A/D D/A omvandling EEM007 - Mätteknik för F 2015 CHRISTIAN ANTFOLK
Innehåll Repetition binära tal Operationsförstärkare Principer för A/D omvandling Parallellomvandlare (Flash) Integrerande (Integrating Dual Slope) Deltapulsmodulation (Delta Pulse Modulation) Approximerande (Successive Approximation) Spänning/frekvensomvandling (VFC) Faculty of Engineering LTH Dept of. Biomedical Engineering Christian Antfolk Slide 2
Innehåll forts. Mätosäkerhet Sampling Vikning (Aliasing) Principer för D/A omvandling Sammanfattning Lab-info Förberedelser och/eller övningar Faculty of Engineering LTH Dept of. Biomedical Engineering Christian Antfolk Slide 3
AD/DA omvandling Ljud och tal Musik på CD, komprimerat mp3 Telefon Video Digital TV DVD Mätvärden från sensorer Industri (ex. temperatur, tryck, töjning) Medicin (ultraljud, MR-kamera, tomografi) Faculty of Engineering LTH Dept of. Biomedical Engineering Christian Antfolk Slide 4
Varför digital signal behandling Lättare att hantera information Mindre störningskänslig Påverkas inte av omgivningen Lägre kostnad Lättare att konstruera stabila system Lättare att modifiera system Långtidsmätningar Komprimering av data Faculty of Engineering LTH Dept of. Biomedical Engineering Christian Antfolk Slide 5
Tillämpningar Digitala oscilloskop 8 bitar och 200 MS/s -> 10 GS/s Audio CD 16 bitar och 44.1 ks/s Bilder, bildbehandling Ofta 8 bitar per färg (RGB-CMYK), i t ex medicinska sammanhang högre upplösning, kanske 16 bitar per färg Digital Telefoni Första systemen(gsm): 300 3400 Hz, 8 bitar, 8 khz Tredje generationen (3G): 50 7000 Hz, 16 bitar, 16 khz samplingshastighet Faculty of Engineering LTH Dept of. Biomedical Engineering Christian Antfolk Slide 6
Repetition: Binära talsystem Basen är 2 Ex. 13 dec = 8+4+1 = 1101 bin Största decimaltalet man kan representera med 8 bitar (1 byte) är: 128+64+32+16+8+4+2+1 = 255 2 N -1 MSB LSB 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 128 64 32 16 8 4 2 1 0 0 0 0 1 1 0 1 Faculty of Engineering LTH Dept of. Biomedical Engineering Christian Antfolk Slide 7
Operationsförstärkaren Icke-inverterande ingång Vout ( V V ) G Inverterande ingång Ideal Operationsförstärkare: Oändlig förstärkning (G) Oändlig bandbredd (oändligt snabb) Oändlig inresistans (ingen ström genom + och -) Ingen utresistans (kan driva ström) Faculty of Engineering LTH Dept of. Biomedical Engineering Christian Antfolk Slide 8
Komparatorn De flesta AD omvandlare använder sig av en komparator som en del i omvandlingsprocessen En komparator jämför två spänningsnivåer A och B Om A > B ger komparatorn logisk hög signal, tex 1 Om A < B ger komparatorn logisk låg signal, tex 0 En komparator kan implementeras med en enkel OPförstärkare utan återkoppling. analogue input reference voltage A B + - Faculty of Engineering LTH Dept of. Biomedical Engineering Christian Antfolk Slide 9
Den inverterande förstärkaren V out G V G V out ( V V V V V ) G 0 V + = V - (eftersom V + i detta fall är kopplat till jord fås en virtuell jord vid V - ) I IN = 0 (oändlig inresistans, ingen ström flyter in i operationsförstärkaren)=> I 1 = I 2 V in I V R in 1 R1, I1, Vout I 2 R2, 1 V out R R 2 1 V in Faculty of Engineering LTH Dept of. Biomedical Engineering Christian Antfolk Slide 10
Integratorn I några AD-omvandlare används en integrator Utsignalen från en integrator beror på tiden och insignalen En integrator kan implementeras med en OP-förstärkare och en kondensator Spänningen över kondensatorn kommer att vara lika med utspänningen Generellt för en kondensator gäller V C 1 C t 0 i( t) dt V out V out ( V 1 RC V t 0 V in dt ) G Faculty of Engineering LTH Dept of. Biomedical Engineering Christian Antfolk Slide 11
A/D omvandling Flash omvandlare (parallell) Integrerande omvandlare Deltapulsmodulation Spänning/frekvensomvandlare Successiv approximation (SAR) Finns en uppsjö av andra tekniker men dessa behandlas inte i denna kurs Faculty of Engineering LTH Dept of. Biomedical Engineering Christian Antfolk Slide 12
Flash omvandlare (parallell) V IN jämförs med noggranna spänningsnivåer uppdelade i jämna steg Komparatorernas utgångar bildar en termometer kod som i grindnätet omvandlas till binärkod Snabb men dyr Ex. MAX104 från maxim-ic. ±5V, 1Gsps, 8-Bit ADC with On-Chip 2.2GHz Track/Hold Amplifier Faculty of Engineering LTH Dept of. Biomedical Engineering Christian Antfolk Slide 13
Integrerande omvandlare (Dual slope) 1 RC U U U x x x T T REF 0 U REF X 1 dt RC U REF T U dt UREF Tx TREF 1.000 345 345mV 1000 x T x 0 REF Kondensatorn laddas upp under en bestämd tid T REF som bestäms av klockpulsgeneratorn U REF används för att ladda ur kondensatorn och tiden T x mäts i en räknarkrets U REF, T X och T REF används sedan för att räkna ut U X Ex. TLC7135 4 1/2-Digit Precision Analog-to-Digital Converters från Analog Devices Används i digitala voltmetrar (DVM) Faculty of Engineering LTH Dept of. Biomedical Engineering Christian Antfolk Slide 14
Deltapulsmodulation Mätning av tidskvoten mellan upp- och urladdning av kondensatorn Ux är kvoten mellan Tin/T Faculty of Engineering LTH Dept of. Biomedical Engineering Christian Antfolk Slide 15
Spännings/frekvensomvandlare Omvandlar en analog inspänning till ett pulståg med en frekvens som är direkt proportionell mot inspänningens värde Ex. AD7741 Single-Supply, Single-Channel Synchronous VFC Faculty of Engineering LTH Dept of. Biomedical Engineering Christian Antfolk Slide 16
Successiv approximation (SAR) Successiv intervallhalvering Antalet approximationer motsvarar bitlängden för A/D omvandlaren Ex. AD7484: 14-Bit, 3 MSPS SAR ADC Faculty of Engineering LTH Dept of. Biomedical Engineering Christian Antfolk Slide 17
Sample and Hold (S/H) krets Används för att spänningen konstant på ingången till t.ex. SAR konvertern Faculty of Engineering LTH Dept of. Biomedical Engineering Christian Antfolk Slide 18
Jämförelse Faculty of Engineering LTH Dept of. Biomedical Engineering Christian Antfolk Slide 19
Felkällor Kvantiseringsosäkerhet Nollpunktsosäkerhet Skalfaktorosäkerhet Lineariseringsosäkerhet Mätupplösning Faculty of Engineering LTH Dept of. Biomedical Engineering Christian Antfolk Slide 20
Kvantiseringsosäkerhet +/- ½ LSB Ex. en 8-bitars omvandlare med 5 Volts mätområde ger en upplösning på 5/2 8 = 19.5 mv I en 8-bitars omvandlare måste spänningsförändringen i insignalen vara minst 19.5 mv för att märkas Obs, 3 bitar Faculty of Engineering LTH Dept of. Biomedical Engineering Christian Antfolk Slide 21
Nollpunktsosäkerhet Felaktig nollreferens (U 0 ) Drift i ingångssteget (t.ex. orsakad av temperaturändringar) Faculty of Engineering LTH Dept of. Biomedical Engineering Christian Antfolk Slide 22
Skalfaktorosäkerhet Fel inställning av spänningsreferens (U REF ) Osäkerhet i komponentvärden i förstärkare eller resistanser Faculty of Engineering LTH Dept of. Biomedical Engineering Christian Antfolk Slide 23
Lineariseringsosäkerhet Differentiell olinearitet (DNL) Beror på det analoga ingångssteget Skillnaden mellan det teoretiska och det verkliga steget DNL ½ LSB Faculty of Engineering LTH Dept of. Biomedical Engineering Christian Antfolk Slide 24
Mätupplösning, konventionell DVM 3½ - 5½ digit DVM HP3478 Skallängd 3000 300000 enheter Längre skallängd ger högre upplösning Kortare mättid ger lägre upplösning och lägre skallängd ½ digit 5 digit Faculty of Engineering LTH Dept of. Biomedical Engineering Christian Antfolk Slide 25
Sampling Samplingsteorem: Samplingsfrekvensen f s måste vara minst två gånger så stor som den största frekvenskomponent i signalen man samplar. fs 2 f Faculty of Engineering LTH Dept of. Biomedical Engineering Christian Antfolk Slide 26
Vikning (aliasing) f s < 2 f in Faculty of Engineering LTH Dept of. Biomedical Engineering Christian Antfolk Slide 27
Vikning (aliasing) För att undvika vikning har man ett lågpassfilter på ingången till omvandlaren Filtrets brytfrekvens ska vara mindre än eller lika med fs/2 Faculty of Engineering LTH Dept of. Biomedical Engineering Christian Antfolk Slide 28
D/A omvandling Viktade resistorer R-2R stege Faculty of Engineering LTH Dept of. Biomedical Engineering Christian Antfolk Slide 29
D/A omvandling med viktade resitorer R1 R2 U R R 2 UT UIN 1 Utgångstegens storlek beror på referenspänningen. Inverterande förstärkare Svårt att ha hög ordlängd pga att det är svårt att tillverka resistorer med väldigt hög precision C B A U UT 0 0 0 0 0 0 1 1 0 1 0 2 0 1 1 3 1 0 0 4 1 0 1 5 1 1 0 6 1 1 1 7 Faculty of Engineering LTH Dept of. Biomedical Engineering Christian Antfolk Slide 30
D/A omvandling med R-2R stege Endast ett resistorvärde behövs. 2R får genom att seriekoppla två resistorer Faculty of Engineering LTH Dept of. Biomedical Engineering Christian Antfolk Slide 31
Sammanfattning Olika metoder för analog till digital omvandling Olika kategorier av fel som förekommer i AD (och DA) omvandlare Sample and Hold kretsen Prestandakriterier (snabbhet, upplösning, momentan-/medelvärde) för olika AD-omvandlare Samplingsteoremet vikning aliasing Principer för digital till analog omvandling Faculty of Engineering LTH Dept of. Biomedical Engineering Christian Antfolk Slide 32
Labhandledningen Läsanvisningar finns på första sidan Förberedelseuppgifter kan man göra under lektionen eller hemma Det kommer att bli ett litet test. Ca 3 frågor av 5 för godkänt Två grupper skriver rapport och två grupper granskar (kommunicera) Instruktioner finns på hemsidan http://bme.lth.se/course-pages/maetteknik-foer-f/maetteknik-foer-f/ Faculty of Engineering LTH Dept of. Biomedical Engineering Christian Antfolk Slide 33
Självkontrollfrågor s.188 och 191, uppgift 4,5,6,7, 24 och 25 Faculty of Engineering LTH Dept of. Biomedical Engineering Christian Antfolk Slide 35