P Oskarshamn site investigation. Interpretation of geophysical borehole measurements from KLX12A. Revised January 2008

Relevanta dokument
P Oskarshamn site investigation. Interpretation of geophysical borehole measurements from KLX27A. Håkan Mattsson, GeoVista AB.

P Oskarshamn site investigation

P Site investigation SFR. Interpretation of geophysical borehole measurements and petrophysical data from KFR105, KFR106 and HFR106

P Forsmark site investigation. Interpretation of borehole geophysical measurements in KFM01A, KFM01B, HFM01, HFM02 and HFM03

P Äspö Hard Rock Laboratory. Ground magnetic survey at site for planned facility for calibration of borehole orientation equipment at Äspö

P Oskarshamn site investigation

P Oskarshamn site investigation. Interpretation of borehole geophysical data from the percussion drilled part of the borehole KSH01A

P Äspö site descriptive model. Simplified geological single-hole interpretation of drill cores from the period

P Oskarshamn site investigation. Modal and geochemical analyses of drill core samples 2005

KBS-3H. Single-hole interpretation of borehole K08028F01 P Report. December 2016

P Oskarshamn site investigation. Modal and geochemical analyses of drill core samples 2007 and 40. Ar/ 39 Ar dating of a dolerite

IPR Äspö Hard Rock Laboratory. International Progress Report. The magnetic anisotropy of rocks across the deformation zone NE-1 at the Äspö HRL

A study of the performance

P Oskarshamn site investigation. Modal and geochemical analyses of drill core samples 2006 and updated bedrock map of the Laxemar subarea

This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum

P Oskarshamn site investigation

Rastercell. Digital Rastrering. AM & FM Raster. Rastercell. AM & FM Raster. Sasan Gooran (VT 2007) Rastrering. Rastercell. Konventionellt, AM

P Oskarshamn site investigation. Formation factor logging in situ by electrical methods in KLX07A, KLX08, KLX10 and KLX12A

P Oskarshamn site investigation. Rock mechanics characterisation of borehole KLX01, KLX03, KLX04 and KAV04

Module 6: Integrals and applications

Manhour analys EASA STI #17214

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00. English Version

Isolda Purchase - EDI

MÄTNING AV VÄGT REDUKTIONSTAL MEASUREMENT OF THE WEIGHTED SOUND TRANSMISSION LOSS

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00. English Version

Styrteknik: Binära tal, talsystem och koder D3:1

Module 1: Functions, Limits, Continuity

NORDIC GRID DISTURBANCE STATISTICS 2012

Isometries of the plane

SVENSK STANDARD SS

Stiftelsen Allmänna Barnhuset KARLSTADS UNIVERSITET

RADIATION TEST REPORT. GAMMA: 30.45k, 59.05k, 118.8k/TM1019 Condition D

P Forsmark site investigation

Aborter i Sverige 2008 januari juni

Sammanfattning hydraulik

För att justera TX finns det ett tool med namnet MMDVMCal. t.ex. /home/pi/applications/mmdvmcal/mmdvmcal /dev/ttyacm0

Metodprov för kontroll av svetsmutterförband Kontrollbestämmelse Method test for inspection of joints of weld nut Inspection specification

Installation Instructions

P Oskarshamn site investigation. Investigation of Quaternary deposits at Simpevarp peninsula and the islands of Ävrö and Hålö

R Determination of thermal properties at Äspö HRL. Comparison and evaluation of methods and methodologies for borehole KA 2599 G01

Resultat av den utökade första planeringsövningen inför RRC september 2005

Grafisk teknik IMCDP IMCDP IMCDP. IMCDP(filter) Sasan Gooran (HT 2006) Assumptions:

12.6 Heat equation, Wave equation

Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås

SVENSK STANDARD SS-EN ISO 19108:2005/AC:2015

A QUEST FOR MISSING PULSARS

SVENSK STANDARD SS-ISO :2010/Amd 1:2010

Projektmodell med kunskapshantering anpassad för Svenska Mässan Koncernen

P Forsmark site investigation

Spänningsdippar - spänningsdippskaraktäristik i en knutpunkt till följd av fel i omgivande nät

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version

P Site investigation SFR. Hydro Monitoring Program. Report for May 2008 August Göran Nyberg, Eva Wass Geosigma AB.

Custom-made software solutions for increased transport quality and creation of cargo specific lashing protocols.

GJUTEN ALUMINIUMPLATTA EN AW 5083 CAST ALUMINIUM PLATE EN AW 5083

WindPRO version feb SHADOW - Main Result. Calculation: inkl Halmstad SWT 2.3. Assumptions for shadow calculations. Shadow receptor-input

Measuring void content with GPR Current test with PaveScan and a comparison with traditional GPR systems. Martin Wiström, Ramboll RST

CHANGE WITH THE BRAIN IN MIND. Frukostseminarium 11 oktober 2018

PFC and EMI filtering

Grafisk teknik IMCDP. Sasan Gooran (HT 2006) Assumptions:

Statistical Quality Control Statistisk kvalitetsstyrning. 7,5 högskolepoäng. Ladok code: 41T05A, Name: Personal number:

P Forsmark site investigation. Hydraulic interference test with borehole HFM33 used as pumping borehole, November of 2007

CompactAIR Center Ventilation - Filtrering - Uppvärmning CompactAIR Center Ventilation - Filtration - Heating

Measuring child participation in immunization registries: two national surveys, 2001

Kundfokus Kunden och kundens behov är centrala i alla våra projekt

Utfärdad av Compiled by Tjst Dept. Telefon Telephone Datum Date Utg nr Edition No. Dokumentnummer Document No.

Information technology Open Document Format for Office Applications (OpenDocument) v1.0 (ISO/IEC 26300:2006, IDT) SWEDISH STANDARDS INSTITUTE

Uttagning för D21E och H21E

Arbetstillfällen

Documentation SN 3102

EASA Standardiseringsrapport 2014

Grafisk teknik. Sasan Gooran (HT 2006)

TN LR TT mg/l N b) 2,6-Dimethylphenole

SVENSK STANDARD SS-EN 13612/AC:2016

Hittsjön. Vindkraftspark. Samrådsunderlag

EMIR-European Market Infrastructure Regulation

INDUKTIV SLINGDETEKTOR INDUCTIVE LOOP DETECTOR

SGUs arbete med havsplanering

Datasäkerhet och integritet

Monteringsanvisning Nödutrymningsbeslag ASSA 179E

FORSKNINGSKOMMUNIKATION OCH PUBLICERINGS- MÖNSTER INOM UTBILDNINGSVETENSKAP

P Kontroll och inmätning av diken i potentiella utströmningsområden i Laxemar. Valideringstest av ythydrologisk modellering

Könsfördelningen inom kataraktkirurgin. Mats Lundström

Make a speech. How to make the perfect speech. söndag 6 oktober 13

Att planera bort störningar

The test can be performed on the following devices. In addition, the required cuvette and the absorption range of the photometer are indicated.

TEXTURED EASY LOCK BLOCK INSTALLATION GUIDE. australianpaving.com.au

SVENSK STANDARD SS

Accomodations at Anfasteröd Gårdsvik, Ljungskile

PRESTANDADEKLARATION. Nr 0015 SV

Preschool Kindergarten

STORSEMINARIET 3. Amplitud. frekvens. frekvens uppgift 9.4 (cylindriskt rör)

balans Serie 7 - The best working position is to be balanced - in the centre of your own gravity! balans 7,45

Riskhantering. med exempel från Siemens

Thesis work at McNeil AB Evaluation/remediation of psychosocial risks and hazards.


P Oskarshamn site investigation. Calculation of Fracture Zone Index (FZI) for KSH01A

Examples on Analog Transmission

E4 Sundsvall Sundsvallsbron

denna del en poäng. 1. (Dugga 1.1) och v = (a) Beräkna u (2u 2u v) om u = . (1p) och som är parallell

FORTA M315. Installation. 218 mm.

Transkript:

P-06-253 Revised January 2008 Oskarshamn site investigation Interpretation of geophysical borehole measurements from KLX12A Håkan Mattsson, GeoVista AB November 2006 Svensk Kärnbränslehantering AB Swedish Nuclear Fuel and Waste Management Co Box 250, SE-101 24 Stockholm Tel +46 8 459 84 00

ISSN 1651-4416 SKB P-06-253 Revised January 2008 Oskarshamn site investigation Interpretation of geophysical borehole measurements from KLX12A Håkan Mattsson, GeoVista AB November 2006 Keywords: Borehole, Logging, Geophysics, Geology, Bedrock, Fractures. This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author and do not necessarily coincide with those of the client. A pdf version of this document can be downloaded from www.skb.se

Reading instruction For revision no. 1 of this report a recalculation of density values has been done. A wrong calibration file was used for the density log. Hence an updating of Table 5-2, Figure 5-1 and Appendix 1 has been done as well as corresponding text in Section 5.2.1 and Abstract as well as in Sammanfattning. The recalculation of the density changes the physical properties so that they most likely corresponds to quartz monzodiorite or possibly (but less likely) Ävrö granite with low amount of quartz and high amount of dark minerals.

Abstract This report presents the compilation and interpretations of geophysical logging data from the cored borehole KLX12A. The main objective of the investigation is to use the results as supportive information during the geological core logging and mapping of drill cuttings and as supportive information during the geological single-hole interpretation. For almost 60% of the borehole length the silicate density classifies in the interval 2,730 2,800 kg/m 3. In the corresponding sections the magnetic susceptibility varies within the range 0.02 0.05 SI and the natural gamma radiation is generally < 10 µr/h. This combination of physical properties most likely corresponds to quartz monzodiorite or possibly (but less likely) Ävrö granite with low amount of quartz and high amount of dark minerals. The natural gamma radiation is unusually low and magnetic susceptibility > 0.04 SI is high in comparison to normal values for Ävrö granite. Two significant sections with decreased density occur at c 133 140 m and c 218 230 m. The sections c 163 177 m and c 422 523 are characterized by high density values, 2,900 3,050 kg/m 3, low natural gamma radiation c 1 5 µr/h and partly very high magnetic susceptibility, c 0.08 0.15 SI. The combination of physical properties is typical for diorite/ gabbro rocks. In the lowermost ca 75 m of KLX12A (section c 523 600 m) there is a small but distinct increase in the natural gamma radiation (8 12 µr/h) that coincides with decreased magnetic susceptibility (0.01 0.02 SI). However, there is no corresponding variation in the density data. Indications of fine-grained granite dykes occur along the entire borehole length, but they are concentrated in the intervals c 177 202 m, 275 305 m and 528 557 m. The estimated fracture frequency shows a dominance of low fracturing, with only one short section which indicates increased fracture frequency (180 190 m). Some sections of moderate fracture frequency (slightly increased fracturing) are fairly long and occur abundantly in the uppermost c 150 m of the borehole. The data suggest the occurrences of single brittle fractures and no large deformation zone. In the interval c 497 528 m (crossing the lower boundary between increased and normal density) there are several 2 5 m intervals of significantly decreased resistivity that coincide with minor caliper and low P-wave velocity anomalies, which most likely corresponds to increased fracturing. 3

Sammanfattning Föreliggande rapport presenterar en sammanställning och tolkning av geofysiska borrhålsmätningar från kärnborrhålet KLX12A. Huvudsyftet med undersökningen är att ta fram ett material som på ett förenklat sätt åskådliggör resultaten av de geofysiska loggningarna, s k generaliserade geofysiska loggar. Materialet används dels som stödjande data vid borrkärne- och borrkaxkarteringen samt som underlag vid den geologiska enhålstolkningen. Nästan 60 % av den undersökta borrhålslängden har en silikatdensitet i intervallet 2 730 2 800 kg/m 3. Längs dessa sektioner har berggrunden en magnetisk susceptibilitet i intervallet 0,02 0,05 SI och en naturlig gammastrålning < 10 µr/h. Kombinationen av fysikaliska egenskaper indikerar mest troligt förekomst av kvartsmonzodiorit eller (fast mindre troligt) Ävrögranit med avvikande hög halt av mörka mineral och lågt kvartsinnehåll. Den mycket låga naturliga gammastrålningen och höga magnetiska susceptibiliteten (delvis > 0,04 SI) är anomala värden i förhållande till normal Ävrögranit. Två intervall med avvikande låg densitet förekommer vid ca 133 140 m och 218 230 m. Sektionerna ca 163 177 m och 422 523 m karaktäriseras däremot av höga densitetsvärden, i intervallet 2 900 3 050 kg/m 3, i kombination med låg naturlig gamma strålning (1 5 µr/h) och bitvis mycket hög magnetisk susceptibilitet (0,08 0,15 SI). Kombinationen av fysikaliska egenskaper är typiska för diorit/gabbro. Nära botten på borrhålet, intervallet ca 523 600 m, ligger den naturliga gammastrålningen på en något högre nivå (8 12 µr/h) och den magnetiska susceptibiliteten är något lägre (0,01 0,02) i förhållande till de övre delarna. Däremot finns ingen signifikant variation i densiteten längs detta intervall. Det finns indikationer på förekomst av mindre finkorniga granitgångar längs hela den under sökta borrhålslängden, men dessa är främst koncentrerade till sektionerna ca 177 202 m, 275 305 m och 528 557 m. Den uppskattade sprickfrekvensen i KLX12A är i huvudsak låg, med en enda kort sektion med indikerad högre sprickfrekvens (180 190 m). Det finns dock ett flertal relativt långa sektioner med moderat (något förhöjd) sprickfrekvens, särskilt längs sektionen 100 250 m. Loggdata indikerar att det troligen rör sig om enstaka sprickor och inte någon större deformationszon. I intervallet ca 497 528 m (korsande den nedre kontakten mellan hög och normal densitet) förekommer ett flertal 2 5 m långa intervall med kraftigt sänkt resistivitet i kombination med mindre caliperanomalier och något sänkt P-vågshastighet, något som troligen indikerar förhöjd sprickfrekvens. 4

Contents 1 Introduction 7 2 Objective and scope 9 3 Equipment 11 3.1 Description of equipment for analyses of logging data 11 4 Execution 13 4.1 Interpretation of the logging data 13 4.2 Preparations and data handling 14 4.3 Analyses and interpretations 15 4.4 Nonconformities 15 5 Results 17 5.1 Quality control of the logging data 17 5.2 Interpretation of the logging data 18 5.2.1 Interpretation of KLX12A 18 References 23 Appendix 1 Generalized geophysical loggings of KLX12A 25 5

1 Introduction SKB performs site investigations for localization of a deep repository for high level radioactive waste. The site investigations are performed at two sites, Forsmark and Oskarshamn. This document reports the results gained from the interpretation of geophysical borehole logging data from the cored borehole KLX12A located in Laxemar, Oskarshamn. Generalized geophysical loggings related to lithological variations are presented together with indicated fracture loggings, including estimated fracture frequency. Calculations of the salinity are also presented. The logging measurements were conducted in 2006 by Rambøll /1/. The interpretation presented in this report is performed by GeoVista AB in accordance with the instructions and guidelines from SKB (activity plan AP PS 400-06-050 and method description MD 221.003, SKB internal controlling documents), Table 1-1. Figure 1-1 shows the location of borehole KLX12A. The interpreted results are stored in the primary data base SICADA and are traceable by the activity plan number. Table 1 1. Controlling documents for the performance of the activity. Activity plan Number Version Tolkning av borrhålsgeofysiska data från KLX12A AP PS 400-06-050 1.0 Method descriptions Number Version Metodbeskrivning för tolkning av geofysiska borrhålsdata SKB MD 221.003 2.0 7

Figure 1-1. Location of the borehole KLX12A in the southern part of Laxemar. 8

2 Objective and scope The purpose of geophysical measurements in boreholes is to gain knowledge of the physical properties of the bedrock in the vicinity of the borehole. A combined interpretation of the lithological logging data; silicate density, magnetic susceptibility and natural gamma radiation, together with petrophysical data makes it possible to estimate the physical signature of different rock types. The three loggings are generalized and are then presented in a simplified way. The location of major fractures and an estimation of the fracture frequency along the borehole are calculated by interpreting data from the resistivity loggings; the single point resistance (SPR), caliper and sonic loggings. An estimation of the salinity and the apparent porosity are presented for the borehole. These parameters indicate salinity variations in the borehole fluid and the transport properties of the rock volume in the vicinity of the borehole. The main objective of these investigations is to use the results as supportive information during the geological core logging and as supportive information during the so called geological single-hole interpretation, which is a combined borehole interpretation of core logging (Boremap) data, geophysical data and radar data. 9

3 Equipment 3.1 Description of equipment for analyses of logging data The software used for the interpretation are WellCad v4.0 (ALT) and Strater 1.00.24 (Golden Software), that are mainly used for plotting, Grapher v5 (Golden Software), mainly used for plotting and some statistical analyses, and a number of in-house software developed by GeoVista AB on behalf of SKB. 11

4 Execution 4.1 Interpretation of the logging data The execution of the interpretation can be summarized in the following five steps: 1. Preparations of the logging data (calculations of noise levels, filtering, error estimations, re-sampling, drift correction, length adjustment). The loggings are median or mean filtered (generally 5 point filters for the resistivity loggings and 3 point filters for other loggings) and re-sampled to common section co-ordinates (0.1 m point distance). The density (logging tool century 9139) and magnetic susceptibility logging data are calibrated with respect to petrophysical data. The magnetic susceptibility logging data were calibrated by use of a combination of petrophysical data from the boreholes KLX03, KSH01A, KSH02, KSH03A, KAV04A, and KLX10 see /2, 3, 4, 5, 6, 7/. The density logging data were calibrated by use of petrophysical data from the borehole KLX20A /8/. The caliper 1D and caliper 3D logs are calibrated by use of borehole technical information supplied by SKB. The calibration procedure is described in detail in /9/. 2. Interpretation rock types (generalization of the silicate density, magnetic susceptibility and natural gamma radiation loggings). The silicate density is calculated with reference to /10/ and the data are then divided into 5 sections indicating a mineral composition corresponding to granite, granodiorite, tonalite, diorite and gabbro rocks, according to /11/. The sections are bounded by the threshold values granite < 2,680 kg/m 3 2,680 kg/m 3 < granodiorite < 2,730 kg/m 3 2,730 kg/m 3 < tonalite < 2,800 kg/m 3 2,800 kg/m 3 < diorite < 2,890 kg/m 3 2,890 kg/m 3 < gabbro The magnetic susceptibility logging is subdivided into steps of decades and the natural gamma radiation is divided into steps of low (< 10µR/h), medium (10 µr/h < gamma < 20 µr/h), high (20 µr/h < gamma < 30 µr/h) and very high (> 30 µr/h). 3. For the cored borehole the normal resistivity loggings are corrected for the influence of the borehole diameter and the borehole fluid resistivity. The apparent porosity is calculated during the correction of the resistivity loggings. The calculation is based on Archie s law /12/; σ = a σ w φ m + σ s where σ = bulk conductivity (S/m), σ w = pore water conductivity (S/m), φ = volume fraction of pore space, σ s = surface conductivity (S/m) and a and m are constants. Since a and m vary significantly with variations in the borehole fluid resistivity, estimations of the constants are performed with reference to the actual fluid resistivity in each borehole respectively. 4. Interpretation of the position of large fractures and estimated fracture frequency (classification to fracture logging and calculation of the estimated fracture frequency logging are based on analyses of the short and long normal resistivity, caliper mean, single point resistance (SPR), focused resistivity (128 and 300 cm) and sonic. 13

The position of large fractures is estimated by applying a second derivative filter to the logging data and then locating maxima (or minima depending on the logging method) in the filtered logging. Maxima (or minima) above (below) a certain threshold value (Table 4-1) are selected as probable fractures. The result is presented as a column diagram where column height 0 = no fracture, column height 1 = fracture indicated by all logging methods. The estimated fracture frequency is calculated by applying a power function to the weighted sum of the maxima (minima) derivative logging for each method respectively, and then calculating the total sum of all power functions. Parameters for the power functions were estimated by correlating the total weighted sum to the mapped fracture frequency in the cored boreholes KLX03 and KLX04 /2/. The powers and linear coefficients (weights) used are presented in Table 4-1. 5. Report evaluating the results. 4.2 Preparations and data handling The logging data were delivered as Microsoft Excel files via email from Leif Stenberg, SKB. The data of each logging method is saved separately as an ASCII-file. The data processing is performed on the ASCII-files. The data used for interpretation are: Density (gamma-gamma). Magnetic susceptibility. Natural gamma radiation. Focused resistivity (300 cm). Focused resistivity (128 cm). Sonic (P-wave). Caliper mean. Caliper 1D. SPR. Fluid resistivity. Fluid temperature. The borehole technical information used for calibration of the caliper data is delivered as Microsoft Word files via email by SKB. Table 4-1. Threshold values, powers and weights used for estimating position of fractures and calculate estimated fracture frequency, respectively. Borehole Sonic Focused res. 128 Focused res. 300 Caliper SPR Normal res. 64 Normal res. 16 Lateral res. Threshold KLX12A 2.5 2.2 1.7 1.0 1.0 Power KLX12A 1.0 1.0 1.6 1.0 0.5 Weight KLX12A 1.0 7.1 6.7 1.0 5.0 14

4.3 Analyses and interpretations The analyses of the logging data are made with respect to identifying major variations in physical properties with depth as indicated by the silicate density, the natural gamma radiation and the magnetic susceptibility. Since these properties are related to the mineral composition of the rocks in the vicinity of the borehole they correspond to variations in lithology and in thermal properties. The resistivity, sonic and caliper loggings are mainly used for identifying sections with increased fracturing and alteration. The interpretation products salinity and apparent porosity help identifying saline ground water and porous rocks. 4.4 Nonconformities Normal resistivity logging measurements were not performed in KLX12A. Apparent porosity calculations and corrections for the borehole diameter and fluid resistivity are therefore not presented in the report. Apart from this, no nonconformities are reported. 15

5 Results 5.1 Quality control of the logging data Noise levels of the raw data for each logging method are presented in Table 5-1. Noise levels are generally below the recommended maximum noise level. However, the magnetic susceptibility data show a noise that is 7 times larger than what is recommended for this method. To reduce the influence from the noise all data were average filtered prior to the evaluation. The SPR data show a couple of abnormal anomalies at suspected fractures (sections 182 187 m and 270 272 m). The anomalies were rejected in the fracture interpretation. A qualitative inspection was performed on the loggings. The data were checked for spikes and/ or other obvious incorrect data points. Erroneous data were replaced by null values ( 999) by the contractor Rambøll prior to the delivery of the data, and all null values were disregarded in the interpretation. Sections with null values are indicated by red and white stripes in the presentation of the generalized loggings. Table 5-1. Noise levels in the investigated geophysical logging data of KLX12A. Logging method KLX12A Recommended max noise level Density (kg/m 3 ) 7 3 5 Magnetic susceptibility (SI) 7 10 4 1 10 4 Natural gamma radiation 0.2 0.3 (µr/h) Long normal resistivity (%) No data 2.0 Short normal resistivity (%) No data 2.0 Fluid resistivity (%) 0.02 2 Fluid temperature ( C) 0.0003 0.01 Lateral resistivity (%) No data 2 Single point resistance (%) 0.2 No data Caliper 1D 0.1 10 4 5 10 4 Caliper mean (m) 0.3 10 4 5 10 4 Focused resistivity 300 (%) 4.5 No data Focused resistivity 140 (%) 0.6 No data Sonic (m/s) 2 20 17

5.2 Interpretation of the logging data The presentation of interpretation products presented below includes: Classification of silicate density. Classification of natural gamma radiation. Classification of magnetic susceptibility. Position of inferred fractures (0 = no method, 1 = all methods). Estimated fracture frequency in 5 metre sections. Classification of estimated fracture frequency (0 to 3, 3 to 6 and > 6 fractures/m). 5.2.1 Interpretation of KLX12A The results of the generalized logging data and fracture estimations of KLX12A are presented in Figure 5-1, and in a more detailed scale in Appendix 1. For almost 60% of the borehole length the silicate density classifies in the interval 2,730 2,800 kg/m 3 (Table 5-2). In the corresponding sections the magnetic susceptibility varies within the range 0.02 0.05 SI and the natural gamma radiation is generally < 10 µr/h. This combination of physical properties most likely corresponds to quartz monzodiorite or possibly (but less likely) Ävrö granite with low amount of quartz and high amount of dark minerals. The natural gamma radiation is unusually low and magnetic susceptibility > 0.04 SI is high referring to normal values for Ävrö granite. Two significant sections with decreased density occur at c 133 140 m and c 218 230 m. The former coincides with greatly increased natural gamma radiation and decreased magnetic susceptibility, which presumably indicates the occurrence of fine-grained granite. In the section c 218 230 m (density = 2,700 2,750 kg/m 3 ) there is only a minor decrease in the susceptibility and also a minor increase in the natural gamma radiation. The data could indicate a section with Ävrö granite, however with anomalously low natural gamma radiation, or possibly quartz monzodiorite with decreased density. It is not uncommon that the quartz monzodiorite and Ävrö granite rock types have overlapping physical properties. The sections c 163 177 m and c 422 523 are characterized by high density values, 2,900 3,050 kg/m 3, low natural gamma radiation c 1 5 µr/h and partly very high magnetic susceptibility, c 0.08 0.15 SI. The combination of physical properties is typical for diorite/ gabbro rocks. Significant magnetic lows occur within this section, at c 433 438 m, 447 455 m and 497 511 m, which may indicate rock alteration, probably oxidation of magnetite to hematite. The low magnetic sections may also indicate the occurrences of fine-grained diorite/ gabbro, which is often low magnetic. In the lowermost ca 75 m of KLX12A (section c 523 600 m) there is a small but distinct increase in the natural gamma radiation (8 12 µr/h) that coincides with decreased magnetic susceptibility (0.01 0.02 SI). However, there is no corresponding variation in the density data. 18

Table 5-2. Distribution of silicate density classes with borehole length of KLX12A. Silicate density interval (kg/m 3 ) Borehole length (m) Relative borehole length (%) 2,680 > dens 11 2 2,680 < dens < 2,730 46 9 2,730 < dens < 2,800 281 57 2,800 < dens < 2,890 75 15 dens > 2,890 83 17 Short section (0.5 2.0 m long) of increased natural gamma radiation, decreased magnetic susceptibility and decreased density, which most likely indicate occurrences of fine-grained granite dykes, occur along the entire borehole length. However, these kinds of anomalies are concentrated in the intervals c 177 202 m, 275 305 m and 528 557 m. The fracture frequency estimated for KLX12A shows a dominance of low fracturing, where only one short section indicates increased fracture frequency. However, some sections of moderate fracture frequency (slightly increased fracturing) are fairly long and occur abundantly in the uppermost c 150 m of the borehole (section c 100 250 m). This part of the borehole is mainly characterized by several thin low resistivity anomalies and only minor indications in the caliper and sonic (P-wave velocity) data, which suggests the occurrences of single brittle fractures and no large deformation zone. The section c 180 190 m of indicated increased fracture frequency is mainly characterized by two significant low resistivity anomalies and no major indications in the caliper or sonic data. This indicates that the suggested fracture frequency is overestimated in this part of the borehole. In the interval c 497 528 m (crossing the lower boundary between increased and normal density) there are several 2 5 m intervals of significantly decreased resistivity that coincide with minor caliper and low P-wave velocity anomalies, which most likely corresponds to increased fracturing. The estimated fluid water salinity (Figure 5-2) increases stepwise with the borehole section length, from c 500 ppm NaCl at 100 m up to c 5,000 ppm NaCl at the end of the borehole. The two uppermost points of stepwise increasing salinity (at c 180 200 m and c 230 250 m) coincide with indicated increased fracture frequency, which may indicate that the suggested fractures are water bearing. 19

Figure 5-1. Generalized geophysical logs of KLX12A. 20

Figure 5-2. Estimated salinity and estimated fracture frequency of KLX12A. 21

References /1/ Nielsen U T, Ringgard J, 2006. Geophysical borehole logging in boreholes KLX12A, KLX09G, KLX10B and KLX10C. SKB P-06-198, Svensk Kärnbränslehantering AB. /2/ Mattsson H, Thunehed H, Keisu, M, 2005. Interpretation of geophysical borehole measurements and compilation of petrophysical data from KLX01, KLX03, KLX04, HLX21, HLX22, HLX23, HLX24, HLX25, HLX26, HLX27 and HLX28. SKB P-05-34, Svensk Kärnbränslehantering AB. /3/ Mattsson H, Thunehed H, 2004. Interpretation of geophysical borehole data from KSH01A, KSH01B, KSH02 (0 100 m), HSH01, HSH02 and HSH03, and compilation of petrophysical data from KSH01A and KSH01B. SKB P-04-28, Svensk Kärnbränslehantering AB. /4/ Mattsson H, Thunehed H, 2004. Interpretation of geophysical borehole data and compilation of petrophysical data from KSH02 (80 1,000 m) and KAV01. SKB P-04-77, Svensk Kärnbränslehantering AB. /5/ Mattsson H, 2004. Interpretation of geophysical borehole data and compilation of petrophysical data from KSH03A (100 1,000m), KSH03B, HAV09, HAV10 and KLX02 (200 1,000 m). SKB P-04-214, Svensk Kärnbränslehantering AB. /6/ Mattsson H, 2004. Interpretation of geophysical borehole data and compilation of petrophysical data from KAV04A (100 1,000 m), KAV04B, HLX13 and HLX14. SKB P-04-217, Svensk Kärnbränslehantering AB. /7/ Mattsson H, 2006. Interpretation of geophysical borehole measurements and petrophysical data from KLX10. Svensk Kärnbränslehantering AB. In press. /8/ Mattsson H, Keisu M, 2006. Interpretation of geophysical borehole measurements and petrophysical data from KLX20A, KLX18A, KLX11B, KLX09B, KLX09D, KLX09F, HLX38, HLX39, HLX40 and HLX41. SKB P-06-167, Svensk Kärnbränslehantering AB. /9/ Keisu M, 2006. Calibration of 1D and 3D caliper data from core and percussion drilled boreholes. SKB P-06-153, Svensk Kärnbränslehantering AB. /10/ Henkel H, 1991. Petrophysical properties (density and magnetization) of rock from the northern part of the Baltic Shield. Tectonophysics 192, 1 19. /11/ Puranen R, 1989. Susceptibilities, iron and magnetite content of precambrian rocks in Finland. Geological survey of Finland, Report of investigations 90, 45 pp. /12/ Archie G E, 1942. The electrical resistivity log as an aid in determining some reservoir characteristics: Trans. Am. Inst. Min., Metallurg., Petr.Eng., 146, 54 62. 23

Appendix 1 Generalized geophysical loggings of KLX12A 25

26