Information om seminarier och högre undervisning i matematiska ämnen i Stockholmsomra det

Relevanta dokument
12.6 Heat equation, Wave equation

Module 1: Functions, Limits, Continuity

1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)

Isometries of the plane

Solutions to exam in SF1811 Optimization, June 3, 2014

Grafisk teknik IMCDP IMCDP IMCDP. IMCDP(filter) Sasan Gooran (HT 2006) Assumptions:

Module 6: Integrals and applications

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik

Grafisk teknik IMCDP. Sasan Gooran (HT 2006) Assumptions:

This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum

Theory 1. Summer Term 2010

Grafisk teknik. Sasan Gooran (HT 2006)

and u = och x + y z 2w = 3 (a) Finn alla lösningar till ekvationssystemet

Rastercell. Digital Rastrering. AM & FM Raster. Rastercell. AM & FM Raster. Sasan Gooran (VT 2007) Rastrering. Rastercell. Konventionellt, AM

Tentamen i Matematik 2: M0030M.

1. Varje bevissteg ska motiveras formellt (informella bevis ger 0 poang)

Module 4 Applications of differentiation

denna del en poäng. 1. (Dugga 1.1) och v = (a) Beräkna u (2u 2u v) om u = . (1p) och som är parallell

F ξ (x) = f(y, x)dydx = 1. We say that a random variable ξ has a distribution F (x), if. F (x) =

(D1.1) 1. (3p) Bestäm ekvationer i ett xyz-koordinatsystem för planet som innehåller punkterna

Second handbook of research on mathematics teaching and learning (NCTM)

LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00. English Version

Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås

Pre-Test 1: M0030M - Linear Algebra.

8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers.

Kursplan MD2022. Matematik III 30 högskolepoäng, Grundnivå 2

Gradientbaserad Optimering,

Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm

Preschool Kindergarten

Tentamen MMG610 Diskret Matematik, GU

Information technology Open Document Format for Office Applications (OpenDocument) v1.0 (ISO/IEC 26300:2006, IDT) SWEDISH STANDARDS INSTITUTE

Kursplan. EN1088 Engelsk språkdidaktik. 7,5 högskolepoäng, Grundnivå 1. English Language Learning and Teaching

Alias 1.0 Rollbaserad inloggning

Hållbar utveckling i kurser lå 16-17

Syns du, finns du? Examensarbete 15 hp kandidatnivå Medie- och kommunikationsvetenskap

f(x) =, x 1 by utilizing the guidance given by asymptotes and stationary points. cos(x) sin 3 (x) e sin2 (x) dx,

En bild säger mer än tusen ord?

Support for Artist Residencies

Kursplan. FÖ3032 Redovisning och styrning av internationellt verksamma företag. 15 högskolepoäng, Avancerad nivå 1

Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00. English Version

Examensarbete i matematik på grundnivå med inriktning mot optimeringslära och systemteori

Support Manual HoistLocatel Electronic Locks

Tentamen i Matematik 2: M0030M.

Webbregistrering pa kurs och termin

Documentation SN 3102

x 2 2(x + 2), f(x) = by utilizing the guidance given by asymptotes and stationary points. γ : 8xy x 2 y 3 = 12 x + 3

Materialplanering och styrning på grundnivå. 7,5 högskolepoäng

Information om seminarier och högre undervisning i matematiska ämnen i Stockholmsomra det

a) Ange alla eventuella punkter där f är diskontinuerlig. b) Ange alla eventuella punkter där f är kontinuerlig men inte deriverbar.

S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A

Uttagning för D21E och H21E

For which values of α is the dimension of the subspace U V not equal to zero? Find, for these values of α, a basis for U V.

Eternal Employment Financial Feasibility Study

Information om seminarier och högre undervisning i matematiska ämnen i Stockholmsomra det

Immigration Studying. Studying - University. Stating that you want to enroll. Stating that you want to apply for a course.

1. Find for each real value of a, the dimension of and a basis for the subspace

2(x + 1) x f(x) = 3. Find the area of the surface generated by rotating the curve. y = x 3, 0 x 1,

Har Du frågor angående uppgifterna: kontakta någon av lärarna, vid lektionerna, via e-post eller på deras rum:

Semantic and Physical Modeling and Simulation of Multi-Domain Energy Systems: Gas Turbines and Electrical Power Networks

, m 3 = 3. Determine for each real α and for each real β 0 the geometric meaning of the equation x 2 + 2y 2 + αz 2 + 2xz 4yz = β.

Bridging the gap - state-of-the-art testing research, Explanea, and why you should care

The Finite Element Method, FHL064

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00. English Version

Mathematical Cryptology (6hp)

Studieteknik för universitetet 2. Books in English and annat på svenska

is a basis for M. Also, find the coordinates of the matrix M = with respect to the basis M 1, M 2, M 3.

Swedish adaptation of ISO TC 211 Quality principles. Erik Stenborg

Michael Q. Jones & Matt B. Pedersen University of Nevada Las Vegas

Kurskod: TAMS11 Provkod: TENB 07 April 2015, 14:00-18:00. English Version

FÖRBERED UNDERLAG FÖR BEDÖMNING SÅ HÄR

Tentamen i Matematik 3: M0031M.

KTH MMK JH TENTAMEN I HYDRAULIK OCH PNEUMATIK allmän kurs kl

Kursplan. JP1040 Japanska III: Språkfärdighet. 15 högskolepoäng, Grundnivå 1. Japanese III: Language Proficiency


Kursplan. MT1051 3D CAD Grundläggande. 7,5 högskolepoäng, Grundnivå 1. 3D-CAD Basic Course

Information om seminarier och högre undervisning i matematiska ämnen i Stockholmsomra det

Kursplan. FÖ1038 Ledarskap och organisationsbeteende. 7,5 högskolepoäng, Grundnivå 1. Leadership and Organisational Behaviour

Anställningsprofil för universitetslektor i matematikämnets didaktik

MÅLSTYRNING OCH LÄRANDE: En problematisering av målstyrda graderade betyg

SVENSK STANDARD SS-EN ISO 19108:2005/AC:2015

Questionnaire for visa applicants Appendix A

Tentamen i matematik. Högskolan i Skövde

Information om seminarier och högre undervisning i matematiska ämnen i Stockholmsomra det

Ett hållbart boende A sustainable living. Mikael Hassel. Handledare/ Supervisor. Examiner. Katarina Lundeberg/Fredric Benesch

PEC: European Science Teacher: Scientific Knowledge, Linguistic Skills and Digital Media

Kursinformation. Matematiska metoder i nationalekonomi 730G77 Linnea Ingebrand

- den bredaste guiden om Mallorca på svenska! -

Algoritmer och Komplexitet ht 08. Övning 6. NP-problem

FORTA M315. Installation. 218 mm.

Kursplan. NA3009 Ekonomi och ledarskap. 7,5 högskolepoäng, Avancerad nivå 1. Economics of Leadership

Workplan Food. Spring term 2016 Year 7. Name:

is introduced. Determine the coefficients a ij in the expression for, knowing that the vectors (1, 0, 1), (1, 1, 1), (0, 1, 1) constitute an ON-basis.

Beijer Electronics AB 2000, MA00336A,

Arbetsplatsträff 8 mars 2011

Webbreg öppen: 26/ /

for M, the matrix of the linear transformation F : R 3 M defined as x1 + x F ((x 1, x 2, x 3 )) = 2 + x 3 2x 1 + x 2 + 3x 3

The cornerstone of Swedish disability policy is the principle that everyone is of equal value and has equal rights.

The Arctic boundary layer

Transkript:

Information om seminarier och högre undervisning i matematiska ämnen i Stockholmsomra det NR 38 FREDAGEN DEN 28 NOVEMBER 2003 BRA KET Veckobladet fra n Institutionen för matematik vid Kungl Tekniska Högskolan och Matematiska institutionen vid Stockholms universitet Redaktör: Gunnar Karlsson Telefon: 08-790 84 79 Adress för e-post: gunnarkn@math.kth.se Bråket på Internet: http://www. math.kth.se/braaket.html eller http://www.math.kth.se/braket/ Postadress: Red. för Bra ket Institutionen för matematik KTH 100 44 Stockholm - - - - - - - Sista manustid för nästa nummer: Torsdagen den 4 december kl. 13.00. Disputation i matematisk statistik Maria Deijfen disputerar vid SU pa avhandlingen Stochastic models for spatial growth and competition fredagen den 19 december kl. 13.15. Se sidan 6. SEMINARIER Ti Ti 12 01 kl. 10.15. Seminarium i numerisk analys. (Observera dagen, tiden och lokalen!) Dr Peter Cotton, Morgan Stanley, New York: Trading correlation. Sal E2, KTH, Lindstedtsvägen 3, b.v. Se sidan 3. 12 01 kl. 14.15. Seminarium i teoretisk datalogi. Lars Engebretsen: More efficient queries in PCP s for NP and improved approximation hardness of maximum CSP (joint work with Jonas Holmerin). Rum 1537, Nada, KTH, Lindstedtsvägen 3, plan 5. Se Bra ket nr 37 sidan 3. 12 02 kl. 10.15. Plurikomplexa seminariet. Christer Kiselman och Ola Weistrand: Subharmonic functions on discrete structures. Sal 2215, Matematiska institutionen, Polacksbacken, Uppsala universitet. Se sidan 3. 12 02 kl. 13.15. Plurikomplexa seminariet. August Tsikh: Amoebas and multidimensional linear difference equations. Sal 2215, Matematiska institutionen, Polacksbacken, Uppsala universitet. Se sidan 3. Ti 12 02 kl. 14.00 15.00. Mittag-Leffler Seminar. Ken Brown, Glasgow: Symplectic reflection algebras the basics. Institut Mittag-Leffler, Auravägen 17, Djursholm. On 12 03 kl. 10.30. Logikseminariet Stockholm-Uppsala. Olof Lindroth: A random formula lower bound for ordered-dll extended with local symmetries. Part 2. Sal 2215, Matematiska institutionen, Polacksbacken, Uppsala universitet. On 12 03 kl. 13.00. Seminarium i statistik. Michael Carlson, Statistiska institutionen SU: Röjanderisker vid användning av mikrodata en tillämpning från RFV. Sal B705, Statistiska institutionen, SU, Universitetsvägen 10B, plan 7, Frescati. Fortsättning pa nästa sida.

2 Seminarier (fortsättning) On 12 03 kl. 13.15 14.15. Seminarium i analys och dynamiska system. Professor Gaven Martin, Auckland, New Zealand: The identification of the two generator arithmetic lattices of hyperbolic 3-space. Seminarierum 3721, Institutionen för matematik, KTH, Lindstedtsvägen 25, plan 7. Se sidan 4. On 12 03 kl. 13.15 15.00. Algebra- och geometriseminarium. Nathalie Wahl: Title to be announced. Seminarierum 3733, Institutionen för matematik, KTH, Lindstedtsvägen 25, plan 7. On 12 03 kl. 16.00 17.00. Stockholms matematiska kollokvium. Professor Gaven Martin, Auckland, New Zealand: Title to be announced. Lokal meddelas senare pa http://www.math.kth.se/ haakanh/analysseminariet.html. Fr 12 05 kl. 12.00 13.00. GRU-seminarium i matematik: Nästa års bemanning. Sammanträdesrum 3424 (innanför pausrummet), Institutionen för matematik, KTH, Lindstedtsvägen 25, plan 4. Se nedan. 12 08 kl. 13.15 14.15. Seminar in Analysis and its Applications. Fariba Bahrami, Tarbiat Modares University in Teheran: Existence of steady vortex flows over a seamount. Seminarierum 3733, Institutionen för matematik, KTH, Lindstedtsvägen 25, plan 7. Se sidan 4. 12 08 kl. 14.15 15.00. Seminarium i numerisk analys. (Observera dagen och lokalen!) Fred G. Gustavson, IBM T. J. Watson Research Center, Yorktown Heights, USA: New generalized data structures for matrices lead to a variety of high performance algorithms. Rum D4329 (seminarierummet pa Medialab), Nada, KTH. Se sidorna 4 5. On 12 10 kl. 13.00. Seminarium i statistik. Margareta Puu, Umea universitet: Design av experiment med multinominalt respons. Sal B705, Statistiska institutionen, SU, Universitetsvägen 10B, plan 7, Frescati. On 12 10 kl. 13.15 14.15. Seminarium i analys och dynamiska system. Professor Tadeusz Iwaniec, Syracuse University: What is new for the Beltrami equation? Seminarierum 3721, Institutionen för matematik, KTH, Lindstedtsvägen 25, plan 7. Ti 12 16 kl. 11.00 12.00. Docentföreläsning i matematik. Dmitry Kozlov: Ämnen i topologisk kombinatorik. Seminarierum 3721, Institutionen för matematik, KTH, Lindstedtsvägen 25, plan 7. Se sidan 5. GRU-SEMINARIUM I MATEMATIK Nästa a rs bemanning Sammanfattning: Det är dags att börja tänka pa bemanningen för nästa läsa r. Vem skall undervisa pa vilka kurser? Har ni na gra önskema l? Och hur tycker ni allmänt att bemanningen skall ga till? Pa höstens sista GRU-seminarium diskuterar vi fra gor relaterade till detta. Alla undervisande lärare och doktorander vid institutionen är välkomna. Den som anmäler sig till Lars Filipsson, e-post lfn@math.kth.se, senast dagen före seminariet fa r en lunchsmörga s. Tid och plats: Fredagen den 5 december kl. 12.00 13.00 i sammanträdesrum 3424 (innanför pausrummet), Institutionen för matematik, KTH, Lindstedtsvägen 25, plan 4.

3 SEMINARIUM I NUMERISK ANALYS Peter Cotton: Trading correlation Abstract: Explosion in correlation markets. Baskets, indexes, tranched indexes, credit default options (CDO), asset backed baskets. Demonstration of three ways of looking at correlation: Intensity models, copula models, structural models. Trading correlation. What is implied correlation? The invited lecture is part of the course 2D4282 Hedging your portfolio, organized in collaboration with the Summer University of Southern Stockholm and the Swedish Netuniversity (more information is given at http://www.lifelong-learners.com/opt/nu/). Tid och plats: ndagen den 1 december kl. 10.15 i sal E2, KTH, Lindstedtsvägen 3, b.v. PLURIKOMPLEXA SEMINARIET Christer Kiselman och Ola Weistrand: Subharmonic functions on discrete structures Abstract: This subject has come up in work on the shape description problem: to describe in tractable terms the shape of a three-dimensional object. A step in the description is to define spherical coordinates on an object which is homeomorphic to a sphere. One is then led to solving the Laplace equation on a graph. The solution turns out to have near-constant values in certain regions, and it is desirable to widen these (to dissolve the clusters). We shall discuss the possibilities to do so. It is natural first to sketch a general theory of (pluri)(sub)- harmonic functions on graphs, directed graphs, and, more generally, on discrete structures. Simple and less simple examples where clusters appear will be presented. Tid och plats: Tisdagen den 2 december kl. 10.15 i sal 2215, Matematiska institutionen, Polacksbacken, Uppsala universitet. PLURIKOMPLEXA SEMINARIET August Tsikh: Amoebas and multidimensional linear difference equations Abstract: In the univariate theory of linear difference equations, the fundamental Poincaré theorem claims that if all characteristic roots λ 1,..., λ m of a limited homogeneous difference equation have different modules, then for any solution f(x) the ratio f(x + 1)/f(x) tends to one of the roots λ i as x. For the characteristic polynomial P in n variables the previous condition on the roots can be reformulated as follows: The complement of the amoeba of P (recall that amoeba of P is the image of the zero set P = 0 under the logarithmic mapping) has the maximal number of connected components (this number coincides with the number of integer points in the Newton polytope of P ). Under this condition on the limited characteristic variety of the homogeneous difference equation, we prove that the limit of the vector (f(x + e 1 )/f(x),..., f(x + e n )/f(x)), e i = (0,..., 1,..., 0), exists and belongs to the characteristic variety P = 0 as x Z n + tends to infinity along any ray. Tid och plats: Tisdagen den 2 december kl. 13.15 i sal 2215, Matematiska institutionen, Polacksbacken, Uppsala universitet.

4 SEMINARIUM I ANALYS OCH DYNAMISKA SYSTEM Gaven Martin: The identif ication of the two generator arithmetic lattices of hyperbolic 3-space Abstract: Mathematicians have long explored the deep connections between arithmetic and geometry. We give a brief survey of recent directions is this area as they pertain to three-dimensional hyperbolic geometry and then turn to an interesting problem concerning two generator arithmetic lattices. Despite a well-known conjecture to the contrary, there turn out to be only finitely many such groups which are torsion generated (analogues of Fuchsian triangle groups). Among these groups appear to be all the small co-volume lattices (at least the smallest half dozen or so) and so present the most highly symmetric 3-manifolds as quotients. We present progress so far in identifying all these groups. Tid och plats: Onsdagen den 3 december kl. 13.15 14.15 i seminarierum 3721, Institutionen för matematik, KTH, Lindstedtsvägen 25, plan 7. SEMINAR IN ANALYSIS AND ITS APPLICATIONS Fariba Bahrami: Existence of steady vortex f lows over a seamount Abstract: We will discuss ideal flow at a localized topographic feature in the ocean, such as a seamount. We will prove existence of a stationary flow containing a bounded vortex, approaching a uniform flow at infinity, and passing over the seamount. The domain of the fluid is the upper half plane, and the data prescribed is the rearrangement class of the vorticity field. There will be a short (15 minutes) presentation of the physical problem by Jonas Nycander from the Department of Meteorology at Stockholm University. Tid och plats: ndagen den 8 december kl. 13.15 14.15 i seminarierum 3733, Institutionen för matematik, KTH, Lindstedtsvägen 25, plan 7. SEMINARIUM I NUMERISK ANALYS Fred G. Gustavson: New generalized data structures for matrices lead to a variety of high performance algorithms Abstract: We describe new data structures for full and packed storage of dense symmetric/ triangular arrays that generalize both. Using the new data structures, one is led to several new algorithms that save half the storage for symmetric matrices and outperform the current blocked based level 3 algorithms in LAPACK. We concentrate on the simplest forms of the new algorithms and show that they are a direct generalization of LINPACK. This means that level 3 BLAS s are not required to obtain level 3 performance. The replacement for Level 3 BLAS are so-called kernel routines and on IBM platforms they are producible from simple textbook type codes, by the XLF Fortran compiler. In the sequel I will label these vanilla codes. (Continued on the next page.)

5 On Power3 with a peak performance of 800 MFlops, the results for Cholesky factorization at order n 200 is over 720 MFlops and then reaches 735 MFlops at n = 400. Using conventional full format LAPACK DPOTRF with ESSL BLAS s one first gets to 600 MFlops at n 600 and only reaches a peak of 620 MFlops. For this result we used simple square blocked full matrix data formats where the blocks themselves are stored in column major (Fortran) order or row major (C) order. The simple algorithms of LU factorization with partial pivoting for this new data format is a direct generalization of the LINPACK algorithm DGEFA. Again, no conventional level 3 BLAS s are required; the replacements are again so-called kernel routines. Programming for squared blocked full matrix format can be accomplished in standard Fortran through the use of three- and four-dimensional arrays. Thus, no new compiler support is necessary. Also we mention that other more complicated algorithms are possible; e.g., recursive ones. The recursive algorithms are also easily programmed via the use of tables that address where the blocks are stored in the two-dimensional recursive block array. Finally, we describe block hybrid formats. Doing so allows one to use no additional storage over conventional (full and packed) matrix storage. This means that the new algorithms are completely portable. I will describe some old and recent work that proves that these data formats are optimal. I will also describe an unexpected new result: One can represent a symmetric and/or a triangular matrix as two full format rectangular arrays. This means that some 250 or LAPACK routines for full and/or packed format symmetric and/or triangular arrays can be replaced by some say 75 routines that all use half the storage and run at level 3 speeds. Tid och plats: ndagen den 8 december kl. 14.15 15.00 i rum D4329 (seminarierummet pa Medialab), Nada, KTH. DOCENTFȮ RELȦ SNING I MATEMATIK Dmitry Kozlov: Ȧ mnen i topologisk kombinatorik Resumé: I detta föredrag kommer jag att beskriva na gra exempel fra n ett fascinerande omra de som ligger mellan kombinatorik a ena sidan och geometri och algebraisk topologi a den andra. Inledningsvis presenterar jag de tänkesätt inom topologisk kombinatorik som, enligt min mening, ger den drivande kraften till omra dets utveckling. Sedan berättar jag om hur man kan hitta obstruktioner till graffärgningar genom att studera kohomologigrupper, och även särskilda karakteristiska kohomologiklasser av speciella komplex som konstrueras direkt fra n grafer. I den andra delen tänker jag tala om kombinatorisk forskning fra n de senaste a ren kring sa kallade DeConcini-Procesi-upplösningar. Jag kommer att konstruera kombinatoriska modeller för dessa upplösningar samt använda dem för att förenkla gruppverkan av en ändlig grupp pa en reell differentierbar ma ngfald. Jag kommer att ta upp delar av mina gemensamma arbeten med Eric Babson samt med Eva-Maria Feichtner. Tid och plats: Tisdagen den 16 december kl. 11.00 12.00 i seminarierum 3721, Institutionen för matematik, KTH, Lindstedtsvägen 25, plan 7.

6 disputerar pa avhandlingen DISPUTATION I MATEMATISK STATISTIK Maria Deijfen Stochastic models for spatial growth and competition fredagen den 19 december kl. 13.15 i sal 14, hus 5, Matematiska institutionen, SU, Kräftriket. Till fakultetsopponent har utsetts docent Sven Erick Alm, Uppsala universitet. Abstract of the thesis One of the simplest models for spatial growth and competition is the Richardson model. The original version describes the growth of an infectious phenomenon on Z d, but the mechanism can also be extended to comprise two phenomena, making it a model for competition on Z d. In this thesis, continuum counterparts of both the one-type and the two-type Richardson model are introduced. These models describe growth and competition respectively on R d instead of Z d. The results are to be found in three separate papers. In the first one the continuum one-type model is defined. The main result is a shape theorem where the rotational invariance with R d allows for a stronger conclusion than in the discrete case. The second paper deals with the two-type continuum model and the main result is roughly that two infection types with unequal intensities cannot simultaneously grow to occupy infinite parts of R d. Also, the shape theorem from the first paper is generalized in that the assumptions are relaxed. In the third paper the discrete model with two infection types is considered. It is shown that whether mutual unbounded growth for the infection types has positive probability or not does not depend on the initial state of the model.