Kurvor, fält och ytor

Storlek: px
Starta visningen från sidan:

Download "Kurvor, fält och ytor"

Transkript

1 CTH/GU STUDIO 7 MVE7-7/8 Matematiska vetenskaper Kurvor, fält och ytor Inledning Vi skall se hur man ritar parametriserade kurvor i planet r : R R och i rummet r : R R. Därefter skall vi approximera en kurvas båglängd. Sedan skall vi rita några vektorfält och deras strömlinjer. Vidare ser vi hur vi kan approximera arean av ett område i planet. Avslutningsvis ritar vi några parametriserade ytor r : R R i rummet. Kurvor i R och R Vi har tidigare ritat kurvor i R med kommandot plot. Som ett exempel tar vi asteroiden som vi ritar upp i Matlab enligt r(t) = (x(t),y(t)) = (cos (t),sin (t)), t π >> t=linspace(,*pi); >> x=cos(t).^; y=sin(t).^; >> plot(x,y) >> axis equal, axis([ ]) >> title( Asteroid ) Asteroid Lägg märke till att vi använder axis equal för att få rätt utseende (aspect ratio) och för att få lite luft runt kurvan använder vi axis([...]). Vidare upphöjer vi med komponentvisa operationer (t är ju en vektor). Ett annat exempel är cykloiden r(t) = (x(t),y(t)) = (t sin(t), cos(t)), t π som beskriver den väg en myra, som fastnat på ett hjul, färdas när hjulet rullar framåt. Vi ritar enligt

2 >> t=linspace(,*pi); >> plot(t-sin(t),-cos(t)) >> axis equal, axis([ ]) >> title( Cykloid ) Cykloid Om du vill kan du köra skriptet myran, som du finner på studiohemsidan, så du ser hjulet rulla. Uppgift. Skriv upp en parametrisering av en ellips med storaxel a (x-riktningen) och lillaxel b (y-riktningen) och medelpunkt i (p,q). Låt a =, b =.5 och p = q =. Rita en bild av kurvan. Använd axis equal. Som ett exempel på att rita kurvor i R tar vi spiralen r(t) = (x(t),y(t),z(t)) = (cos(ct),sin(ct),t), t π där vi tar c = 5. Nu skall vi använda plot för att rita kurvan >> c=5; t=linspace(,*pi,); >> x=cos(c*t); y=sin(c*t); z=t; >> plot(x,y,z) >> grid on >> xlabel( x ), ylabel( y ), zlabel( z, rotation,) >> axis([ *pi]) >> axis visd, rotated on Vi ser kurvan nedan till vänster. Där har vi även passat på att rita tangenten i en punkt. 6 z y y x.5 x

3 Vi använder axis visd så att skalan inte förändras då vi vrider och vänder på grafen, med rotated on blir det möjligt att ta tag i grafen och vrida den. För att rita tangenten får vi beräkna derivatan för att sedan rita upp den räta linjen med r (t) = (x (t),y (t),z (t)) = ( csin(ct),ccos(ct),t) >> a=; s=[- ]; >> xa=cos(c*a); ya=sin(c*a); za=a; >> dxa=-c*sin(c*a); dya=c*cos(c*a); dza=; >> hold on >> plot(xa+s*dxa,ya+s*dya,za+s*dza, m ) >> plot(xa,ya,za, ro, markersize,, linewidth,) >> hold off Bilden ovan till höger ser vi kurvan rakt ovanifrån och ser då tydligt hur tangenten just tangerar kurvan som den skall. Uppgift. Rita upp följande kurvor i R med plot. Använd axis visd och rotated on. (a). r(t) = (x(t),y(t),z(t)) = (cos(t),sin(t),t), t π (b). r(t) = (x(t),y(t),z(t)) = (cos (t),sin (t),t), t π Båglängd och polygontåg Vi tänker oss att vi har ett polygontåg (x,y ), (x,y ),, (x i,y i ), (x i+,y i+ ),, (x n,y n ) som vi ritat en figur av.8.6. (x i+,y i+ ) (x n,y n ). (x,y ) (x i,y i ) Vill vi beräkna polygontågets längd kan vi göra det med formeln n L = (xi+ x i ) +(y i+ y i ) i= Denna formel, som vi såg på redan i Kontrollstrukturer i Matlab i den inledande matematikkursen, fås genom att använda Pytagoras sats på varje segment i polygontåget.

4 .8.6 x.. y (x i,y i ) (x i+,y i+ ) x = x i+ x i y = y i+ y i L = x + y Antag att koordinaterna samlade i två vektorer x = (x,x,,x n ) och y = (y,y,,y n ), då beräknar vi längden enligt L >> n=length(x); >> L=; >> for i=:n- L=L+sqrt((x(i+)-x(i))^+(y(i+)-y(i))^); end >> L eller lite kortare med vektorisering >> L=sum(sqrt((x(:end)-x(:end-)).^+(y(:end)-y(:end-)).^)) alternativt >> L=sum(sqrt(diff(x).^+diff(y).^)) Med beteckningen r i = (x i,y i ) har vi n L = (xi+ x i ) +(y i+ y i ) = i= n i= r i+ r i Om vi nu har en parametriserad kurva r(t) = (x(t),y(t)), a t b så kan vi beräkna en approximation av båglängden om vi tar en antal punkter längs kurvan och beräkna längden av motsvarande polygontåg. Låt a = t < t < < t n = b, med t i = t i+ t i, vara en indelning av parameterintervallet och låt r i = r(t i ) = (x(t i ),y(t i )) och beräknar s n = n i= r i+ r i Detta är en approximation av båglängden. Ju fler punkter, desto noggrannare resultat. Vi har s n = n i= r i+ r i = n i= r i+ r i t i t i

5 så om r (t) kontinuerlig får vi kurvans längd n L = s = n lim r i+ r i max t i t i= i som vi känner igen från Adams kapitel.. t i = Vi får motsvarande resultat för polygontåg och kurvor i rummet. b a r (t) dt Uppgift. Bestäm en approximation av omkretsen av ellipsen i uppgift. Det var ett polygontåg ni ritade upp. Börja med ett fåtal punkter ( kanske) i polygontåget och öka successivt antalet (ända upp till säg) och se hur approximationen av omkretsen förbättras. Vektorfält i planet Vi ser på ett vektorfält i planet, dvs. en funktion F : R R. Som exempel tar vi Vi ritar upp fältet med quiver enligt F(x,y) = (F (x,y),f (x,y)) = (cos(x y),sin(xy)) >> [X,Y]=meshgrid(linspace(,,5),linspace(,,5)); >> quiver(x,y,cos(x-y),sin(x.*y),.8) >> axis equal, axis([ ]).5 y Som ni säkert vet är fältlinjer (strömlinjer, flödeslinjer, kraftlinjer) till ett vektorfält F kurvor r(t) = (x(t),y(t)) vars tangenter r (t) = (x (t),y (t)) är parallella med vektorfältets vektorer F(r(t)) = F(x(t),y(t)), dvs. kurvor som följer fältet. Vi kan beräkna fältlinjer genom att lösa begynnelsevärdesproblemet { x (t) = λ(t)f (x(t),y(t)), x() = x y (t) = λ(t)f (x(t),y(t)), y() = y, t för olika startpunkter (x,y ). Vi beräknar och ritar fältlinjer till F(x,y) = (cos(x y),sin(xy)) med ode5 i Matlab enligt x 5

6 >> >> hold on >> [t,u]=ode5(f,[ 5],[;]); >> plot(u(:,),u(:,), g, linewidth,) >> [t,u]=ode5(f,[ 5],[;.5]); >> plot(u(:,),u(:,), g, linewidth,) >> hold off.5 y Uppgift. Rita fält och fältlinjer till F(x,y) = (xy,x y) över området [, ] [, ]. Vi kan också beräkna och rita fältlinjer med funktionen streamline, men vi får mycket noggrannare resultat med ode5. Skall vi rita vektorfält i rummet använder vi quiver. 5 Area av polygonområde med Greens formel Vi tänker oss att vi har ett polygontåg (x,y ),(x,y ),(x n,y n ) som inte korsar sig självt och som är slutet, dvs. att x n = x och y n = y. Här är ett exempel som vi ritat en figur av.9.8 x R C.... (x,y ) (x,y ) = (x n,y n ) (x i,y i ) (x i+,y i+ )

7 Om vi vill beräkna arean av det område R som omsluts av polygontåget kan vi använda formeln n A = (x i+ +x i )(y i+ y i ) () Så här beräknar vi arean i Matlab i= >> n=length(x); >> A=; >> for i=:n- A=A+(x(i+)+x(i))*(y(i+)-y(i))/; end >> A=abs(A) eller kortare >> A=abs(sum((x(:end)+x(:end-)).*(y(:end)-y(:end-))/)) Vi kan använda Greens formel för att bevisa formeln. Låt R beteckna området som omsluts av polygontåget och låt C beteckna områdets rand (med positiv orientering). Med F =, F = x har vi F = och F = och därmed ger Greens formel y x ( F Area(R) = dxdy = R R x F ) dxdy = y = F (x,y)dx+f (x,y)dy = xdy Nu gäller det att C C xdy = n i= där C i är randsegmentet från (x i,y i ) till (x i+,y i+ ). Vi kan enkelt parametrisera randsegmenten { x(t) = xi +t(x i+ x i ) y(t) = y i +t(y i+ y i ) Alltså har vi = (y i+ y i ) C i x(t)dy = C i xdy C, t x(t)y (t)dt = (x i +t(x i+ x i ))dt = (y i+ y i ) (x i+ +x i ) Vi har slutligen kommit fram till n Area(R) = xdy = n (y i+ y i )(x i+ +x i ) C i Om randen C inte är positivt orienterad, får vi ta beloppet. i= Uppgift 5. Använd areaformeln () på polygontågen från uppgift. Se om du får konvergens. Räkna sedan ut (för hand) ett exakt svar där du använder Greens formel på parametriseringen från uppgift. i= 7

8 6 Ytor i R Som exempel på en allmän yta i rummet tar vi en cylinder med radien ρ och höjden h som beskrivs av ekvationen {(x,y,z) : x +y = ρ, z h} Ytan kan parametriseras r : R R med där s h och t π. r(s,t) = (x(s,t),y(s,t),z(s,t)) = (ρcos(t),ρsin(t),s) Detta passar bra när vi skall rita bilden i Matlab. >> rho=.5; h=6; n=; m=; >> s=linspace(,h,n); t=linspace(,*pi,m); >> [S,T]=meshgrid(s,t); >> X=rho*cos(T); Y=rho*sin(T); Z=S; >> surf(x,y,z) >> axis equal, axis([- - 6]) Förcylindern hadevi ρ(s) = ρ, dvs. ettkonstant värde(samma radie). Omvi istället låter ρ(s) = + sin(s) (varierande radie) så blir det lite roligare. Detta är ett exempel på en rotationsyta. Sådana pratade vi om i envariabelkursen i samband med volymberäkning (Adams kap 7.). Nu ritar vi upp rotationsytan. Var skiljer sig koden nedan från den för cylindern? >> h=6; n=; m=; >> s=linspace(,h,n); t=linspace(,*pi,m); >> [S,T]=meshgrid(s,t); >> R=+sin(S).^; >> X=R.*cos(T); Y=R.*sin(T); Z=S; >> surf(x,y,z) >> axis equal, axis([- - 6]) 8

9 Vi ser nu avslutningsvis på två parametriserade ytor som till utseendet är välbekanta. En sfär med radien r och centrum i origo ges av ekvationen och kan parametriseras r : R R med x +y +z = ρ r(s,t) = (x(s,t),y(s,t),z(s,t)) = (ρsin(s)cos(t),ρsin(s)sin(t),ρcos(s)) där s π och t π. Vi ritar en sfär med radien ρ = enligt >> rho=; n=; m=; >> s=linspace(,pi,n); t=linspace(,*pi,m); >> [S,T]=meshgrid(s,t); >> X=rho*sin(S).*cos(T); Y=rho*sin(S).*sin(T); Z=rho*cos(S); >> surf(x,y,z) >> axis equal >> colormap(autumn) Vigjordeenegenparametriseringavensfär,mendetfinnsävenenfunktionspheresomgenererar koordinatmatriser för en sfär. En torus med lateralradien ρ och centralradien a samt centrum i origo ges av och kan parametriseras r : R R med där π s π och t π. (x +y +z +a ρ ) = a (x +y ) r(s,t) = (x(s,t),y(s,t),z(s,t)) = = ((a+ρcos(s))cos(t),(a+ρcos(s))sin(t),ρsin(s)) Vi ritar en torus med lateralradien ρ =. och centralradien a = enligt 9

10 >> rho=.; a=; n=; m=5; >> s=linspace(-pi,pi,n); t=linspace(,*pi,m); >> [S,T]=meshgrid(s,t); >> X=(a+rho*cos(S)).*cos(T); Y=(a+rho*cos(S)).*sin(T); Z=rho*sin(S); >> surf(x,y,z) >> axis equal >> colormap(winter) Vi kan också lägga på belysning, välja mellan olika belysningsmodeller och välja mellan olika reflexionsmodeller (material). >> shading interp % flat, interp, faceted >> camlight right % left, right, headlight >> lighting phong % none, flat, phong, gouraud >> material shiny % shiny, dull, metal Med kommandot surf(x,y,z, facealpha,.7) får vi ytan lite genomskinlig, där värdet vi ger facealpha avgör graden av genomskinlighet ( för helt transparent och för helt solid). Uppgift 6. Rita nu några sfärer i rummet med olika radie och medelpunkt, lägg på lite belysning och rotera det hela några varv. Vi kan rotera runt scenen genom att använda camorbit på olika sätt >> axis equal visd >> axis equal visd >> camlight left >> h=camlight( left ); >> for i=: >> for i=: camorbit(5,) camorbit(5,) drawnow; pause(.5) camlight(h, left ) end drawnow; pause(.5) end Pröva och skriv in koden. Alternativet till vänster lägger på belysning och sedan följer vi med kameran runt. I alternativet till höger följer även belysningskällan med kameran runt. Pausen väljer man så att det går lagom fort på datorn man använder.

Parametriserade kurvor

Parametriserade kurvor CTH/GU LABORATION 4 TMV37-4/5 Matematiska vetenskaper Inledning Parametriserade kurvor Vi skall se hur man ritar parametriserade kurvor i planet samt hur man ritar tangenter och normaler i punkter längs

Läs mer

Grafritning kurvor och ytor

Grafritning kurvor och ytor CTH/GU STUDIO TMV6c - / Matematiska vetenskaper Grafritning kurvor och tor Anals och Linjär Algebra, del C, K/Kf/Bt Inledning En graf till en funktion i en variabel f : R R är mängden {(, ) : = f()}, dvs.

Läs mer

Mer om funktioner och grafik i Matlab

Mer om funktioner och grafik i Matlab CTH/GU TIF7/MVE3-7/8 Matematiska vetenskaper Mer om funktioner och grafik i Matlab Inledning Först skall vi se lite på funktioner som redan finns i Matlab, (elementära) matematiska funktioner som sinus

Läs mer

Grafritning kurvor och ytor

Grafritning kurvor och ytor CTH/GU STUDIO MVE5-4/5 Matematiska vetenskaper Inledning Grafritning kurvor och tor En graf till en funktion i en variabel f : R R är mängden {(, ) : = f()}, dvs. en kurva i planet. En graf till en funktion

Läs mer

Homogena koordinater och datorgrafik

Homogena koordinater och datorgrafik Linjär algebra, AT3 2011/2012 Matematiska vetenskaper Inledning Homogena koordinater och datorgrafik Vi såg tidigare på några geometriska transformationer; rotation, skalning, translation och projektion.

Läs mer

Mer om funktioner och grafik i Matlab

Mer om funktioner och grafik i Matlab CTH/GU 2/22 Matematiska vetenskaper Inledning Mer om funktioner och grafik i Matlab Först skall vi se lite på funktioner som redan finns i Matlab, (elementära) matematiska funktioner som sinus och cosinus

Läs mer

Linjära ekvationssystem

Linjära ekvationssystem CTH/GU LABORATION MVE0-0/0 Matematiska vetenskaper Inledning Linjära ekvationssystem Redan i första läsperioden löste vi linjära ekvationssystem Ax = b med Matlab. Vi satte ihop koefficentmatrisen A med

Läs mer

Funktioner och grafritning i Matlab

Funktioner och grafritning i Matlab CTH/GU LABORATION 3 MVE11-212/213 Matematiska vetenskaper 1 Inledning Funktioner och grafritning i Matlab Först skall vi se lite på (elementära) matematiska funktioner i Matlab, som sinus och cosinus.

Läs mer

Grafik och Egna funktioner i Matlab

Grafik och Egna funktioner i Matlab Grafik och Egna funktioner i Matlab Analys och Linjär Algebra, del A, K1/Kf1/Bt1, ht11 Moore: 5.1-5.2 och 6.1.1-6.1.3 1 Inledning Vi fortsätter med läroboken Matlab for Engineers av Holly Moore. Först

Läs mer

Mer om funktioner och grafik i Matlab

Mer om funktioner och grafik i Matlab CTH/GU 2017/2018 Matematiska vetenskaper Mer om funktioner och grafik i Matlab 1 Inledning Först skall vi se lite på funktioner som redan finns i Matlab, (elementära) matematiska funktioner som sinus och

Läs mer

1.1 Stokes sats. Bevis. Ramgard, s.70

1.1 Stokes sats. Bevis. Ramgard, s.70 1 Föreläsning 7 1.1 tokes sats ats 1 åt vara en yta i R med randen. Vi antar att orienteringen på och är vald på ett sådant sätt att om man går längs i den valda riktningen då ligger till vänster (på vänstersidan).

Läs mer

Geometriska transformationer

Geometriska transformationer CTH/GU LABORATION 5 TMV6/MMGD - 7/8 Matematiska vetenskaper Inledning Geometriska transformationer Vi skall se på några geometriska transformationer; rotation, skalning, translation, spegling och projektion.

Läs mer

Flervariabelanlys och Matlab Kapitel 4

Flervariabelanlys och Matlab Kapitel 4 Flervariabelanlys och Matlab Kapitel 4 Thomas Wernstål Carl-Henrik Fant Matematiska Vetenskaper 30 september 2009 1 4 Vektorfält, strömlinjer, potentialer, funktioner på ytor 4.1 Vektorfält Vi kan illustrera

Läs mer

Flervariabelanalys och Matlab Kapitel 4

Flervariabelanalys och Matlab Kapitel 4 Flervariabelanalys och Matlab Kapitel 4 Thomas Wernstål Matematiska Vetenskaper 3 oktober 2012 4 Vektoranalys 4.1 Vektorfält Vi kan illustrera vektorfält, såväl i planet som i rummet, med kommandona quiver

Läs mer

Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A

Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Måndagen den 5 juni 7 DEL A. En kulles höjd ges av z 6,x,y där enheten är meter på alla tre koordinataxlar. (a) I vilken

Läs mer

Funktionsytor och nivåkurvor

Funktionsytor och nivåkurvor CTH/GU STUDIO MVE47-8/9 Matematiska vetenskaper Inledning Funktionstor och nivåkurvor En graf till en funktion i en variabel f : R R är mängden {(,) : = f()}, dvs. en kurva i planet. En graf till en funktion

Läs mer

Linjära system av differentialekvationer

Linjära system av differentialekvationer CTH/GU STUDIO TMV036c - 0/03 Matematiska vetenskaper Linjära system av differentialekvationer Analys och Linjär Algebra, del C, K/Kf/Bt Inledning Vi har i tidigare studioövningar sett på allmäna system

Läs mer

SF1626 Flervariabelanalys

SF1626 Flervariabelanalys 1 / 28 SF1626 Flervariabelanalys Föreläsning 2 Hans Thunberg Institutionen för matematik, KTH VT 2018, Period 4 2 / 28 SF1626 Flervariabelanalys Dagens lektion: avsnitt 11.1 11.3 Funktioner från R till

Läs mer

Funktionsytor och nivåkurvor

Funktionsytor och nivåkurvor CTH/GU LABORATION MVE5-4/5 Matematiska vetenskaper Funktionstor och nivåkurvor Inledning En graf till en funktion i en variabel f : R R är mängden {(, ) : = f()}, dvs. en kurva i planet. En graf till en

Läs mer

AB2.4: Kurvintegraler. Greens formel i planet

AB2.4: Kurvintegraler. Greens formel i planet AB2.4: Kurvintegraler. Greens formel i planet Kurvintegralener Kurvor på parameterform Låt xyz vara ett cartesiskt koordinatsystem i rummet. En rymdkurva på parameterform ges av tre ekvationer x = x(t),

Läs mer

Transformationer i R 2 och R 3

Transformationer i R 2 och R 3 Linjär algebra, I / Matematiska vetenskaper Inledning Transformationer i R och R 3 Vi skall se på några geometriska transformationer; rotation, skalning, translation och projektion. Rotation och skalning

Läs mer

Minsta-kvadratmetoden

Minsta-kvadratmetoden CTH/GU STUDIO b TMV036c - 01/013 Matematiska vetenskaper Minsta-kvadratmetoden Analys och Linjär Algebra, del C, K1/Kf1/Bt1 1 Inledning Ett ofta förekommande problem inom teknik och vetenskap är att koppla

Läs mer

Visa att vektorfältet F har en potential och bestäm denna. a. F = (3x 2 y 2 + y, 2x 3 y + x) b. F = (2x + y, x + 2z, 2y 2z)

Visa att vektorfältet F har en potential och bestäm denna. a. F = (3x 2 y 2 + y, 2x 3 y + x) b. F = (2x + y, x + 2z, 2y 2z) Kap. 15.1 15.2, 15.4, 16.3. Vektorfält, integralkurva, konservativa fält, potential, linjeintegraler av vektorfält, enkelt sammanhängande område, oberoendet av vägen, Greens formel. A 1701. Undersök om

Läs mer

Flervariabelanlys och Matlab Kapitel 1

Flervariabelanlys och Matlab Kapitel 1 Flervariabelanlys och Matlab Kapitel 1 Thomas Wernstål Carl-Henrik Fant Matematiska Vetenskaper 28 augusti 2009 1 Kurvor och ytor 1.1 Funktionsytor I detta kompendium kommer vi på olika sätt studera funktioner

Läs mer

Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller

Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller Tentamen SF66, Analys i flera variabler, --8 Svar och lösningsförslag. Låt fx, y) = ye x y. Bestäm största och minsta värde till f på den slutna kvadraten med hörn i, ),, ),, ) och, ). Lösning. f är kontinuerlig

Läs mer

BERÄKNING AV KURVINTEGRALER (LINJEINTEGRALER)

BERÄKNING AV KURVINTEGRALER (LINJEINTEGRALER) BERÄKNING AV KURVINTEGRALER (LINJEINTEGRALER) Låt FF = (PP(xx, yy, z, QQ(xx, yy, z, RR(xx, yy, z) vara ett kontinuerligt vektorfält ( d v s en vektorfunktion) definierat i en öppen mängd Ω. Låt γ vara

Läs mer

Tillämpningar av integraler: Area, skivformeln för volymberäkning, båglängd, rotationsarea, integraler och summor

Tillämpningar av integraler: Area, skivformeln för volymberäkning, båglängd, rotationsarea, integraler och summor Tillämpningar av integraler: Area, skivformeln för volymberäkning, båglängd, rotationsarea, integraler och summor Areaberäkningar En av huvudtillämpningar av integraler är areaberäkning. Nedan följer ett

Läs mer

CTH/GU LABORATION 1 MVE /2013 Matematiska vetenskaper. Mer om grafritning

CTH/GU LABORATION 1 MVE /2013 Matematiska vetenskaper. Mer om grafritning CTH/GU LABORATION 1 MVE16-1/13 Matematiska vetenskaper 1 Inledning Mer om grafritning Vi fortsätter att arbeta med Matlab i matematikkurserna. Denna laboration är i stor utsträckning en repetition och

Läs mer

Lektion 1. Kurvor i planet och i rummet

Lektion 1. Kurvor i planet och i rummet Lektion 1 Kurvor i planet och i rummet Innehål Plankurvor Rymdkurvor Innehål Plankurvor Rymdkurvor Tangentvektorn och tangentens ekvation Innehål Plankurvor Rymdkurvor Tangentvektorn och tangentens ekvation

Läs mer

Tentamen: Lösningsförslag

Tentamen: Lösningsförslag Tentamen: Lösningsförslag Onsdag 5 mars 7 8:-3: SF674 Flervariabelanalys Inga hjälpmedel är tillåtna. Max: 4 poäng. 4 poäng Avgör om följande gränsvärde existerar och beräkna gränsvärdet om det existerar:

Läs mer

Tentamen: Lösningsförslag

Tentamen: Lösningsförslag Tentamen: Lösningsförslag Fredag 9 juni 7 8:-: SF67 Flervariabelanalys Inga hjälpmedel är tillåtna. Ma: poäng. poäng Bestäm samtliga horisontella tangentplan till ytan z y y + y +. Lösning: Tangentplanet

Läs mer

Flervariabelanalys I2 Vintern Översikt föreläsningar vecka 6. ( ) kommer vi att studera ytintegraler, r r dudv

Flervariabelanalys I2 Vintern Översikt föreläsningar vecka 6. ( ) kommer vi att studera ytintegraler, r r dudv Flervariabelanalys I Vintern 11 Översikt föreläsningar vecka 6 tintegraler Givet en yta i rummet och en funktion f x, y,z f dsdär ds är det så kallade ytelementet. ( ) kommer vi att studera ytintegraler,

Läs mer

Lösningsförslag till tentamen Onsdagen den 15 mars 2017 DEL A

Lösningsförslag till tentamen Onsdagen den 15 mars 2017 DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Onsdagen den 5 mars 7 DEL A. I nedanstående rätvinkliga koordinatsystem är varje ruta en enhet lång. (a) Bestäm de rymdpolära

Läs mer

Funktioner och grafritning i Matlab

Funktioner och grafritning i Matlab CTH/GU STUDIO 1b MVE350-2014/2015 Matematiska vetenskaper 1 Inledning Funktioner och grafritning i Matlab Först skall vi se lite på matriser, vilket är den grundläggande datatypen i Matlab. Sedan ser vi

Läs mer

SF1626 Flervariabelanalys Bedömningskriterier till tentamen Onsdagen den 15 mars 2017

SF1626 Flervariabelanalys Bedömningskriterier till tentamen Onsdagen den 15 mars 2017 Institutionen för matematik SF626 Flervariabelanals Bedömningskriterier till tentamen Onsdagen den 5 mars 207 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad

Läs mer

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1. Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x

Läs mer

Flervariabelanalys E2, Vecka 5 Ht08

Flervariabelanalys E2, Vecka 5 Ht08 Omfattning och innehåll Flervariabelanalys E2, Vecka 5 Ht08 15.1 Vektorfält och skalärfält 15.2 Konservativa vektorfält (t.o.m. exempel 5) 15.3 Kurvintegraler 15.4 Kurvintegral av vektorfält 15.5 Ytor

Läs mer

= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer).

= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer). Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen torsdag 19 augusti 21, 14. - 19. Inga hjälpmedel är tillåtna. Svar och

Läs mer

Kort om programmering i Python

Kort om programmering i Python CTH/GU mmgl50-2018 Matematiska vetenskaper Kort om programmering i Python 1 Inledning Redan i första laborationen gjorde ni ett litet program. Ni skrev en script eller skriptfil som beräknade summan 5

Läs mer

SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag

SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag SF1646 Analys i flera variabler Tentamen 18 augusti 11, 14. - 19. Svar och lösningsförslag (1) Låt f(x, y) = xy ln(x + y ). I vilken riktning är riktningsderivatan till f i punkten (1, ) som störst, och

Läs mer

SF1626 Flervariabelanalys Tentamen 18 augusti 2011, Svar och lösningsförslag

SF1626 Flervariabelanalys Tentamen 18 augusti 2011, Svar och lösningsförslag SF166 Flervariabelanalys entamen 18 augusti 11, 14. - 19. Svar och lösningsförslag 1) Låt fx, y) = xy lnx + y ). I vilken riktning är riktningsderivatan till f i punkten 1, ) som störst, och hur stor är

Läs mer

Några geometriska konstruktioner i R 3

Några geometriska konstruktioner i R 3 Linjär algebra, AT / Matematiska vetenskaper Några geometriska konstruktioner i R Inledning Vi skall se på några Platonska kroppar. Dessa är konvexa tre-dimensionella polyedrar som har likformiga polygoner

Läs mer

Tentamen TMA044 Flervariabelanalys E2

Tentamen TMA044 Flervariabelanalys E2 Tentamen TMA044 Flervariabelanalys E2 205-0-05 kl. 4.00-8.00 Examinator: Peter Hegarty, Matematiska vetenskaper, Chalmers Telefonvakt: Dawan Mustafa, telefon: 0703 088 304 Hjälpmedel: bifogat formelblad,

Läs mer

SF1626 Flervariabelanalys Tentamen Onsdagen den 15 mars 2017

SF1626 Flervariabelanalys Tentamen Onsdagen den 15 mars 2017 Institutionen för matematik SF66 Flervariabelanalys Tentamen Onsdagen den 5 mars 7 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt

Läs mer

1 x. SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

1 x. SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 26-3-2 DEL A. Låt D vara fyrhörningen med hörn i punkterna, ), 6, ),, 5) och 4, 5). a) Skissera fyrhörningen D och beräkna dess area. p) b) Bestäm

Läs mer

At=A' % ' transponerar en matris, dvs. kastar om rader och kolonner U' % Radvektorn U ger en kolonnvektor

At=A' % ' transponerar en matris, dvs. kastar om rader och kolonner U' % Radvektorn U ger en kolonnvektor % Föreläsning 1 26/1 % Kommentarer efter %-tecken clear % Vi nollställer allting 1/2+1/3 % Matlab räknar numeriskt. Observera punkten som decimaltecken. sym(1/2+1/3) % Nu blev det symboliskt pi % Vissa

Läs mer

1. För vilka värden på konstanterna a och b är de tre vektorerna (a,b,b), (b,a,b) och (b,b,a) linjärt beroende.

1. För vilka värden på konstanterna a och b är de tre vektorerna (a,b,b), (b,a,b) och (b,b,a) linjärt beroende. Institutionen för matematik KTH MOELLTENTAMEN Tentamensskrivning, år månad dag, kl. x. (x + 5).. 5B33, Analytiska metoder och linjär algebra. Uppgifterna 5 svarar mot varsitt moment i den kontinuerliga

Läs mer

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt. 1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.

Läs mer

Omtentamen (med lösningar) MVE085 Flervariabelanalys

Omtentamen (med lösningar) MVE085 Flervariabelanalys Omtentamen (med lösningar) MVE85 Flervariabelanalys 26--4 kl. 8.3 2.3 Examinator: Dennis Eriksson, Matematiska vetenskaper, Chalmers Telefonvakt: Anna Persson, telefon: 73 88 34 Hjälpmedel: endast bifogat

Läs mer

ATT RITA GRAFER MED KOMMANDOT "PLOT"

ATT RITA GRAFER MED KOMMANDOT PLOT MATLAB, D-plot ATT RITA GRAFER MED KOMMANDOT "PLOT" Syntax: Vi börjar med det enklaste plot-kommandot i matlab,,där x är en vektor x- värden och y en vektor med LIKA MÅNGA motsvarande y-värden. Anta att

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 213-8-22 DEL A 1. Betrakta funktionen f(x, y) ln(x 2 + xy 2 4). a) Bestäm tangentplanet till funktionsytan z f(x, y) i den punkt på ytan där x 1

Läs mer

Övningstenta: Lösningsförslag

Övningstenta: Lösningsförslag Övningstenta: Lösningsförslag Onsdag 5 mars 7 8:-: SF674 Flervariabelanalys Inga hjälpmedel är tillåtna. Max: 4 poäng. (4 poäng) Bestäm tangentplanet i punkten (,, ) till ytan z f(x, y) där f(x, y) x 4

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 12 januari 2016

SF1626 Flervariabelanalys Tentamen Tisdagen den 12 januari 2016 Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den 2 januari 26 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

Matlab övningsuppgifter

Matlab övningsuppgifter CTH/GU TMA976-28/29 Matematiska vetenskaper Matlab övningsuppgifter Inledning Vi skall först se hur man beräknar numeriska lösningar till differentialekvationer. Därefter skall vi rita motsvarigheten till

Läs mer

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A SF669 Matematisk och numerisk anals II Lösningsförslag till tentamen 7-3-5 DEL A. I nedanstående rätvinkliga koordinatsstem är varje ruta en enhet lång. (a) Bestäm de rmdpolära (sfäriska) koordinaterna

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU LABORATION 1 TMV216/MMGD20-2017/2018 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF166 Flervariabelanalys Lösningsförslag till tentamen 16-8-18 DEL A 1 Låt D vara det område ovanför x-axeln i xy-planet som begränsas av cirkeln x + y = 1 samt linjerna y = x oc y = x Beräkna x-koordinaten

Läs mer

Vektoranalys, snabbrepetition. Vektorfält

Vektoranalys, snabbrepetition. Vektorfält Vektorfält Ett vektorfält F är en funktion F : R 2 R 2. (Eller mer allmänt en funktion R n R n.) Observera att F(x, y) har två komponenter, som båda beror av x och y. Låt oss kalla dessa komponenter för

Läs mer

Platonska kroppar med Matlab

Platonska kroppar med Matlab CTH/GU LABORATION 1 MVE400-2014/2015 Matematiska vetenskaper Platonska kroppar med Matlab Inledning Platonska kroppar är tre-dimensionella konvexa polyedrar som har likformiga polygoner som sidor. Lika

Läs mer

Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26

Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26 TAIU07 Föreläsning 2 Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26 Matriselement och Index För att manipulera

Läs mer

Lösningsförslag till tentamen TMA043 Flervariabelanalys E2

Lösningsförslag till tentamen TMA043 Flervariabelanalys E2 Lösningsförslag till tentamen TMA3 Flervariabelanalys E2 23--6 kl. 8.3 2.3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Adam Andersson, telefon: 73 88 3 Hjälpmedel: bifogat

Läs mer

x (t) = 2 1 u = Beräkna riktnings derivatan av f i punkten a i riktningen u, dvs.

x (t) = 2 1 u = Beräkna riktnings derivatan av f i punkten a i riktningen u, dvs. MATEMATIK Chalmers tekniska högskola Tentamen -8-8, kl. 4.-8. TMV6 Analys och linjär algebra K Kf Bt, del C Telefonvakt: Adam Andersson, telefon: 7-884 Hjälpmedel: Inga, bara papper och penna. För full

Läs mer

f(x, y) = ln(x 2 + y 2 + 1). 3. Hitta maximala arean för en rektangel inskriven i en ellips på formen x 2 a 2 + y2

f(x, y) = ln(x 2 + y 2 + 1). 3. Hitta maximala arean för en rektangel inskriven i en ellips på formen x 2 a 2 + y2 TM-Matematik Mikael Forsberg Matematik med datalogi, mfl. Flervariabelanalys mk12b Övningstenta vt213 nr1 Skrivtid: 5 timmar. Hjälpmedel är formelbladen från insidan av Pärmen i Adams Calculus, dessa formler

Läs mer

x ( f u 2y + f v 2x) xy = 24 och C = f

x ( f u 2y + f v 2x) xy = 24 och C = f Institutionen för Matematik, KTH Torbjörn Kolsrud SF160, Differential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen onsdag 0 maj 2012, 8.00-1.00 Förslag till lösningar 1. Bestäm tangentplanet

Läs mer

Outline. TMA043 Flervariabelanalys E2 H09

Outline. TMA043 Flervariabelanalys E2 H09 Outline TMA043 Flervariabelanalys E2 H09 Matematiska vetenskaper halmers Göteborgs universitet tel. (arb) 772 35 57 epost: carl-henrik.fant@chalmers.se 7 oktober 2009 1 Flervariabelanalys E2, Vecka 5 Ht09

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen 4-9-6 DEL A. Betrakta följande tre områden i planet: D = {(x, y): x y < 4}, D = {(x, y): x + y }, D 3 = {(x, y): 4x + 3y

Läs mer

SF1626 Flervariabelanalys

SF1626 Flervariabelanalys Föreläsning 13 Institutionen för matematik KTH VT 2018 Administrativt 0 Anmäl er till tentan! Vektoranalys 1 Dagens program: Vektorfält Konservativa vektorfält Potentialfunktioner Bokens kapitel 15.1-15.2

Läs mer

TATA44 ösningar till tentamen 13/01/ ) Paraboloiden z = 2 x 2 y 2 skär konen z = x 2 + y 2 då x 2 + y 2 = 2 x 2 y 2. Med

TATA44 ösningar till tentamen 13/01/ ) Paraboloiden z = 2 x 2 y 2 skär konen z = x 2 + y 2 då x 2 + y 2 = 2 x 2 y 2. Med TATA44 ösningar till tentamen 1/1/211. 1. Paraboloiden z 2 x 2 y 2 skär konen z x 2 + y 2 då x 2 + y 2 2 x 2 y 2. Med ρ x 2 + y 2 då är ρ 2 + ρ 2 vilket ger ρ + 2ρ 1. åledes är ρ 1 ty ρ. Vi betecknar den

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 216-6-7 DEL A 1. Låt S vara ellipsoiden som ges av ekvationen x 2 + 2y 2 + 3z 2 = 5. (a) Bestäm en normalvektor till S i en punkt (x, y, z ) på S.

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 21 mars 2016

SF1626 Flervariabelanalys Tentamen Måndagen den 21 mars 2016 Institutionen för matematik SF626 Flervariabelanalys Tentamen Måndagen den 2 mars 26 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt

Läs mer

Kort om programmering i Matlab

Kort om programmering i Matlab CTH/GU 25/26 Matematiska vetenskaper Kort om programmering i Matlab Inledning Redan första tillfället gjorde ni ett litet program. Ni skrev ett script eller en skriptfil som beräknade summan 5 i 2 = 2

Läs mer

SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016

SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016 Institutionen för matematik SF166 Flervariabelanalys Tentamen Torsdagen den 18 augusti 16 Skrivtid: 8:-1: Tillåtna jälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

Inledning. CTH/GU LABORATION 4 MVE /2017 Matematiska vetenskaper

Inledning. CTH/GU LABORATION 4 MVE /2017 Matematiska vetenskaper CTH/GU LABORATION 4 MVE3-6/7 Matematiska vetenskaper Inledning I denna laboration skall vi se på några geometriska transformationer i R och R 3 som ges av linjära eller affina avbildningar. En avbildning

Läs mer

23 Konservativa fält i R 3 och rotation

23 Konservativa fält i R 3 och rotation Nr 23, 7 maj -5, Amelia 2 23 Konservativa fält i R 3 och rotation 23. Potential 23.. Två dimensioner (2D) I två dimensioner definierade vi ett vektorfält som konservativt om kurvintegralen av fältet endast

Läs mer

Mer om geometriska transformationer

Mer om geometriska transformationer CTH/GU LABORATION 4 TMV141-1/13 Matematiska vetenskaper 1 Inledning Mer om geometriska transformationer Vi fortsätter med geometriska transformationer och ser på ortogonal (vinkelrät) projektion samt spegling.

Läs mer

Outline. TMA043 Flervariabelanalys E2 H09. Carl-Henrik Fant

Outline. TMA043 Flervariabelanalys E2 H09. Carl-Henrik Fant Outline TMA043 Flervariabelanalys E2 H09 Matematiska vetenskaper halmers Göteborgs universitet tel. (arb) 772 35 57 epost: carl-henrik.fant@chalmers.se Flervariabelanalys E2, Vecka 6 Ht09 Kapitel 6. -

Läs mer

Figur 1: Postföretagets rektangulära låda, definitioner.

Figur 1: Postföretagets rektangulära låda, definitioner. ATM-Matematik Mikael Forsberg 734-41 3 31 För distans och campus Flervariabelanalys ma1b 14 8 13 Skrivtid: 9:-14:. Inga hjälpmedel, förutom den bifogade formelsamlingen. Lösningarna skall vara fullständiga

Läs mer

Grafritning och Matriser

Grafritning och Matriser Grafritning och Matriser Analys och Linjär Algebra, del B, K1/Kf1/Bt1, ht11 1 Inledning Vi fortsätter under läsperiod och 3 att arbete med Matlab i matematikkurserna Dessutom kommer vi göra projektuppgifter

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF66 Flervariabelanals Lösningsförslag till tentamen --9 EL A. En kulle beskrivs approximativt av funktionen 5 hx, ) + 3x + i lämpliga enheter där hx, ) är höjden. Om du befinner dig i punkten,, ) på kullen,

Läs mer

Kap 5.7, Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder.

Kap 5.7, Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder. Kap 5.7, 7. 7.. Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder. 8. (A) Beräkna arean av det ändliga område som begränsas av kurvorna x a. y = + x och y = b. y = x e x och y = x

Läs mer

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 16-8-18 DEL A 1. Låt D vara det område ovanför x-axeln i xy-planet som begränsas av cirkeln x + y = 1 samt linjerna y = x och y =

Läs mer

Optimeringsproblem. 1 Inledning. 2 Optimering utan bivillkor. CTH/GU STUDIO 6 TMV036c /2015 Matematiska vetenskaper

Optimeringsproblem. 1 Inledning. 2 Optimering utan bivillkor. CTH/GU STUDIO 6 TMV036c /2015 Matematiska vetenskaper CTH/GU STUDIO TMV3c - 1/15 Matematiska vetenskaper Optimeringsproblem 1 Inledning Vi skall söka minsta eller största värdet hos en funktion på en mängd, dvs. vi skall lösa s.k. optimeringsproblem min f(x)

Läs mer

Tentamen i Matematisk analys MVE045, Lösningsförslag

Tentamen i Matematisk analys MVE045, Lösningsförslag Tentamen i Matematisk analys MVE5 26-8-23 Lösningsförslag Kl. 8.3 2.3. Tillåtna hjälpmedel: Mathematics handbook for science and engineering (BE- TA) eller CRC Standard Mathematical Tables. Indexeringar

Läs mer

har ekvation (2, 3, 4) (x 1, y 1, z 1) = 0, eller 2x + 3y + 4z = 9. b) Vi söker P 1 = F (1, 1, 1) + F (1, 1, 1) (x 1, y 1, z 1) = 2x + 3y + 4z.

har ekvation (2, 3, 4) (x 1, y 1, z 1) = 0, eller 2x + 3y + 4z = 9. b) Vi söker P 1 = F (1, 1, 1) + F (1, 1, 1) (x 1, y 1, z 1) = 2x + 3y + 4z. Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del, flervariabel, för F1. Tentamen onsdag 7 maj 9, 1.-19. 1. Låt F (x, y, z) sin(x + y z) + x + y + 6z. a)

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF166 Flervariabelanalys Lösningsförslag till tentamen 15-8- EL A 1. Betrakta funktionen f som är definierad i området där x + y genom f(x, y, z) x z x + y. (a) Beräkna gradienten f(x, y, z). (1 p) (b)

Läs mer

SF1626 Flervariabelanalys Tentamen Torsdagen den 20 augusti 2015

SF1626 Flervariabelanalys Tentamen Torsdagen den 20 augusti 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Torsdagen den 2 augusti 215 Skrivtid: 8:-1: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 216 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

Tentamen MVE085 Flervariabelanalys

Tentamen MVE085 Flervariabelanalys Tentamen MVE85 Flervariabelanalys 5--5 kl. 4. - 8. Examinator: Dennis Eriksson, Matematiska vetenskaper, Chalmers Telefonvakt: Dawan Mustafa, telefon: 73 88 34 Hjälpmedel: bifogat formelblad, ordlistan

Läs mer

Tentamen i Flervariabelanalys, MVE , π, kl

Tentamen i Flervariabelanalys, MVE , π, kl Tentamen i Flervariabelanalys, MVE35 216-3-14, π, kl. 14.-18. Hjälpmedel: Inga, ej räknedosa. Telefon: anknytning 5325 Telefonvakt: Raad Salman För godkänt krävs minst 2 poäng. Betyg 3: 2-29 poäng, betyg

Läs mer

Programmering i Matlab

Programmering i Matlab CTH/GU 2/22 Matematiska vetenskaper Inledning Programmering i Matlab Redan i den första introduktionen var det ett par enkla programmeringsexempel. Ni skrev ett script eller skriptfil som beräknade summan

Läs mer

Tavelpresentation. Grupp 6A. David Högberg, Henrik Nordell, Harald Hagegård, Caroline Bükk, Emma Svensson, Emil Levén

Tavelpresentation. Grupp 6A. David Högberg, Henrik Nordell, Harald Hagegård, Caroline Bükk, Emma Svensson, Emil Levén Tavelpresentation Grupp 6A avid Högberg, Henrik Nordell, Harald Hagegård, Caroline Bükk, Emma Svensson, Emil Levén 3 mars 2017 1 Potentialfält Vi har tidigare introducerat vektorfält i planet som funktioner

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf

Uppsala Universitet Matematiska Institutionen Bo Styf Uppsala Universitet Matematiska Institutionen Bo Styf Flervariabelanalys 5 hp, för STS 2010-03-19 Genomgånget på föreläsningarna 1-5. Här sammanfattar vi det som genomgåtts på de olika föreläsningarna.

Läs mer

Om att rita funktioner av två variabler

Om att rita funktioner av två variabler Analys 360 En webbaserad analyskurs Differentialkalkyl Om att rita funktioner av två variabler Anders Källén MatematikCentrum LTH anderskallen@gmail.com Om att rita funktioner av två variabler 1 (10) Introduktion

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU LABORATION 1 TMV206-2018/2019 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska högskolor

Läs mer

Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T

Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T Repetition, Matematik 2 för lärare Ï -2x + y + 2z = 3 1. Ange för alla reella a lösningsmängden till ekvationssystemet Ì ax + 2y + z = 1. Ó x + 3y - z = 4 2. Vad är villkoret på talet a för att ekvationssystemet

Läs mer

1. Beräkna hastigheten, farten och accelerationen vid tiden t för en partikel vars rörelse beskrivs av r(t) = (2 sin t + cos t, 2 cos t sin t, 2t).

1. Beräkna hastigheten, farten och accelerationen vid tiden t för en partikel vars rörelse beskrivs av r(t) = (2 sin t + cos t, 2 cos t sin t, 2t). Repetition, analys.. Beräkna hastigheten, farten och accelerationen vid tiden t för en partikel vars rörelse beskrivs av r(t) = (2 sin t + cos t, 2 cos t sin t, 2t). 2. Beräkna längden av kurvan r(t) =

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 215-3-16 DEL A 1. Låt f(x, y) = 1 x 2 y 2. (a) Skissa nivåkurvorna f(x, y) = c till f för c =, c = 1 och c = 2. (1 p) (b) Beräkna gradf(x, y) i de

Läs mer

TMV036/MVE350 Analys och Linjär Algebra K Kf Bt KI, del C

TMV036/MVE350 Analys och Linjär Algebra K Kf Bt KI, del C MATEMATIK Hjälpmedel: Inga Chalmers tekniska högskola atum: 23-3-5 kl. 8.3 2.3 Tentamen Telefonvakt: Elin Solberg tel. 73-8834 TMV36/MVE35 Analys och Linjär Algebra K Kf Bt KI, del C Tentan rättas och

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av SF166 Flervariabelanalys Lösningsförslag till tentamen 13-3-1 DEL A 1. En svängningsrörelse beskrivs av ( πx ) u(x, t) = A cos λ πft där amplituden A, våglängden λ och frekvensen f är givna konstanter.

Läs mer

Linjära system av differentialekvationer

Linjära system av differentialekvationer CTH/GU LABORATION MVE0-0/03 Matematiska vetenskaper Linjära system av differentialekvationer Inledning Vi har i envariabelanalysen sett på allmäna system av differentialekvationer med begynnelsevillkor

Läs mer