Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används. Det är viktigt att du lär dig terminologin och kan se igenom beteckningarna så att du kan avgöra om en differentialekvation är linjär eller inte, vilken ordning den har, om det är en ordinär differentialekvation (eller partiell). Är det ett begynnelsevärdesproblem? Man använder sig av lite olika lösningsmetoder beroende på vilken typ av differentialekvation det är fråga om. 18.3 Då man löser ett begynnelsevärdesproblem numeriskt beräknar man approximationer till lösningskurvan i olika punkter. Delkapitlet diskuterar olika metoder för detta. Från delkapitlet bör du minst kunna använda Euler framåt i praktiska beräkningar. Observera att i veckans studioövningar diskuteras bla. Euler s metod. (I studioövningarna diskuteras fler aspekter vad det gäller numerisk lösning av differentialekvationer - om du vill kan du helt hoppa över kapitlel 18.3 och istället koncentrera dig på stoffet i veckans studioövning). 7.9 Delkapitlet behandlar två slags ekvationer av första ordningen; linjära ekvationer och ekvationer med separabla variabler. Du bör tillägna dig metoderna att lösa dessa typer av ekvationer, så att du på egen hand kan lösa problem liknande dem som ges som exempel i övningar/studioövningar och på föreläsning.
Beteckningar En differentialekvation är en ekvation som innehåller en obekant funktion och dess derivator. I differentialekvationen y (x) + 1 y(x) = sin x x förekommer en obekant funktion (y(x)) som beror av en variabel (x), därför kallas differentialekvationen en ordinär differentialekvation. (Om den sökta funktionen beror av flera variabler kallas differentialekvationen partiell). Ofta skriver man inte ut variabeln funktionen beror av, utan man låter den vara underförstådd: y + y y = t (Funktionen y beror alltså av t i expemplet ovan). Om alla förekommande derivator har ordningen högst n har differentialekvationen ordningen n. (Ekvationen i det översta exemplet har ordning 1 och ekvationen i det andra exemplet har ordning ). Ofta skriver man (se veckans studioövning) u (x) = f(x, u(x))
Analytisk lösning När man löser en differentialekvation analytiskt bestämmer man ett uttryck för den obekanta funktionen. Exempel Lös y (x) = x Det står att y är primitiv funktion till x, så där C är en godtycklig konstant. y(x) = x3 3 + C 4 3.5 3.5 1.5 1 0.5 0 0 0.5 1 1.5 I figuren ovan har man ritat lösningarna till differentialekvationen i ett riktningsfält. Varje pil anger riktningen som lösningskurvan har i just den punkten (startpunkten av pilen). Riktningen på lösningskurvan i en punkt x ges ju av derivatan y (x) = x. Jag använde följande matlabkod för att rita figuren f = @(x)x.^; x = 0:0.5:; y = 0:1:4; [X,Y] = meshgrid(x,y); DX = ones(size(x)); DY = f(x); quiver(x,y,dx,dy); Mha kommandot meshgrid ordnas en grid över alla pilarnas startkoordinater. (X innehåller alla x- koordinater och Y alla y-koordinater till de 5 pilarna i figuren). Kommandot quiver ritar riktningsfältet. Man behöver (till quiver) ange pilarnas koordinater (X och Y) samt lutningen på respektive pil. Lutningen anges som (1, y (x)). De matriserna kallade jag DX och DY i koden ovan.
Genom att ange ett värde på y i intervallets vänstra ändpunkt bestämmer man en av lösningskurvorna: { y (x) = x, x [0, ] y(0) = 3 (Problemet kallas då ett begynnelsevärdesproblem.) Vi har (från ovan) att y(x) = x3 3 + C. Villkoret y(0) = 3 = C = 3. och lösningen blir y(x) = x3 3 + 3 4 3.5 3.5 1.5 1 0.5 0 0 0.5 1 1.5 + 3. (Observera att lösnings- Den röda kurvan i bilden ovan är y(x) = x3 3 kurvan följer pilarna i riktiningsfältet).
Exempel Problemet { u = u(t) + sin(t) + cos(t), 0 t 4 u(0) = u 0 där u 0 är ett värde på u(0) har lösningen u(t) = sin(t) + u 0 e t (metod för hur man bestämmer lösningen ges senare i denna föreläsning). Med u 0 = får man u(t) = sin(t) e. Med u 0 = 1 får man u(t) = sin(t) e t. etc. I den vänstra figuren nedan har man ritat riktningsfältet och i den högra även lösningskurvorna för några olika värden på u 0. 1 1 u 0 u(t) 0 1 1 0 1 3 4 t 0 1 3 4 t Observera att du enkelt kan kontrollera att lösningen stämmer genom att derivera u(t) = sin(t) + u 0 e t. Gör det.
Begynnelsevärdesproblem Givet f en kontinuerlig funktion och y a en konstant söker vi en deriverbar funktion sådan att { y (x) = f(x), x [a, b] y(a) = y a Enligt integralkalkylens huvudsats (se F4) är F(x) = x a f(t)dt, x [a, b] en primitiv funktion fill f och varje lösning y kan skrivas där C är en konstant. Låt x = a, vi får y(a) = F(a) + C = därför kan vi skriva lösningen (dvs C = y a ) y(x) = y a + y(x) = F(x) + C a a x a f(t)dt + C = 0 + C = y a f(t)dt, x [a, b]
Numerisk lösning Låt { u (t) = f(t, u(t)), t [a, b] u(a) = t 0 där u 0 är en konstant vara ett begynnelsevärdesproblem av första ordningen. Då man löser begynnelsevärdsproblemet numeriskt delar man in intervallet [a,b] i N lika stora delintervall av längden h = (b a) N, a = t 0 < t 1 < < t i 1 < t i < < t N = b och beräknar en approximation u(t n ) = u n till lösningskurvan u i varje t n med hjälp av någon rekursionsformel. Euler (framåt): u 0 = u(a), u n+1 = u n + hf(t n, u n ) Euler (bakåt): u 0 = u(a) u n+1 = u n + hf(t n+1, u n+1 ) Se härledningar i studioövning 4.
Exempel Lös { y (x) = x, x [0, ] y(0) = 3 med hjälp av Eulers (framåt) metod med steglängden h = 1. Eftersom h = 1 får vi x 0 = 0, x 1 = 1 och x = och vi har f(x i, y i ) = y (x i ) = x i för i = 0, 1,. u 0 = y(0) = 3 u 1 = u 0 + hf(x 0, u 0 ) = u 0 + hx 0 = 3 + 1 0 = 3 u = u 1 + hf(x 1, u 1 ) = u 1 + hx 1 = 3 + 1 1 = 4 6 5 4 3 1 0 0 0.5 1 1.5 Den blå kurvan i figuren är den analytiska lösningen y(x) = x3 3 +3. Den numeriska lösningen markerats med svarta ringar (som sammanbundits med streck). Om vi kortar steglängden h får vi en bättre approximation. Om vi istället använder Eulers bakåt metod med steglängden h = 1 får vi: u 0 = y(0) = 3 u 1 = u 0 + hf(x 1, u 1 ) = u 0 + hx 1 = 3 + 1 1 = 4 u = u 1 + hf(x, u ) = u 1 + hx = 4 + 1 = 8
Första ordningens ekvationer Kapitel 7.9 i Adams behandlar två slags ekvationer av första ordningen; Linjära ekvationer En linjär differentialekvation av första ordningen har formen y + a(x)y = b(x) där a(x) och b(x) är funktioner (funktionen säges vara linjär eftersom varje term i vänsterledet kan skrivas som en produkt mellan en koefficient (en funktion som beror av x) och y eller någon av y:s derivator. (Koefficienterna i exemplet ovan är 1 och a(x)). För en mer allmän definition av linjär differentialekvation hänvisas till Adams (kapitel 18.1) Exempel: Differentialekvationerna y (x) = x respektive u u(t) = sin(t) + cos(t) är av första ordningen och linjära. Ekvationer med separabla variabler En (första ordningens) differentialekvation med separabla variabler kan (eventuellt efter omskrivning) skrivas på formen g(y)y = f(x) Exempel: Differentialekvationen är separabel. y (x) = x y
Linjära ekvationer av första ordningen Den enklaste formen för en linjär differentialekvation av första ordningen är y (x) = b(x) (1) Denna löses direkt genom att integrera högerledet, dvs y(x) = b(x)dx = B(x) + C där C är en konstant. Exempel: y (x) = x har lösningen y(x) = x3 3 + C Betrakta nu istället y (x) + a(x)y(x) = b(x) () som ju också är en linjär differentialekvation av första ordningen. Grundidén när man löser den är att återföra den till en ekvation av typen (1) enligt följande: Låt A(x) vara en primitiv funktion till a(x). Bilda den integrerande faktorn e A(x). Ekvationen () kan då skrivas e A(x) y (x) + e A(x) a(x)y(x) = e A(x) b(x) Observera att vänsterledet är derivatan av produkten dvs (e A(x) y(x)) y(x)e A(x) = b(x)e A(x) dx Genom att multiplicera vänsterledet och högerledet med e A(x) kan vi lösa ut y(x).
Exempel: Lös y (x) xy(x) = x (a) Den integrerande faktorn blir e x eftersom 1 x är en primitv funktion till x. (b) Vi får då att dvs y(x)e x = (e x y(x)) = e x x e x xdx = e x + C (c) Bestäm lösningen: y(x) = e x ( e x x ) + e x C = 1 + Ce Observera att det framräknade svaret kan enkelt kontrolleras genom insättning i den ursprungliga differentialekvationen. På föreläsning fick jag frågan varför konstanten i den integrerande faktorn inte tas med. Jag svarade att den förkortas bort. Nedan följer samma exempel en gång till (fast med A(x) = x + K där K är en konstant). (a) Den integrerande faktorn blir e x +K eftersom 1 x +K är en primitv funktion till x. (b) Vi får då att dvs (c) Bestäm lösningen: y(x)e x +K = (e x +K y(x)) = xe x +K xe x +K dx = e x +K + C 1 y(x) = e x +K ( e x +K ) +e x +K C 1 = 1 +C 1 e x +K = 1 +C 1 e K e x och genom att låta C = C 1 e K får vi y(x) = 1 + Ce x
Exempel: Bestäm analytisk lösning till { u = u(t) + sin(t) + cos(t), 0 t 4 u(0) = u 0 u = u(t) + sin(t) + cos(t) u (t) + u(t) = sin(t) + cos(t) Den integrerande faktorn blir e t efterson t är primitiv funktion till 1. Dvs e t u(t) = (sin(t)+cos(t))e t dt = sin(t)e t dt+ cos(t)e t dt = e t sin(t)+c Multiplikation med e t ger u(t) = sin(t) + Ce t och u(0) = u 0 ger C = u 0, dvs u(t) = sin(t) + u 0 e t. sin(t)e t dt + cos(t)e t dt löses med partiell integrering. Vi har sin(t)e t dt = [P.I] = e t sin(t) e t cos(t)dt och får då sin(t)e t dt + cos(t)e t dt = e t sin(t) + C
Separabla differentialekvationer En differentialekvation sägs vara separabel om den kan skrivas på formen g(y)y (x) = f(x) En sådan här differentialekvation löses genom att finna primitiva funktioner G och F till g respektive f eftersom derivatan av en sammansatt funktion ger att (G(y(x))) = G (y(x))y (x) = g(y(x))y (x) = f(x) Vi har fått en ekvation på formen G = f(x) och den löses genom att integrera högerledet: G(y) = f(x)dx Exempel Låt y (x) = x y med g(y) = y och f(x) = x får vi G(y) = g(y)dy = och F(x) = g(x)dx = Vi får y x = C där C är en konstant. ydy = y + C 1 xdx = x + C (Detta är exempel 7.9.1 i Adams)
Exempel Lös x y(x) = 3 + ty(t)dt 1 Vi ser att om vi deriverar y (med avseende på x) får vi en differentialekvation på separabel form: y (x) = xy(x) (Här har vi använt oss av integralkalkylens huvudsats första delen för att beräkna derivatan, se sats 5.5.5 i Adams). Med g(y) = 1 y och och f(x) = x får vi 1 G(y) = y dy = ln y + C 1 F(x) = xdx = x + C vilket ger oss ln y = x + C 3, vi kan lösa ut y(x) och får y(x) = Ce x Om vi låter x = 1 i integralekvationen får vi ett begynnelsevärde (och kan därigenom bestämma konstanten C): och y(1) = 3 + 1 1 ty(t)dt = 3 + 0 = 3 y(1) = Ce 1 = 3 C = 3 e 1 dvs y(x) = 3 e ex = 3e x 1 (Detta är exempel 7.9.3 i Adams)