Trätek =T FÖR TRÄTEKNISK FORSKNING

Relevanta dokument
12.6 Heat equation, Wave equation

Isolda Purchase - EDI

Projektmodell med kunskapshantering anpassad för Svenska Mässan Koncernen

SVENSK STANDARD SS-ISO 8734

Isometries of the plane

Uttagning för D21E och H21E

Stiftelsen Allmänna Barnhuset KARLSTADS UNIVERSITET

Module 6: Integrals and applications

This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum

SVENSK STANDARD SS-EN ISO 2578

Aborter i Sverige 2008 januari juni

Information technology Open Document Format for Office Applications (OpenDocument) v1.0 (ISO/IEC 26300:2006, IDT) SWEDISH STANDARDS INSTITUTE

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00. English Version

Preschool Kindergarten

1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)

Jan Ekstedt. Bestämning av missfårgning vid kvistar Determination of discolouration of paints on wood due to resin exudation from knots.

Materialplanering och styrning på grundnivå. 7,5 högskolepoäng

8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers.

Documentation SN 3102

Technique and expression 3: weave. 3.5 hp. Ladokcode: AX1 TE1 The exam is given to: Exchange Textile Design and Textile design 2.

The Arctic boundary layer

Support Manual HoistLocatel Electronic Locks

SVENSK STANDARD SS

Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm

Calculate check digits according to the modulus-11 method

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version

Kvalitetsarbete I Landstinget i Kalmar län. 24 oktober 2007 Eva Arvidsson

Webbregistrering pa kurs och termin

Klyvklingor / Ripping Blades.

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik

Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås

Kursplan. AB1029 Introduktion till Professionell kommunikation - mer än bara samtal. 7,5 högskolepoäng, Grundnivå 1

Windlass Control Panel v1.0.1

SVENSK STANDARD SS-ISO 8779:2010/Amd 1:2014

Beslut om bolaget skall gå i likvidation eller driva verksamheten vidare.

Klicka här för att ändra format

Analys och bedömning av företag och förvaltning. Omtentamen. Ladokkod: SAN023. Tentamen ges för: Namn: (Ifylles av student.

CUSTOMER READERSHIP HARRODS MAGAZINE CUSTOMER OVERVIEW. 63% of Harrods Magazine readers are mostly interested in reading about beauty

Tentamen i Matematik 2: M0030M.

Beijer Electronics AB 2000, MA00336A,

Kurskod: TAMS11 Provkod: TENB 07 April 2015, 14:00-18:00. English Version

SVENSK STANDARD SS-EN ISO

Examensarbete Introduk)on - Slutsatser Anne Håkansson annehak@kth.se Studierektor Examensarbeten ICT-skolan, KTH

ISO general purpose screw threads Basic profile Part 1: Metric screw threads

SVENSK STANDARD SS-EN ISO

Manhour analys EASA STI #17214

Adding active and blended learning to an introductory mechanics course

SVENSK STANDARD SS-ISO :2010/Amd 1:2010

SVENSK STANDARD SS-EN ISO

Eternal Employment Financial Feasibility Study

Styrteknik: Binära tal, talsystem och koder D3:1

BOENDEFORMENS BETYDELSE FÖR ASYLSÖKANDES INTEGRATION Lina Sandström

FORSKNINGSKOMMUNIKATION OCH PUBLICERINGS- MÖNSTER INOM UTBILDNINGSVETENSKAP

EXTERNAL ASSESSMENT SAMPLE TASKS SWEDISH BREAKTHROUGH LSPSWEB/0Y09

SVENSK STANDARD SS-EN ISO 19108:2005/AC:2015

Make a speech. How to make the perfect speech. söndag 6 oktober 13

SVENSK STANDARD SS-EN 13612/AC:2016

Grafisk teknik IMCDP IMCDP IMCDP. IMCDP(filter) Sasan Gooran (HT 2006) Assumptions:

Webbreg öppen: 26/ /

Kursplan. EN1088 Engelsk språkdidaktik. 7,5 högskolepoäng, Grundnivå 1. English Language Learning and Teaching

Metodprov för kontroll av svetsmutterförband Kontrollbestämmelse Method test for inspection of joints of weld nut Inspection specification

Exempel på uppgifter från 2010, 2011 och 2012 års ämnesprov i matematik för årskurs 3. Engelsk version

Semantic and Physical Modeling and Simulation of Multi-Domain Energy Systems: Gas Turbines and Electrical Power Networks

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00. English Version

SVENSK STANDARD SS-EN ISO

Resultat av den utökade första planeringsövningen inför RRC september 2005

Design by Voice. Azzaro

The Finite Element Method, FHL064

Collaborative Product Development:

Methods to increase work-related activities within the curricula. S Nyberg and Pr U Edlund KTH SoTL 2017

Kundfokus Kunden och kundens behov är centrala i alla våra projekt

SVENSK STANDARD SS-EN ISO

CHANGE WITH THE BRAIN IN MIND. Frukostseminarium 11 oktober 2018

Swedish adaptation of ISO TC 211 Quality principles. Erik Stenborg

SVENSK STANDARD SS-EN ISO 9876

Health café. Self help groups. Learning café. Focus on support to people with chronic diseases and their families

Item 6 - Resolution for preferential rights issue.

Könsfördelningen inom kataraktkirurgin. Mats Lundström

Kristina Säfsten. Kristina Säfsten JTH

A study of the performance

Surfaces for sports areas Determination of vertical deformation. Golvmaterial Sportbeläggningar Bestämning av vertikal deformation

Välkommen in på min hemsida. Som företagsnamnet antyder så sysslar jag med teknisk design och konstruktion i 3D cad.

Workplan Food. Spring term 2016 Year 7. Name:

SVENSK STANDARD SS-EN ISO

Kursplan. MT1051 3D CAD Grundläggande. 7,5 högskolepoäng, Grundnivå 1. 3D-CAD Basic Course


Tentamen i Matematik 2: M0030M.

Profilinformation Flygteknink 2019, Ingo Staack

The Municipality of Ystad

MVE500, TKSAM Avgör om följande serier är divergenta eller konvergenta. Om konvergent, beräkna summan. (6p) ( 1) n x 2n+1 (a)

DVA336 (Parallella system, H15, Västerås, 24053)

SVENSK STANDARD SS-EN 828

Transkript:

D)l D Anders Samuelsson, Jesper Arfvidsson Measurement and Calculation of Moisture Content Distribution during Drying Paper presented at 4th lufro International Wood Drying Conference ^Improving Wood Drying Technology ^\ Rotorua, New Zealand, August 9-,94 Trätek =T FÖR TRÄTEKNISK FORSKNING LUND INSTITUTE OF TECHNOLOGY Division of Building Physics

Anders Samuelsson, Jesper Arfvidsson MEASUREMENT AND CALCULATION OF MOISTURE CONTENT DISTRIBUTION DURING DRYING Trätek, Rapport I 9409047 ISSN 12-71 ISRN TRÄTEK - R - - 94/047 - - SE Nyckelord drying moisture moisture moisture content gradient measurement Stockholm september 94

Rapporter från Trätek Institutet för träteknisk forskning är kompletta sammanställningar av forskningsresultat eller översikter, utvecklingar och studier. Publicerade rapporter betecknas med I eller P och numreras tillsammans med alla utgåvor från Trätek i löpande följd. Citat tillätes om källan anges. Trätek Institutet för träteknisk forskning betjänar de fem industrigrenarna sågverk, trämanufaktur (snickeri-, trähus-, möbel- och övrig träförädlande industri), träfiberskivor, spånskivor och plywood. Ett avtal om forskning och utveckling mellan industrin och Nutek utgör grunden för verksamheten som utförs med egna, samverkande och externa resurser. Trätek har forskningsenheter i Stockholm, Jönköping och Skellefteå. Reports issued by the Swedish Institute for Wood Technology Research comprise complete accounts for research results, or summaries, surveys and studies. Published reports bear the designation I or P and are numbered in consecutive order together with all the other publications from the Institute. Extracts from the text may be reproduced provided the source is acknowledged. The Swedish Institute for Wood Technology Research serves the five branches of the industry: sawmills, manufacturing (joinery, wooden houses, furniture and other woodworking plants), fibre board, particle board and plywood. A research and development agreement between the industry and the Swedish National Board for Industrial and Technical Development forms the basis for the Institute's activities. The Institute utilises its own resources as well as those of its collaborators and other outside bodies. Our research units are located in Stockholm, Jönköping and Skellefteå.

SAMMANFATTNING Vid trätorkning är utvecklingen av fuktkvotsgradienten i trämaterialet av stor vikt för kvaliteten efter torkning. En stor skillnad i fuktkvot mellan det inre och ytan av en träbit kan lätt orsaka sprickbildning och deformationer. Därför har en metod för beräkning av fuktkvotsfördelningen i trä under torkning utvecklats och även publicerats tidigare. Dessa beräkningar är här jämförda med praktiska mätningar av fuktkvotsfördelningen under torkning. Mätningarna har utförts på furu {Pinus silvestris) från mellersta och norra Dalarna. Prover har tagits ur en planka vid olika tidpunkter under pågående torkning. Dessa prover har hackats upp i 65 stycken små rektangulära träbitar. Fuktkvoten i dessa träbitar mättes med hjälp av torrviktsmetoden. Den således uppmätta fuktkvotsfördelningen har därefter jämförts med beräknade värden för motsvarande tvärsnitt uppdelat i 65 beräkningsceller. Jämförelsen mellan beräknade och uppmätta värden visade på en mestadels god överensstämmelse. Vid beräkningarna användes olika fuktflödeskoefficienter i tangentiell och radiell riktning för både kärn- och splintved. Dessa koefficienter har med vissa svårigheter tagits ur litteraturen. Jämförelsen visar att nya fuktflödeskoefficienter behöver tas fram för radiell, tangentiell och longitudinell riktning till årsringarna. Några resultat från en ny serie mätningar redovisas. Dessa mätningar är utförda på små provbitar av antingen furusplint eller furukärna. Fuktkvotsfördelningen i dessa har mätts under uttorkning i radiell och tangentiell riktning separat. Dessa mätningar har utförts för att möjliggöra en utvärdering av nya fuktflödeskoefficienter till beräkningsmodellen för fuktkvotsfördelning under torkning.

MEASUREMENT AND CALCULATION OF MOISTURE CONTENT DISTRIBUTION DURING DRYING A. SAMUELSSON' and J. ARFVIDSSON' 'Trätek, Swedish Institute for Wood Technology Research, Box 5609, S-114 86 Stockholm, Sweden ^Lund Institute of Technology, Dept. of Building Physics, Box 1, S-2 00 Lund, Sweden ABSTRACT The moisture distribution in wood during drying is important for the timber quality after drying. A great difference in moisture content between the centre and the surface of a board could easily cause checks and deformation. A method to calculate moisture content distribution during drying has been developed and published earlier. The calculations are compared with a set of measurements of moisture content distribution during drying. The measurements have been performed on Scots pine {Pimis silvestris). Samples have been taken from a board at different times during drying. These samples have then been cut into small rectangular pieces for which the moisture content has been measured with the help of the dry weight method. The measured moisture content distribution has then been compared with calculations. The comparison between calculations and measurements showed mostly a good agreement. Different flow coefficients were used in the tangential and radial directions, both for sapwood and heartwood. Examples from a new series of measurements are presented. There are four flow coefficients (sapwood and heartwood with the two directions tangential and radial). The moisture content distributions at different times are measured separately in the four cases. INTRODUCTION A major problem in timber drying is the development of moisture content distribution. The moisture distribution causes quality loss, such as checks, case hardening and deformations. Therefore, it is important to be able to predict the moisture distribution for specific timber species with defined dimensions and drying schedule. Theoretical work on moisture transport in wood during drying has been done by Claesson and Arfvidsson (92) among others. In that paper the concept using Kirchoff potentials was described. This concept covers the whole process, from evaluation of measurements to numerical calculation of moisture content distribution. A short recapitulation will be made in the present paper. The aim of this work is to compare their calculation method for moisture distribution during drying with measurements on ordinary sawn timber. This work is part of a research program on moisture distribution, tensions and deformations that occur during drying. The aim of the research program is to create a method to calculate drying schedules for industrial kilns that reduce quality loss.

THEORY The model used in this study is still under development. It is based on the theory of moisture transport using Kirchhoff potential (Arfvidsson and Claesson 89) extended to the anisotropic case (Claesson and Arfvidsson 92). This potential, which is a true flow potential, is defined as: Here ^ denotes any moisture state variable. The moisture balance equation, using Kirchhoff potentials, is for the anisotropic case in two dimensions: ^ ± [cos ^(6)^. sm\q)^. sin(e)cos(e)-^(i r, -+,)]* (2) dt dx dx dx dy. [cos'(6)^. sin'(6)^. sin(e)cos(e) (i f^-i r, )] dy dy dy dx cos ^(6) = sin'(6) = sin(0)cos(e) = x^^.v^ x'^y' x' * y' Index r denotes radial direction and / tangential direction. The equation is solved numerically by an explicit difference method. In this method the piece of wood is divided into a rectangular mesh, in the same way as the measurements are performed. The moisture content by volume is known at time t This moisture content is then converted into Kirchhoff potentials ij;, fi-om relations based on measurements. From this ij;-distribution the moisture flow between each cell in the mesh can be calculated in both the x and y direction. The flow equations are in the two directions: -g^ = cos\d)^ * sin2(6)^ * sin(e)cos(e) (i r^-i r^ ) (3) dx dx dy -g = cos\e)^ sin ^(6)^ sin(e)cos(e) (i r^-i r^ ) dy dy dx The new moisture content at time t+at is calculated from the net inflow to each cell. This procedure is repeated step by step until the end of the simulation time is reached. In this way the moisture content distribution can be calculated at different times during the drying process.

MEASUREMENT Test material The material used in the measurements was three specimens of Scots pine (Pinus silvestris) which were numbered from 1 to 3. These specimens had at start the following dimensions: length 1200 mm, width 144 mm and thickness 50 mm. The average density was 4 kg/m^, where the density was defined as dry weight over dry volume. All specimens contained both sapwood and heartwood. The heartwood percentage was for piece No. 1: 76%, No. 2: 63% and No. 3: 76%. The material from which the specimens were cut, was taken from a sawmill in green condition. Method The specimens were dried in a small experimental kiln in two different constant climates. The used climates were as follows, from drying time 0-72 hours, 52.0 C dry-bulb temperature and relative humidity 67%, and from 72-143 hours, 53.3oC dry-bulb temperature and relative humidity 52%. These climates were kept with an accuracy of ± 0.2 C. From the three specimens samples were taken at five different times after start of drying, 0,, 46, 71 and 143 hours. The samples had a length of mm. Figure 1 shows where the samples were taken in the specimens. The distance between the samples in the specimens was 0 mm. After each cut the new crosscuts of the specimens were insulated with silicone. This was done to prevent moisture transport along the fibre direction. '/////. specimen 71 Figure 1. Sites where samples were taken in the specimens. The samples were chopped up with a knife in 65 small rectangular pieces as shown in Figure 2. The pieces had the dimension xx mm. In these small pieces the moisture content was immediately measured with the help of the dry weight method. boundary between sapwood and heartwood Figure 2. The sample with the pattern for splitting it into rectangular pieces.

CALCULATIONS A preliminary version of the PC-program JAM-W has been used to simulate the drying of three different wood specimens. Figure 1. Input to the model was boundary conditions and initial conditions, which were the same as in measurements, and material data. The model requires material data for both sapwood and heartwood in both the tangential and radial direction. The data should cover the moisture state both under and above fibre saturation point. We were not able to find any complete set of material data that could meet these requirements. Instead material data were taken from different measurements at 20 C, recalculated to 50 C and put together. The shape of the relation between moisture transport variation and moisture content was kept, in the four different cases, in the radial and tangential direction for sapwood and heartwood. Finally the level had to be adjusted to get results that corresponded to the measurements. RESULTS AND DISCUSSION The measured and calculated result for specimen No. 2 are given in this section. The measured values are the ones within brackets. The result is given in moisture content mass by mass (kg/kg) at five different times during the drying process. Each measured value should be considered as a mean value for the measured piece and each calculated value should be considered as a mean value in the calculation cell. TABLE 1. Measured and calculated moisture content for specimen No. 2 and each chopped piece with corresponding calculation cell. The measured values are those within brackets. Green state, 0 hours 1 (1) 147 (147) 4 (4) 40 (40) () () 34 (34) 42 (42) 2 (2) 144 (144) 143 (143) 7 (7) 1 (1) 145 (145) 6 (6) () () () () () () () 88 (88) 143 (143) 146 (146) 8 (8) 141 (141) 58 (58) () () () () 34 (34) 35 (35) () 35 (35) 5 (5) 140 (140) 9 (9) 122 (122) 34 (34) () () () 35 (35) () 34 (34) () 34 (34) 57 (57) 140 (140) 1 (1) 83 (83) 36 (36) 36 (36) 35 (35) 37 (37) () 40 (40) () () 37 (37) 37 (37) 1 (1) 2 (2)

TABLE 1 Proceeding hours 20 (43) 30 (70) 45 (78) 52 (94) 50 (93) (72) 48 77 55 () () () () 30 (37) 94 (72) 112 (86) 114 (3) 55 (79) 48 () 66 30 () () () () () 7 (78) 1 (94) 61 (82) 49 () () () () 82 (45) 3 (94) 51 (79) 43 (73) (54) 46 hours 20 () () () () () 26 20 () () () 26 () 72 82 () 70 () () 46 () () () () () 97 86 () 35 () () () 81 64 () 14 () () () () () ( 71 hours () () () () 20 22 20 () () 46 53 22 22 26 76 52 22 () 22 66 () () (14) (14, () 20 (14)

TABLE 1. Proceeding 143 hours 9 (9) (11) (11) (11) 14 () 14 () (11) 12 () () 12 (14) () () () (14) () 12 () () () () (14) () () () () 8 () 11 () () () 14 (14) 14 14 (11) In table 1 the correspondence between the measured and calculated overall results is quite good. At the boundary between heartwood and sapwood some problems occur especially at the beginning of the simulation. An explanation could be that the boundary is not exactly in the same position in all samples within the specimen. During the first hours the correspondence at the outer boundary is not so good, but later in the process quite good correspondence is achieved. In the beginning of the drying process the moisture flow is very fast. Relevant material's data are in the early phase of the drying process of great importance for a correct simulation. To get a complete set of materials data, new measurements have to be carried out. This has just started and some first results are shown below. Further experiments New experiments have been started with the aim of evaluating a complete set of materials data that is required in the calculations described above. The experiments are performed on small specimens of Scots pine (Pirns silvestris) with the dimension 30 x 30 x 30 mm. These specimens were made of either sapwood or heartwood. All specimens were insulated on four sides against moisture and heat as shown in Figure 3. In that way the moisture will evaporate from the same areas as those from which the heat is transferred into the wood. The specimens were dried in two different directions, either radial or tangential to grain, for both sapwood and heartwood. This makes four kinds of specimens. wood silicone cellular rubber Figure 3. The design of the specimens that have been used for drying of sapwood and heartwood of Scots pine separately.

All specimens were dried in a constant climate of 60 C dry-bulb temperature and 50 C wetbulb temperature. During the drying process, measurements were performed at seven different occasions. Each time two samples from each of the four kinds of specimens were split with a knife into ten laminae with a thickness of 3 mm each as shown i Figure 4. The moisture content in those laminae were measured with the help of the dry weight method. This gives the moisture gradient at seven different times in ten stages from surface to surface in the specimen. In total, 56 specimens were used in the experiment. ' y y y y y y. y y y y,' ' y y y y y y y y. ^ y y Figure 4. The pattern for splitting the specimen into ten laminae. In Figure 5 some of the results from the new measurements are shown. The results shows the moisture gradient in Scots pine at six different times during drying of sapwood which is dried in the tangential direction to grain. The measurements in Figure 5 does not include the values for the green state (0 hours), where the mean moisture content was 9%. Evaluation of this kind of transient measurements requires consideration. Some new evaluation methods are planned to be developed. 40,0 35,0 30.0 25,0 U 20,0 6' : -o.x-'. A- -. - - -o- -.0*:-.0? - + -.o - - --o- - - -o -+ -o. X- A- - -t- -o - X- - o. X. - +. -o. -A-. - -. -A- - -. O^ - O- 4- " *o, " *x. ---+-- hours. - o- - 22 hours - - X- - hours - - A- - 41 hours. - o- - 48 hours...o- 66 hours 5,0 0,0 Figure 5. lamella No. The moisture gradient in Scots pine sapwood showed from surface to surface. The gradients are measured at six different times during drying.

CONCLUSION A first comparison between measured and calculated values showed that the correspondence was general quite good, except some experimental problems that occur in the boundary between sapwood and heartwood. New experiments have to be performed to evaluate a complete set of new material data for the calculations. New experiments have been performed and more is planned. The method for evolution of materials data from the experiments has to be further developed. All this will lead to an experimental verified calculation method for moisture distribution during drying. These calculations will be used as a part of a method which calculates drying schedules for industrial kilns. REFERENCES CLAESSON, J; ARFVIDSSON, J. 92: A new method using Kirchhoff potentials to calculate moisture flow in wood. 3rd lufro International Wood Drying Conference, Vienna, Austria, August -, 92: 5-1. ARVIDSSON, J; CLAESSON, J. 89: APC based method to calculate moisture transport. International Symposium, ICHMT, International centre for heat and mass transfer. Dubrovnik, Yugoslavia.

Detta digitala dokument skapades med anslag från Stiftelsen Nils och Dorthi Troedssons forskningsfond FOR TRATEKNISK FORSKN Box 5609, 11486 STOCKHOLM Besöksadress; Drottning Kristinas väg 67 Telefon: 08-76200 Telefax: 08-76201 Asenvägen 9, 553 JÖNKÖPING Telefon: 036-3065 50 Telefax: 036-3065 60 Skeria 2, 987 SKELLI Besöksadress: Laboratoi Telefon: 09-65200 Telefax: 09-65265