Inverse magnetic catalysis in dense matter

Relevanta dokument
12.6 Heat equation, Wave equation

Phenomenology, Theoretical interpretation Heavy Scalar octet. m s 1.45 GeV Glueballs spectra

cosmology near the general relativity limit

Om Particle Data Group och om Higgs bosonens moder : sigma mesonen

A QUEST FOR MISSING PULSARS

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version

This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum

Vågkraft. Verification of Numerical Field Model for Permanent Magnet Two Pole Motor. Centrum för förnybar elenergiomvandling

Abstract In-medium width of the

Tentamen i Matematik 2: M0030M.

The Arctic boundary layer

Effective Field Theory for QCD-like Theories and Constraints on the Two Higgs Doublet Model

Lösningar till Tentamen i Reglerteknik AK EL1000/EL1100/EL

Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner

Hur mycket betyder Higgs partikeln? MASSOR! Leif Lönnblad. Institutionen för Astronomi och teoretisk fysik Lunds Universitet. S:t Petri,

Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner

2(x + 1) x f(x) = 3. Find the area of the surface generated by rotating the curve. y = x 3, 0 x 1,

Chapter 2: Random Variables

MVE500, TKSAM Avgör om följande serier är divergenta eller konvergenta. Om konvergent, beräkna summan. (6p) ( 1) n x 2n+1 (a)

English Version. 1 x 4x 3 dx = 0.8. = P (N(0, 1) < 3.47) = =

Rastercell. Digital Rastrering. AM & FM Raster. Rastercell. AM & FM Raster. Sasan Gooran (VT 2007) Rastrering. Rastercell. Konventionellt, AM

Mekanik FMEA30 Project Vibration Damping

Mekanik FMEA30 Project Vibration Damping

Lisa Randall, Harvard University

Experimental investigations of relativistic hydrodynamics and the ideal fluid scenario at RHIC

LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik

Solutions to exam in SF1811 Optimization, June 3, 2014

INSTALLATION INSTRUCTIONS

Module 6: Integrals and applications

NMR Nuclear Magnetic Resonance = Kärnmagnetisk resonans

A Study of Number-Ratio Fluctuations in Gold-Gold Interactions at sqrt(s_nn)=200 GeV

PFC and EMI filtering

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00. English Version

Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner

8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers.

Laborationsuppgift om Hertzsprung-Russell-diagrammet

Tentamen i Matematik 2: M0030M.

Tentamen i Matematik 3: M0031M.

Bernoullis ekvation Rörelsemängdsekvationen Energiekvation applikationer Rörströmning Friktionskoefficient, Moody s diagram Pumpsystem.

How to format the different elements of a page in the CMS :

Introduktion till partikelfysik. CERN Kerstin Jon-And Stockholms universitet

SOLAR LIGHT SOLUTION. Giving you the advantages of sunshine. Ningbo Green Light Energy Technology Co., Ltd.

Retail Academics/ Research Institute o Origin from Center for Retailing

Module 1: Functions, Limits, Continuity

Hur fattar samhället beslut när forskarna är oeniga?

Kurskod: TAMS11 Provkod: TENB 12 January 2015, 08:00-12:00. English Version

KOL med primärvårdsperspektiv ERS Björn Ställberg Gagnef vårdcentral

1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)

Affärsmodellernas förändring inom handeln

Number 14, 15, 16, and 17 also in English. Sammanställning av tentamensuppgifter Kvant EEIGM (MTF057).

Reglerteknik AK, Period 2, 2013 Föreläsning 12. Jonas Mårtensson, kursansvarig

Produktens väg från idé till grav

Multicomponent superconductivity: Vortex Matter and Phase Transitions JOHAN CARLSTRÖM

Boiler with heatpump / Värmepumpsberedare

Swedish adaptation of ISO TC 211 Quality principles. Erik Stenborg

Magic Grippers System för att enkelt bygga robotgrippers / grippers. -- Kort presentation -- Beställ komplett katalog

CHANGE WITH THE BRAIN IN MIND. Frukostseminarium 11 oktober 2018

Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm

Fatigue Properties in Additive manufactured Titanium & Inconell

Polar molecules in femto- and attosecond pulses. Lars Bojer Madsen 2010

PERIODISERA DIN TRÄNING

x 2 2(x + 2), f(x) = by utilizing the guidance given by asymptotes and stationary points. γ : 8xy x 2 y 3 = 12 x + 3

Resultat av den utökade första planeringsövningen inför RRC september 2005

4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler

IE1206 Embedded Electronics

Tunga metaller / Heavy metals ICH Q3d & Farmakope. Rolf Arndt Cambrex Karlskoga

2. Förklara vad en egenfrekvens är. English: Explain what en eigenfrequency is.

5. Given N non-interacting electrons in a box, compute the Fermi energy

Bridging the gap - state-of-the-art testing research, Explanea, and why you should care

Kurskod: TAMS24 / Provkod: TEN (8:00-12:00) English Version

SVENSK STANDARD SS-EN ISO 19108:2005/AC:2015

HÅLLBAR STADSBYGGNAD. Hur gör man - och var gör man vad?

denna del en poäng. 1. (Dugga 1.1) och v = (a) Beräkna u (2u 2u v) om u = . (1p) och som är parallell

F ξ (x) = f(y, x)dydx = 1. We say that a random variable ξ has a distribution F (x), if. F (x) =

Regional Carbon Budgets

Robust och energieffektiv styrning av tågtrafik

Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås

Peak Car. Anne Bastian, Maria Börjesson och Jonas Eliasson. Associate Professor Transport Systems Analysis, KTH. Director Centre for Transport Studies

Detektion av subatomiska partiklar och framväxten av standardmodellen. Jens Fjelstad

Urban Runoff in Denser Environments. Tom Richman, ASLA, AICP

Module 4 Applications of differentiation

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik

Chapter 14: Förångning, g, Kokning; Evaporation, Boiling

Lågtemperaturfjärrvärme i nya bostadsområden P i samverkan med Växjö kommun, Växjö Energi AB och Växjö-bostäder AB

and u = och x + y z 2w = 3 (a) Finn alla lösningar till ekvationssystemet

Isometries of the plane

Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås

Pre-Test 1: M0030M - Linear Algebra.

D-RAIL AB. All Rights Reserved.

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00. English Version

Ersättning styrkort GOLD, stl 1-3, Version 1-3/ Replacement control circuit board GOLD, sizes 1-3, Version 1-3

On Aspects of Anyons and Quantum Graphs

Preliminär timplanering: Plasmafysik

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00. English Version

A study of the performance

Grafisk teknik IMCDP. Sasan Gooran (HT 2006) Assumptions:

Name: (Ifylles av student) Personnummer: (Ifylles av student)

Krävs för att kunna förklara varför W och Z bosoner har massor.

Transkript:

Trento, 11/14/12 1 Andreas Schmitt Institut für Theoretische Physik Technische Universität Wien 1040 Vienna, Austria Inverse magnetic catalysis in dense matter Outline: F. Preis, A. Rebhan, A. Schmitt JHEP 1103, 033 (2011); JPG 39, 054006 (2012) (holographic approach) arxiv:1208.0536 [hep-ph] (comparison with field theory) arxiv:1209.4468 [hep-ph] (short summary) Magnetic catalysis Sakai-Sugimoto model Inverse magnetic catalysis Including baryonic matter

Trento, 11/14/12 2 Magnetic catalysis (page 1/2) K. G. Klimenko, Theor. Math. Phys. 89, 1161-1168 (1992) V. P. Gusynin, V. A. Miransky, I. A. Shovkovy, PLB 349, 477-483 (1995) (massless) fermions in Nambu-Jona-Lasinio (NJL) model L NJL = ψ iγ µ µ ψ + G [( ψψ) 2 + ( ψ iγ 5 ψ) 2] mean-field approximation: ψψ = ψψ + fluctuations Zero magnetic field: dynamical fermion mass M ψψ 0 for coupling g > g c = 1 dimensionless coupling g GΛ 2 /π 2

Trento, 11/14/12 2 Magnetic catalysis (page 1/2) K. G. Klimenko, Theor. Math. Phys. 89, 1161-1168 (1992) V. P. Gusynin, V. A. Miransky, I. A. Shovkovy, PLB 349, 477-483 (1995) (massless) fermions in Nambu-Jona-Lasinio (NJL) model L NJL = ψ iγ µ µ ψ + G [( ψψ) 2 + ( ψ iγ 5 ψ) 2] mean-field approximation: ψψ = ψψ + fluctuations Nonzero magnetic field: M 0 for arbitrarily small g, M eb e const./ebg at weak coupling g 1 dimensionless coupling g GΛ 2 /π 2

Trento, 11/14/12 3 Magnetic catalysis (page 2/2) Analogy to BCS Cooper pairing: BCS superconductor Magnetic catalysis Cooper pair condensate ψψ chiral condensate ψψ µ e const./gν F M eb e const./gν 0 (ν F : d.o.s. at E = µ Fermi surface) (ν 0 : d.o.s. at E = 0 surface) pairing dynamics effectively (1+1)-dimensional because of Fermi surface effectively (1+1)-dimensional in lowest Landau level (LLL) because of magn. field = µ2 G 2π 2 gap equation 0 dk (k µ) 2 + 2 M = q BG 2π 2 gap equation (LLL) dk z M k 2 z + M 2

Trento, 11/14/12 4 Magnetic catalysis in the real world and in holography 2 Experiment 0.8 M q 1 0.7 Σ xy e 2 h 0 1 0.6 0.5 2 2 1 Theory T 0.24 0.22 0.5 1 1.5 2 ΧS Restored H Σ xy e 2 h 0 1 2 b 0.04, T 30 mk Γ 18 K, Γ tr 6 K 20 10 0 10 20 30 V g V V.P.Gusynin et al., PRB 74, 195429 (2006) graphene: appearance of additional plateaus in strong magnetic fields [B = 9 T (pink), B = 45 T (black)] 0.20 0.18 0.16 ΧSB 0 2 4 6 8 10 12 H C.V.Johnson, A.Kundu, JHEP 0812, 053 (2008) Sakai-Sugimoto: magnetic field enhances dynamical mass M q and critical temperature T c see also: J. Erdmenger et al., JHEP 0712, 091 (2007) V.G.Filev, R.C.Rashkov, AHEP 473206 (2010)

Trento, 11/14/12 5 Sakai-Sugimoto model: background geometry (p. 1/2) N c D4-branes compactified on circle x 4 x 4 + 2π/M KK D4 branes Nc 4-4 strings adjoint scalars & fermions, gauge fields periodic x 4 break SUSY by giving mass M KK to scalars & fermions SU(N c ) gauge theory λ = g2 5 N c 2π/M KK λ 1 λ 1 dual to large-n c QCD x (at energies M KK ) Λ QCD M KK Λ QCD M KK gravity approximation x

Trento, 11/14/12 6 Background geometry (page 2/2): two solutions Confined phase Deconfined phase ds 2 conf = ( u ) 3/2 [dτ 2 + dx 2 + R f(u)dx 2 4] ( ) 3/2 [ ] R du 2 + u f(u) + u2 dω 2 4 ds 2 deconf = ( u ) 3/2 [f(u)dτ 2 + dx 2 + dx 2 R 4] ( ) 3/2 [ ] R du 2 + u f(u) + u2 dω 2 4 τ 1/(2 πt) x 4 1/M KK τ 1/(2 πt) x 4 1/M KK u= 8 u u= 8 u M KK = 3 2 u 1/2 KK R 3/2 u= u KK f(u) 1 u 3 KK u 3 Wick rotated regular geometry T = 3 u 1/2 T 4π R 3/2 u= u T f(u) 1 u3 T u 3 Wick rotated black brane

Trento, 11/14/12 7 Chiral transition in the Sakai-Sugimoto model (p. 1/3) T τ x 4 deconfined u L χs restored T c D8 D8 confined χs broken µ not unlike expectation from large-n c QCD in probe brane approximation: chiral transition unaffected by quantities on flavor branes (µ, B,...)

Trento, 11/14/12 8 Chiral transition in the Sakai-Sugimoto model (p. 2/3) less rigid behavior for smaller L deconfined, chirally broken phase for L < 0.3 π/m KK O. Aharony, J. Sonnenschein, S. Yankielowicz, Annals Phys. 322, 1420 (2007) N. Horigome, Y. Tanii, JHEP 0701, 072 (2007) T deconfined χs broken L deconfined χs restored T c confined χ S broken µ

Trento, 11/14/12 9 Chiral transition in the Sakai-Sugimoto model (p. 3/3) L π/m KK corresponds to (non-local) NJL model E. Antonyan, J. A. Harvey, S. Jensen, D. Kutasov, hep-th/0604017 J. L. Davis, M. Gutperle, P. Kraus, I. Sachs, JHEP 0710, 049 (2007) T deconfined χs broken deconfined χs restored T NJL chiral transition (no confinement) µ confined χ S broken T c decompactified limit gluon dynamics decouple this limit is considered in the following calculation... µ

Trento, 11/14/12 10 Setup of our calculation D8-brane action in deconfined geometry for N f = 1 O. Bergman, G. Lifschytz, M. Lippert, PRD 79, 105024 (2009) S = S DBI + S CS = N du u 5 + b 2 u 2 1 + fa 2 3 a 2 0 + u3 fx 2 4 + 3N u T 2 b du (a 3 a 0 a 0 a 3) u T a 0 accounts for µ magnetic field b = F 12 b, µ induce a 3 ( anisotropic condensate π 0 ) E.G.Thompson, D.T.Son, PRD 78, 066007 (2008) A. Rebhan et al., JHEP 0905, 084 (2009) x 4 (u) = { const. χs nontrivial χsb equations of motion: ( ) a 0 u5 + b 2 u 2 u 1 + fa 2 3 a 2 0 + u3 fx 2 4 ( ) f a 3 u5 + b 2 u 2 u 1 + fa 2 3 a 2 0 + u3 fx 2 4 ( ) u 3 f x 4 u5 + b 2 u 2 u 1 + fa 2 3 a 2 0 + u3 fx 2 4 = 3ba 3 = 3ba 0 = 0 solve for a 0 (u), a 3 (u), x 4 (u)

Trento, 11/14/12 11 T = 0 phase diagram 0.4 0.3 b 0.2 "LLL" mesonic 0.1 "hll" 0.0 0.0 0.2 0.4 0.6 0.8 Apparent Landau level transition G. Lifschytz, M. Lippert, PRD 80, 066007 (2009): Μ 0.06 n 2ΠΑ R 0.15 0.10 0.05 t 0.1 t 0.05 t 0 Μ 0.5 0.00 0.00 0.02 0.04 0.06 0.08 0.10 b nfree NcΜq 3 0.05 0.04 0.03 T 0.03Μ q 0.02 0.01 free fermions T 0.2Μ q T 0 T 0.1Μ q 0.00 0.0 0.5 1.0 1.5 2.0 2B Μ q 2

Trento, 11/14/12 12 Inverse magnetic catalysis Why does B restore chiral symmetry for certain µ? free energy gain from ψ ψ pairing increases with B (magnetic catalysis) µ induces free energy cost for pairing; this cost depends on B! NJL (weak coupling): E. V. Gorbar et al., PRC 80, 032801 (2009) Ω B[µ 2 M(B) 2 /2] Sakai-Sugimoto: large B: Ω B[µ 2 0.12 M(B) 2 ] no inverse catalysis just like Clogston limit δµ = 2 in superconductivity A. Clogston, PRL 9, 266 (1962) B. Chandrasekhar, APL 1, 7 (1962) no inverse catalysis small B: Ω µ 2 B const M(B) 7/2 inverse catalysis possible

Trento, 11/14/12 13 Comparison with NJL calculation (T = 0) F. Preis, A. Rebhan and A. Schmitt, arxiv:1208.0536 [hep-ph] 0.4 Sakai-Sugimoto NJL (strong coupling) T 0, g 4.1061 0.3 0.8 b 0.2 mesonic "LLL" qb ² 0.6 0.4 ΧSb ΧS LLL 0.1 "hll" 0.0 0.0 0.2 0.4 0.6 0.8 Μ 0.2 higher LL 0.0 0.4 0.5 0.6 0.7 0.8 NJL at large g: inverse magnetic catalysis like in Sakai-Sugimoto! inverse magnetic catalysis in NJL and related models: D. Ebert, K. G. Klimenko, M. A. Vdovichenko and A. S. Vshivtsev, PRD 61, 025005 (2000) T. Inagaki, D. Kimura and T. Murata, Prog. Theor. Phys. 111, 371 (2004) B. Chatterjee, H. Mishra and A. Mishra, PRD 84, 014016 (2011) S. S. Avancini, D. P. Menezes, M. B. Pinto and C. Providencia, PRD 85, 091901 (2012) J. O. Andersen and A. Tranberg, JHEP 1208, 002 (2012)

Trento, 11/14/12 14 Physical units original version of Sakai-Sugimoto model (L = π M KK ): choose M KK 949 MeV and κ λn c 216π 3 0.007 to fit m ρ and f π T. Sakai and S. Sugimoto, Prog. Theor. Phys. 114, 1083 (2005) ( deconfinement temperature T c 150 MeV) here (non-asymptotic separation L π M KK ): µ q = R3 µl 2 2πα L, T = tl 2 L, B = R3 bl 3 (l = L 2πα L 3 R ) ( B 5.1 10 19 µq,c ) ( ) T c G bl 3 400 MeV 150 MeV inverse magnetic catalysis reduces critical µ q from 400 MeV (B = 0) to 230 MeV (B 1.0 10 19 G)

Trento, 11/14/12 15 Phase structure at nonzero temperature blue: chiral phase transition green: LLL transition b 0.10 0.08 0.06 0.04 0.02 ΧSb t 0.13 t 0.1 t 0.05 t 0 ΧS 0.00 0.0 0.1 0.2 0.3 0.4 0.5 0.6 Μ t 0.20 0.15 0.10 0.05 ΧS Μ 0.2 Μ 0.25 Μ 0.3 Μ 0 ΧSb 0.00 0.0 0.2 0.4 0.6 0.8 1.0 1.2 b t 0.20 0.15 0.10 0.05 b 5 ΧSb b 0.12 b 0 ΧS 0.00 0.0 0.1 0.2 0.3 0.4 0.5 0.6 Μ

Trento, 11/14/12 16 Comparison with NJL calculation (T 0) Sakai-Sugimoto: F. Preis, A. Rebhan and A. Schmitt, JHEP 1103, 033 (2011) b 0.10 0.08 0.06 0.04 0.02 ΧSb t 0.13 t 0.1 t 0.05 t 0 ΧS 0.00 0.0 0.1 0.2 0.3 0.4 0.5 0.6 Μ t 0.20 0.15 0.10 0.05 ΧS Μ 0.2 Μ 0.25 Μ 0.3 Μ 0 ΧSb 0.00 0.0 0.2 0.4 0.6 0.8 1.0 1.2 NJL: b t 0.20 0.15 0.10 0.05 b 5 ΧSb b 0.12 b 0 ΧS 0.00 0.0 0.1 0.2 0.3 0.4 0.5 0.6 T. Inagaki, D. Kimura, T. Murata, Prog. Theor. Phys. 111, 371-386 (2004) Μ m [GeV] 0.35 0.3 0.25 0.2 T = 0.01 T = 0.05 T = 0.03 Symmetric phase T = 0.10 Broken phase H [GeV 2 ] T = 0.15GeV 0 0.2 0.4 0.6 0.8 1 2 H [GeV ] 1 0.5 B. P. B. P. m = 0.34 m = 0.28 m = 0.31 m = 0.31 m = 0.34 m = 0.27 m = 0.24GeV Symmetric phase 0 0 0.05 0.1 0.15 0.2 T [GeV] T [GeV] 0.2 0.1 Broken phase Symmetric phase H = 0.60GeV H = 0.30 H = 0.21 0 0 0.1 0.2 0.3 0.4 m [GeV] 2 H = 0.0 H = 0.18

Trento, 11/14/12 17 Homogeneous baryonic matter in Sakai-Sugimoto baryons in AdS/CFT: wrapped D-branes with N c strings E. Witten, JHEP 9807, 006 (1998); D. J. Gross, H. Ooguri, PRD 58, 106002 (1998) baryons in Sakai-Sugimoto: D4-branes wrapped on S 4 equivalently: instantons on D8-branes ( skyrmions) T. Sakai, S. Sugimoto, Prog. Theor. Phys. 113, 843-882 (2005) H. Hata, T. Sakai, S. Sugimoto, S. Yamato, Prog. Theor. Phys. 117, 1157 (2007) pointlike approximation for N f = 1: O. Bergman, G. Lifschytz, M. Lippert, JHEP 0711, 056 (2007) S = S from above + N 4 T 4 dω 4 dτ e Φ det g + N c A }{{} 8π 2 0 Tr F 2 } R 4 U {{} n 4 N c M q n 4 A 0 (u)δ(u u c ) (n 4 baryon density, M q constituent quark mass, u c location of D4-branes)

Trento, 11/14/12 18 Effect of baryonic matter on T = 0 phase diagram ignoring baryonic matter including baryonic matter 0.4 0.4 b 0.3 0.2 "LLL" b 0.3 0.2 mesonic "LLL" mesonic 0.1 "hll" 0.0 0.0 0.2 0.4 0.6 0.8 Μ small b: baryonic matter prevents the system from restoring chiral symmetry 0.1 baryonic 0.0 0.0 0.2 0.4 0.6 0.8 baryon onset line intersects chiral phase transition line large b: mesonic matter superseded by quark matter with baryonic matter, IMC plays an even more prominent role in the phase diagram Μ

Trento, 11/14/12 19 Summary Dense matter in the Sakai-Sugimoto model...... shows a transition reminiscent of LLL... shows a chiral phase transition with MC at large B and IMC at small B... behaves qualitatively like in the NJL model IMC: if magnetic fields in magnetars sufficiently large, then transition to quark matter at lower densities Baryonic matter changes the phase diagram dramatically for small B

Trento, 11/14/12 20 Outlook Extensions/questions within the holographic model: Saturation of T c for large B at µ = 0 (Why?) Extend to N f = 2 More general: problem of large N c vs. N c = 3! How is IMC affected by the chiral shift? E. V. Gorbar, V. A. Miransky and I. A. Shovkovy, PRC 80, 032801 (2009) Are QCD lattice results related to IMC? G. S. Bali et al., JHEP 1202, 044 (2012) see also: K. Fukushima, Y. Hidaka, arxiv:1209.1319