Instruktioner till Examinationen Kursen Introduktion till Multivariat Dataanalys Karolinska Institutet



Relevanta dokument
Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet

Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet

Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet

Instruktioner till Examinationen Kursen Metoder för Statistisk Analys Karolinska Institutet

Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8

Användning. Fixed & Random. Centrering. Multilevel Modeling (MLM) Var sak på sin nivå

Användning. Fixed & Random. Centrering. Multilevel Modeling (MLM) Var sak på sin nivå

Regressionsanalys. - en fråga om balans. Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet

Innehåll: 3.4 Parametriskt eller ej 3.5 Life Table 3.6 Kaplan Meier 4. Cox Regression 4.1 Hazard Function 4.2 Estimering (PL)

Regressionsanalys med SPSS Kimmo Sorjonen (2010)

Identifikationsnummer:... Tentamen: Statistik & Metod (2PS020), Psykologprogrammet, Termin 8 Datum:

I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Parametriska Icke-parametriska

Identifikationsnummer:... Tentamen: Statistik & Metod (2PS020), Psykologprogrammet, Termin 8 Datum:

Structural Equation Modeling med Amos Kimmo Sorjonen ( )

Multilevel Modeling med SPSS Kimmo Sorjonen ( )

Risk Ratio, Odds Ratio, Logistisk Regression och Survival Analys med SPSS Kimmo Sorjonen, 2012

Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland

MULTIPEL IMPUTATION - Ett sätt att hantera problemet med missing data

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION

F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT

STOCKHOLMS UNIVERSITET VT 2009 Statistiska institutionen Jörgen Säve-Söderbergh

STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Johan Andersson

MULTIPEL IMPUTATION. Ett sätt att fylla i hålen i ditt datamaterial?

Missing data och imputation eller Får man hitta på data? Lars Lindhagen, UCR

STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Johan Andersson

STOCKHOLMS UNIVERSITET VT 2009 Statistiska institutionen Jörgen Säve-Söderbergh

Linjär regressionsanalys. Wieland Wermke

InStat Exempel 4 Korrelation och Regression

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi

STOCKHOLMS UNIVERSITET VT 2007 Statistiska institutionen Johan Andersson

Uppgift 1. Deskripitiv statistik. Lön

2. Finns samband mellan individbundna faktorer och kontextuella faktorer och skolresultat?

ANOVA Faktoriell (tvåvägs)

Skolprestationer på kommunnivå med hänsyn tagen till socioekonomi

Instruktioner till Inlämningsuppgift 1 och Datorövning 1

Bygga linjära modeller! Didrik Vanhoenacker 2007

Variansanalys med SPSS Kimmo Sorjonen ( )

Multipel Regressionsmodellen

ST-fredag i Biostatistik & Epidemiologi När ska jag använda vilket test?

Maximalt antal poäng för hela skrivningen är28 poäng. För Godkänt krävs minst 17 poäng. För Väl Godkänt krävs minst 22,5 poäng.

2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer

Sambandsmått. Centralmått. Det mest frekventa värdet. Det mittersta värdet i en rangordnad fördelning. Aritmetiska medelvärdet.

ordinalskala kvotskala F65A nominalskala F65B kvotskala nominalskala (motivering krävs för full poäng)

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson

Skrivning i ekonometri torsdagen den 8 februari 2007

TENTAMEN I REGRESSIONSANALYS OCH TIDSSERIEANALYS

Statistik och epidemiologi T5

Under denna laboration kommer regression i olika former att tas upp. Laborationen består av fyra större deluppgifter.

Residualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen

Statistik B Regressions- och tidsserieanalys Föreläsning 1

EXAMINATION KVANTITATIV METOD vt-11 (110204)

Analytisk statistik. Mattias Nilsson Benfatto, PhD.

Beskrivning av litteraturen Kursen i Vetenskapsteori, Psykologprogrammet, T5

Kapitel 12: TEST GÄLLANDE EN GRUPP KOEFFICIENTER - ANOVA

Regressions- och Tidsserieanalys - F4

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION.

OBS! Vi har nya rutiner.

Kort manual till SPSS 10.0 för Mac/PC

Föreläsning 9. NDAB02 Statistik; teori och tillämpning i biologi

Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN

Föreläsning 7. NDAB01 Statistik; teori och tillämpning i biologi

Sänkningen av parasitnivåerna i blodet

Resursfördelningsmodellen

Innehåll. Data. Skillnad SEM & Regression. Exogena & Endogena variabler. Latenta & Manifesta variabler

Regressions- och Tidsserieanalys - F3

Samhällsvetenskaplig metod, 7,5 hp

Statistik , Stansens PC-klass ASA-huset. Schema: mån ti ons to fre

EXAMINATION KVANTITATIV METOD

Statistiska analysmetoder, en introduktion. Fördjupad forskningsmetodik, allmän del Våren 2018

Studentens namn: Studentens personnummer: Giltig legitimation/pass är obligatoriskt att ha med sig. Tentamensvakt kontrollerar detta.

Kapitel 15: INTERAKTIONER, STANDARDISERADE SKALOR OCH ICKE-LINJÄRA EFFEKTER

ANOVA Mellangruppsdesign

Gör uppgift 6.10 i arbetsmaterialet (ingår på övningen 16 maj). För 10 torskar har vi värden på variablerna Längd (cm) och Ålder (år).

OBS! Vi har nya rutiner.

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts.

Statistik 1 för biologer, logopeder och psykologer

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson

Faktoranalys - Som en god cigarr

STATISTISK ANALYS AV KOMPLEXA DATA

Tentamen Metod C vid Uppsala universitet, , kl

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)

Medicinsk statistik II

Faktoranalys, Cronbach s Alpha, Risk Ratio, & Odds Ratio

Structural Equation Modeling (SEM) Ingenting är omöjligt

Överlevnadsanalys. Överlevnadsanalys med tidsberoende kovariater. Tid till en händelse: observationer i kalendertid och som tid från start.

Paneldata och instrumentvariabler/2sls

Laboration 2. Omprovsuppgift MÄLARDALENS HÖGSKOLA. Akademin för ekonomi, samhälle och teknik

MSG830 Statistisk analys och experimentplanering

Intro till SPSS Kimmo Sorjonen (0811)

Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II

Mata in data i Excel och bearbeta i SPSS

Maximalt antal poäng för hela skrivningen är 22 poäng. För Godkänt krävs minst 13 poäng. För Väl Godkänt krävs minst 18 poäng.

1/23 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet

Instruktioner till Frivillig Inlämningsuppgift 2 och Datorövning 3-4. Fortsättningskurs i statistik, moment 1, Statistisk Teori, 10 poäng.

Lösningar till SPSS-övning: Analytisk statistik

Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 4

STOCKHOLMS UNIVERSITET VT 2007 Statistiska institutionen Johan Andersson

TENTAMEN PC1307 PC1546. Statistik (5 hp) Onsdag den 20 oktober, Ansvarig lärare: Bengt Jansson ( , mobil: )

Transkript:

1 Instruktioner till Examinationen Kursen Introduktion till Multivariat Dataanalys Karolinska Institutet Uppdaterad: 120412 För att bli godkänd skall man utföra alla sex uppgifter som beskrivs nedan. OBS: Undervisningen håller sig till SPSS och AMOS, men det är tillåtet att göra sina beräkningar med vilket statistikprogram som helst (ange dock vilket program ni använt er av). Vill man göra sina beräkningar för hand så är detta också OK. De olika dataseten finns utlagda på kurshemsidan (under Examination ) både som SPSS-filer och som tabbavgränsade textfiler. 1. Uppgiften om Variansanalys (ANOVA) Uppgiften går ut på att i viss mån replikera analysen i följande artikel (finns på kurshemsidan): St.Lawrence, J. S., Brasfield, T. L., Shirley, A., Jefferson, K. W., Alleyne, E., O Bannon, R. E. III. (1995). Cognitive-behavioral intervention to reduce African American adolescents risk for HIV infection. Journal of Consulting and Clinical Psychology, 63, 221-237. Analysen utförs på ett dataset som delvis simulerar det som St.Lawrence et al. använt sig av ( ANOVA, Kondomanvändning ; finns på kurshemsidan; det handlar inte om originaldata). Undersökningens beroende variabel, mätt vid fyra olika tillfällen, är procentuell andel av samlagen under de senaste åtta veckorna då man använt kondom. Eftersom data är simulerade förekommer orimliga värden (< 0 och > 100) men strunta i detta. Mer specifikt skall man utföra följande moment/besvara följande frågor: 1. Ange undersökningens syfte (låtsas, s.a.s., att du är St.Lawrence och att detta är din undersökning). 2. Skapa ett linjediagram som visar de fyra gruppernas (BST female; BST male; EC female; EC male) genomsnittliga värde på den beroende variabeln vid de fyra mättillfällena. 3. Utför en ANOVA för upprepade mätningar (fyra mättillfällen) och med två oberoende variabler mellan individer. Presentera och tolka resultaten. Kan vi anta att kravet på sfäriskhet är uppfyllt? 4. Eftersom analysen ovan påvisar en signifikant trevägs interaktion utförs följande: Testa effekten av tid på kondomanvändningen separat för de fyra olika grupperna (BST female; BST male; EC female; EC male). I varje grupp testas om kravet på sfäriskhet är uppfyllt samt den specifika förändringen över tid (detta görs genom att sätta Contrasts = Repeated). Presentera och tolka resultaten. 5. Utför även följande analys: Fyra separata tvåvägs ANOVOR (en för varje mätning av kondomanvändning, OV = Group och Gender). Om någon interaktion är signifikant går du vidare och analyserar enkla effekter (med hjälp av Split file ). Presentera och tolka resultaten.

2 Texten kan antingen skrivas i samma form som en vetenskaplig artikel (se St.Lawrence et al.s artikel för exempel), men då inkluderas SPSS-output som appendix. Texten kan också skrivas i form av en SPSS-undervisning-handout där man klipper in SPSS output-tabeller och kommentarer till dessa (se kurshemsidan för exempel). Observera att det inte räcker att du bara klipper in Output-tabellerna utan att beskriva och tolka resultaten. 2. Uppgiften om Regressionsanalys Uppgiften går ut på att i viss mån replikera analysen i följande artikel (finns på kurshemsidan): Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386-389. Analysen utförs på ett dataset ( Regression, Gener och depression ; finns på kurshemsidan) som simulerar det som Caspi et al. använt sig av (det handlar alltså inte om originaldata). Följande variabler ingår: (1) IdNum; (2) Allele = kombinationen av 5-HTT gen alleler, med värdena s/s (dubbel uppsättning av korta alleler) s/l (en kort och en lång allele) samt l/l (dubbel uppsättning långa alleler); (3) Number_long = antalet långa alleler i 5-HTT genen, där s/s = 0, s/l = 1 och l/l = 2; (4) Stress_LE = antalet upplevda stressfulla livshändelser, med värdena 0, 1, 2, 3 och 4, där det sista värdet står för fyra eller fler händelser; (5) Dep_Symp = graden av depressiva symptom, variabeln har blivit simulerad och innehåller därmed en del orimliga värdena (t.ex. < 0) men strunta i detta. Mer specifikt skall man utföra följande moment/besvara följande frågor: 1. Estimera den enkla effekten av antalet långa 5-HTT alleler (Number_long) på depressiva symptom (Dep_Symp). Vad blir interceptet respektive regressionskoefficienten? Vad blir beta-koefficienten? Är koefficienten signifikant? Hur mycket av variationen i den beroende variabeln kan förklaras? Beskriv vad dessa värden säger oss. 2. För analysen ovan: Ser sambandet mellan predicerade värden och residualer OK ut? Har 3. Estimera den enkla effekten av antalet upplevda stressfulla livshändelser (Stress_LE) på depressiva symptom (Dep_Symp). Vad blir interceptet respektive regressionskoefficienten? Vad blir beta-koefficienten? Är koefficienten signifikant? Hur mycket av variationen i den beroende variabeln kan förklaras? Beskriv vad dessa värden säger oss. 4. För analysen ovan: Ser sambandet mellan predicerade värden och residualer OK ut? Har 5. Utför en multipel regressionsanalys där du predicerar antalet depressiva symptom utifrån antalet långa 5-HTT alleler OCH antalet upplevda stressfulla livshändelser. Vad blir interceptet respektive regressionskoefficienterna? Vad blir beta-koefficienterna? Är koefficienterna signifikanta? Hur mycket av variationen i den beroende variabeln kan förklaras? Beskriv vad dessa värden säger oss. Finns det något problem med kollinaritet? Motivera ditt svar. 6. För analysen ovan: Ser sambandet mellan predicerade värden och residualer OK ut? Har

3 7. Standardisera Number_long samt Stress_LE och skapa sedan en interaktionsterm för Number_long * Stress_LE. Utför en analys där depressiva symptom prediceras utifrån antalet långa alleler (standardiserat), antalet upplevda stressfulla livshändelser (standardiserat) samt deras interaktion. Vad blir interceptet respektive regressionskoefficienterna? Vad blir beta-koefficienterna? Är koefficienterna signifikanta? Hur mycket av variationen i den beroende variabeln kan förklaras? Beskriv vad dessa värden säger oss. Finns det något problem med kollinaritet? Motivera ditt svar. 8. För analysen ovan: Ser sambandet mellan predicerade värden och residualer OK ut? Har Texten kan antingen skrivas i samma form som en vetenskaplig artikel (se Caspi et al.s artikel för exempel), men då inkluderas SPSS-output som appendix. Texten kan också skrivas i form av en SPSS-undervisning-handout där man klipper in SPSS output-tabeller och kommentarer till dessa (se kurshemsidan för exempel). Observera att det inte räcker att du bara klipper in Output-tabellerna utan att beskriva och tolka resultaten. 3. Uppgiften om RR, OR, Logistisk- och Cox regression Analyserna utförs på datasetet Ratio, Log & Cox, Sjukdom och död (finns på kurshemsidan). Här har vi data (jag känner inte till graden av autenticitet) från vad jag tror vara fiktiva cancer-patienter. Följande variabler ingår: (a) patientens id-nummer; (b) kön, med värdet 0 för kvinnor och 1 för män; (c) ålder; (d) histologi, som jag antar handlar vilken typ av cancer patienten har, med värdena 1 = nodular sclerosis; 2 = mixed cellular; 3 = lymphocyte depletion; (e) stadium av sjukdomen med 0 = early och 1 = advanced; (f) om patienten dött under uppföljningsperioden med 0 = nej och 1 = ja; (g) tid fram till död alternativt uppföljningsperiodens slut. Uppgiften går ut på att göra följande: 1. Beräkna Risk Ratio samt Odds Ratio för sambandet mellan stadium av sjukdomen (stage) och om man dött under uppföljningsperioden (dead). Ange kvoterna samt beskriv i ord hur de skall tolkas. 2. Utför en hierarkisk binär logistisk regressionsanalys med stadium av sjukdomen (stage) som beroende variabel och med följande inkluderingsordning av de oberoende variablerna: (a) patientens kön; (b) patientens ålder; (c) interaktionen mellan kön och ålder. Beskriv vad som händer med modellens prediktiva förmåga i de olika stegen (blir den signifikant bättre). På vilket sätt påverkar de oberoende variablerna oddsen för att patienten skall ha uppnått ett framskridet stadium av sjukdomen? Är effekterna signifikanta? Beskriv och tolka resultaten. 3. Eftersom analysen ovan påvisade en signifikant interaktion mellan kön och ålder vad gäller oddsen för att ha uppnått ett framskridet stadium av sjukdomen går du vidare och tittar på den enkla effekten av ålder separat för kvinnliga och manliga patienter. Hur ser effekten av ålder ut i respektive grupp? 4. Nu till Cox regression. Den beroende variabeln är en kombination av dead (om patienten dött eller inte) samt hur lång tid det tog fram till döden alternativt till uppföljningsperiodens slut (survivaltime). Börja med att titta på om histologi påverkar

4 hazard för att patienten skall ha dött (tänk på att histologi är en kategori-variabel). Beskriv och tolka resultaten. 5. Testa om hazard för att ha dött påverkas av patientens ålder. Beskriv och tolka resultaten. 6. Testa om hazard för att ha dött påverkas av om patienten uppnått ett framskridet stadium av sjukdomen eller inte (stage). Beskriv och tolka resultaten. 7. Testa om hazard för att ha dött påverkas av patientens kön. Beskriv och tolka resultaten. 8. Utför en hierarkisk analys där prediktorerna inkluderas i följande ordning: (a) histologi (tänk på att det är en kategori-variabel); (b) kön; (c) interaktionen mellan histologi och kön. Beskriv vad som händer med modellens prediktiva förmåga i de olika stegen (blir den signifikant bättre). På vilket sätt påverkar de oberoende variablerna hazard för att patienten skall ha avlidit? Är effekterna signifikanta? Beskriv och tolka resultaten. 9. Eftersom analysen ovan påvisade en signifikant interaktion mellan kön och histologi vad gäller hazard för att ha avlidit går du vidare och tittar på den enkla effekten av histologi separat för kvinnliga och manliga patienter. Hur ser effekten av histologi ut i respektive grupp? Texten skrivs i form av en SPSS-undervisning-handout där man klipper in SPSS outputtabeller och kommentarer till dessa (se kurshemsidan för exempel). Observera att det inte räcker att du bara klipper in Output-tabellerna utan att beskriva och tolka resultaten. 4. Uppgiften om Faktoranalys Uppgiften går ut på att utföra en faktoranalys av vissa av frågorna i datasetet Faktoranalys, Framgång (finns på kurshemsidan). Data är från 1819 personer som skattat hur pass viktiga olika faktorer är för att man skall bli framgångsrik här i livet. Skattningen är gjord på en skala från 1 (= inte alls viktigt) till 5 (= helt avgörande). De skattade faktorerna är: (1) Att man är från en rik familj (2) Att man har välutbildade föräldrar (3) Att man själv har en bra utbildning (4) Att man har talang (5) Att man arbetar hårt (6) Att man har rätt kontakter (7) Att man har politiska kontakter (8) Att man har rätt hudfärg (9) Att man har rätt religiös tillhörighet (10) Att man är från rätt region i landet (11) Att man har rätt kön (12) Att man har de rätta åsikterna Dessutom innehåller datasetet information om respondenternas kön och utbildningsgrad. Utför följande steg och svara på frågor: 1. Utför en faktoranalys (PCA) på de tolv skattade faktorerna, med varimax-rotation. Lämpar sig data för faktoranalys? Varför? Ett item har låg KMO/MSA, vilket? Vad innebär detta? (ta ändå med detta item i analysen). 2. Vad har item för kommunaliteter? Vad innebär detta? 3. Hur många faktorer plockar analysen fram? Varför? Tycker du att detta verkar vara ett lämpligt antal faktorer? Motivera ditt svar. 4. Ange faktorladdningarna. Vilka item hör till respektive faktor? 5. Döp de tre faktorerna och beskriv vad de mäter (vad står ett högt värde för).

5 6. Beräkna Cronbachs alpha för de tre faktorerna. Ser det bra ut? Texten skrivs i form av en SPSS-undervisning-handout där man klipper in SPSS outputtabeller och kommentarer till dessa (se kurshemsidan för exempel). Observera att det inte räcker att du bara klipper in Output-tabellerna utan att beskriva och tolka resultaten. 5. Uppgiften om Structural Equation Modeling (SEM) Uppgiften går ut på att i viss mån replikera analysen i följande artikel (finns på kurshemsidan): Holahan, C. J., Moos, R. H., Holahan, C. K., & Cronkite, R. C. (1999). Resource loss, resource gain, and depressive symptoms: A 10-year model. Journal of Personality and Social Psychology, 77, 620-629. Analysen utförs på ett dataset som simulerar det som Holahan et al. använt sig av ( SEM, Depression och fattigdom ; finns på kurshemsidan; det handlar alltså inte om originaldata). I detta dataset är korrelationerna mellan variablerna de samma som anges i Tabell 3 i Holahan et al.s artikel, däremot har alla variablerna i det simulerade datasetet ett medelvärde på noll och en standardavvikelse på ett. Mer specifikt skall man utföra följande moment/besvara följande frågor: 1. Ange undersökningens syfte (låtsas, s.a.s., att du är Holahan och att detta är din undersökning). 2. Utför den SEM-analys som presenteras i Figur 2 i Holahan et al.s artikel och presentera dina resultat (gärna i form av en figur). Både parameterestimat och modellens anpassningsmått skall anges. OBS: Resultaten kommer inte att bli exakt de samma som i Holahan et al.s artikel, så det funkar inte att bara skriva av dessa. Beskriv i ord vad resultaten visar. 3. Ange, gärna i en tabell, vilken direkt, indirekt samt total effekt (standardiserade) som de latenta variablerna har på varandra. 4. Ange hur mycket av variansen i de latenta endogena variablerna som kan förklaras av de exogena variablerna. 5. När du skall utföra analysen får du upp ett varningsmeddelande (som du ignorerar genom att välja Proceed with analysis ). Varför? Skriv texten i form av en SPSS-undervisning-handout (se kurshemsidan för exempel). 6. Uppgiften om Multilevel Modeling (MLM) Uppgiften går ut på analysera datasetet som heter MLM, socioekonomisk position. Detta dataset simulerar ett riktigt dataset, men det är alltså inte originaldata. Följande variabler ingår (du får gärna beskriva dessa i din text): 1. Intelligens ju högre värde desto högre uppmätt intelligens i tonåren. 2. Utbildning ju högre värde desto högre uppnådd utbildningsnivå vid 25 års ålder. 3. SEB socioekonomisk bakgrund, ju högre värde desto bättre ställt hade man det i barndomen.

6 4. USEP25, USEP30, USEP35, och USEP40 uppnådd socioekonomisk position vid 25-40 års ålder, ju högre värde desto bättre ställt har man det. Mer specifikt skall man utföra följande moment/besvara följande frågor: i. Börja med att grand mean centrera variablerna Intelligens, Utbildning och SEB. ii. Omstrukturera data så att varje person får fyra rader (en för varje mätning av USEP). Skapa en tidvariabel som står för antalet år sedan man fyllde 25 (varje person får alltså fyra värden, nämligen 0, 5, 10 och 15). 1. Analysera Modell 1: Fixed intercept, inga prediktorer, USEP som beroende variabel. Presentera och tolka resultaten. 2. Analysera Modell 2: Random intercept, inga prediktorer, USEP som beroende variabel. Hur pass bra passar modellen med data jämfört med Modell 1? Vad händer med residualerna jämfört med Modell 1? Finns det någon signifikant variation i USEPinterceptet mellan individer? Vad innebär detta? Presentera och tolka resultaten. 3. Analysera Modell 3: Random intercept, fixed effekt av tid, USEP som beroende variabel. Hur pass bra passar modellen med data jämfört med Modell 2? Vad händer med residualerna jämfört med Modell 2? Hur ser effekten av tid på USEP ut? Presentera och tolka resultaten. 4. Analysera Modell 4: Random intercept, random effekt av tid, USEP som beroende variabel. Hur pass bra passar modellen med data jämfört med Modell 3? Vad händer med residualerna jämfört med Modell 3? Varierar effekten av tid på USEP signifikant mellan individer? Presentera och tolka resultaten. 5. Analysera Modell 5: Random intercept, random effekt av tid, fixed effekt av intelligens (centrerat) samt interaktionen mellan intelligens (centrerat) och tid, USEP som beroende variabel. Hur pass bra passar modellen med data jämfört med Modell 4? Hur ser huvudeffekterna av tid och intelligens (centrerat) samt deras interaktion ut? Hur tolkas dessa resultat? Vad händer med residualerna samt med variansen i interceptet och i effekten av tid mellan individer jämfört med Modell 4? Presentera och tolka resultaten. 6. Analysera Modell 6: Upprepa Modell 5 men byt ut intelligens mot utbildning (centrerat). Hur pass bra passar modellen med data jämfört med Modell 4? Hur ser huvudeffekterna av tid och utbildning (centrerat) samt deras interaktion ut? Hur tolkas dessa resultat? Vad händer med residualerna samt med variansen i interceptet och i effekten av tid mellan individer jämfört med Modell 4? Presentera och tolka resultaten. 7. Analysera Modell 7: Upprepa Modell 5 men byt ut intelligens mot socioekonomisk bakgrund (SEB) (centrerat). Hur pass bra passar modellen med data jämfört med Modell 4? Hur ser huvudeffekterna av tid och SEB (centrerat) samt deras interaktion ut? Hur tolkas dessa resultat? Vad händer med residualerna samt med variansen i interceptet och i effekten av tid mellan individer jämfört med Modell 4? Presentera och tolka resultaten. 8. Analysera modell 8: Random intercept, random effekt av tid, fixed effekter av intelligens (centrerat), utbildning (centrerat) och SEB (centrerat) samt alla tre tvåvägs interaktionstermer som involverar effekten av tid. Hur pass bra passar modellen med data jämfört med Modell 7? Hur ser huvudeffekterna och interaktionerna ut? Hur tolkas dessa resultat? Vad händer med residualerna samt med variansen i interceptet och i effekten av tid mellan individer jämfört med Modell 7? Presentera och tolka resultaten. Inlämning Inkludera alla sex uppgifter i samma dokument (jag vill INTE få flera dokument från samma person). Inlämningsuppgiften mejlas till följande två adresser (båda två):

7 1) kimmo.sorjonen@ki.se 2) kimmo.sorjonen.ki@analys.urkund.se I urkund görs en plagieringskontroll och om texten är plagierad så riskerar man att bli avstängd från sin utbildning. DET ÄR ALLTSÅ FÖRBJUDET ATT PLAGIERA REDAN EXISTERANDE TEXTER. Bedömning & Betygsättning Inlämningsuppgiften bedöms och betygsätts utifrån följande kriterier: A. Uppfylls instruktionerna? (helt = 2; hyfsat = 1; nej = 0) B. Verkar beräkningarna vara korrekt utförda? (helt = 2; hyfsat = 1; nej = 0) C. Innehåller texten felaktiga påståenden? (nej = 2; mindre allvarliga = 1; flera/grova = 0) För betyget Godkänd krävs minst en poäng på VARDERA kriteriet A-C ovan.