboler. Förstå och använda tal en handbok 33
Lärarhandledning Gör sambanden mellan aktiviteterna, orden och symbolerna tydliga. Använd vardagssituationer och uttryck dem med hjälp av bråkform. För att kunna jämföra bråk behöver eleverna förstå att bråkdelar är lika stora delar av en mängd eller ett tal. Nämnaren anger hur många delar helheten eller området har delats i och täljaren anger antalet lika delar. Stambråk uttrycker alltså en av dessa delar, t ex 1 2. När man har förstått detta finns det flera strategier när man ska jämföra två bråk. Ingen av dem behöver läras ut som regler, eftersom de lätt kan härledas från elevens taluppfattning. Var tydlig med vad utbytbara bråkuttryck är och varför de är användbara. En användbar modell är att utgå från en rektangel som delats i delar. Varje del delas sen upp i ytterligare delar. = = = = Undersök mönstret hos utbytbara bråkuttryck. Gör eleverna uppmärksamma på att multiplikation av både täljare och nämnare med samma tal inte förändrar bråkets värde, eftersom det är detsamma som att multiplicera med 1. För att kunna jämföra två tal i bråkform väljer en elev med god taluppfattning den bästa strategin i varje enskilt fall: undersöker om talet är större eller mindre än en halv, jämför bråkuttryck som har samma täljare respektive samma nämnare eller gör liknämnigt. Det finns varianter på dessa strategier, och många andra mer specifika strategier som täcker särskilda fall. Utgångspunkten bör alltid vara att uppmuntra eleverna att använda det de vet om just de 34 Nationellt centrum för matematikutbildning
Att förstå tal bråkuttryck de ska jämföra, inte att mekaniskt använda en allmän regel. Om eleverna är osäkra behöver de arbeta mer med tidigare aktiviteter. Arbeta med strategierna en i taget. Ge sedan olika exempel där eleverna ska avgöra vilket av två tal i bråkform som är störst och berätta vilken strategi de använde. Diskutera olika sätt att resonera. Några förslag Användning av hälften och fjärdedelar Dela upp en mängd klossar i två lika stora högar. Tala om att ni delat mängden i två halvor / hälfter. Hur kan vi dela ett äpple mellan fyra? Vi kan dela i halvor och sedan i halvor igen. Då har vi fyra lika stora delar fyra fjärdedelar. Hur mycket är hälften av tjugo? Varför? Hur mycket är en fjärdedel av tjugo? Varför? Låt eleven undersöka och visa med hjälp av föremål. Två fjärdedelar av pizzan är lika mycket som hälften av pizzan. Hur mycket pizza är det kvar när vi har ätit upp det? Hur mycket finns det kvar om jag tar tre fjärdedelar? Representation av tal som del av antal och som del av helhet Ge eleverna många tillfällen att dela upp olika samlingar av föremål i lika mängder och att benämna delarna och anteckna deras värde. Låt tomma äggkartonger av olika storlekar utgöra helhet. Lägg flirtkulor i hälften, en fjärdedel, en tredjedel, en sjättedel. Jämför hälften av sex med hälften av 12, andelen är densamma men antalet kulor olika. Låt eleven plocka ut hälften, en tredjedel, en fjärdedel, en sjättedel av tolv klossar. Låt eleven dela upp olika sorters helhet, både områden (tårtor, pizzor, papper) av olika former (cirklar, kvadrater, rektanglar, trianglar) och mängder av föremål. Dela upp en rektangel i tre lika stora bitar. Hur stor del av rektangeln är 1 varje bit? Skriv en tredjedel och 3 på varje bit. Förstå och använda tal en handbok 35
Lärarhandledning Låt eleven hitta så många sätt som möjligt att dela en kvadrat i fyra delar. Skriv en fjärdedel och 1 4 på varje del. Dela ett A4-papper i olika antal delar. Benämn delarna och anteckna med ord och symboler delarnas namn. Använd delarna för jämförelser. Låt eleven lägga föremål på bänken som representerar två femtedelar. Hitta flera olika exempel. Bråkuttryck i vardagssituationer Använd vardagstillfällen för att peka ut, benämna och diskutera likadelningar. Använd bråkuttryck om dagliga aktiviteter i klassrummet, till exempel: Hur många dagar är det i en vecka? Hur stor del av en vecka är då en dag? Hur stor del av klassen är pojkar? Dela upp ett visst antal klossar mellan fem elever. Hur stor del av klossarna kommer varje elev att få? Uppmärksamma bråkuttryck när ni delar ut föremål. Dela upp dem i 2, 3, 4 och 5 lika stora grupper. Hur många grupper har ni delat upp föremålen i? Vad kallas varje del? Hur stor del av 12 är 3? Hur vet du det? Hur mycket är en femtedel av 20? Hur vet du det? Stambråk, bråkuttryck med 1 i täljaren Dela in rektanglar eller cirklar med samma radie i halvor, tredjedelar, fjärde delar, femtedelar och sjättedelar. Ge varje elev eller varje par som arbetar tillsammans en uppsättning cirklar. Låt dem klippa varje cirkel i delar och sedan skriva delens namn med ord på ena sidan och med siffror på andra si dan. När alla delar är utklippta blandas de. Ställ frågor som: Vad kallas delen? Hur skriver du det? 36 Nationellt centrum för matematikutbildning
Att förstå tal Hur många sådana delar behöver du till hela cirkeln? Hur vet du det? Vilken del är störst, en tredjedel eller en fjärdedel? Varför? En femtedel eller en halv? Varför? Låt eleverna sedan sätta ihop cirklarna igen. Storleken hos tal i bråkform Blanda delarna och låt eleverna sätta ihop dem. Ställ frågor som: Varför passar inte den delen här? Behöver du en större eller en mindre del här? Hur kan du veta det utan att prova? Jämför bråkuttryck med samma nämnare. 5 7 Är talet 8 större eller mindre än talet 8? Varför? Jämför bråkuttryck med samma täljare: 4 4 Är talet 5 större eller mindre än talet 6? Varför? Utbytbara bråk Låt eleverna dela en rektangel i fjärdedelar och färglägga en av delarna. Dela en annan likadan rektangel i fjärdedelar och dela sedan varje fjärdedel i tre lika delar. Hur stor är varje sådan del? Gör färdigt serien: 1 =?, 1 =?, 3 =? 4 12 2 12 4 12. Låt eleverna på motsvarande sätt visa andra likheter, som 3 = 6 8 16 och 3 6 6 = 12. 2 6 9 12 Skriv ett antal likheter med hjälp av bråkuttryck, 3 = 9, 15 = 20 och låt eleverna förklara varför likheterna stämmer. Relativa storleken för tal i bråkform Är 2 5 större eller mindre än en halv? Varför? Är 7 12 större eller mindre än en halv. Varför? Är 4 större eller mindre än 5 9 11? Varför? Är 3 större eller mindre än 4? Varför? 4 5 Förstå och använda tal en handbok 37
Lärarhandledning Ge eleverna 10 eller 12 tal i bråkform mellan noll och ett. Låt dem beskriva vilka par som är lätta att jämföra och vilka som är svårare, samt motivera varför. Ge varje elev ett antal tal i bråkform, mellan noll och ett, att storleksordna. Det är praktiskt om varje bråkuttryck är skrivet på en papperslapp som kan flyttas runt. Diskutera hur de arbetade: vilka tal placerade eleverna ut först? Varför? Bråkuttryck på tallinjen Ge eleverna var sitt bråkuttryck mellan noll och ett skrivet på ett papper. Rita en tom tallinje på tavlan, men markera 0 och 1 i respektive ände. Låt eleverna placera sina bråkuttryck på (ungefär) rätt ställe. Diskutera vilka tal i bråkform som är lätta att placera, vilka som är svårare och varför. 38 Nationellt centrum för matematikutbildning