Multivariata metoder
|
|
- Carl-Johan Sundström
- för 8 år sedan
- Visningar:
Transkript
1 Multivariata metoder F5 Linda Wänström Linköpings universitet 1 oktober Wänström (Linköpings universitet) Multivariata metoder 1 oktober 1 / 18
2 Kanonisk korrelationsanalys Syfte: Undersöka om en grupp (uppsättning) av variabler påverkar en annan grupp variabler Undersöka om två grupper av variabler är relaterade till varandra Wänström (Linköpings universitet) Multivariata metoder 1 oktober 2 / 18
3 Exempel (Hotelling, 1936) X 1 = lässnabbhet, X 2 = lässtyrka, Y 1 = mattesnabbhet, Y 2 = mattestyrka Finns det något samband mellan läs-och matte-variablerna? U 1 = a 1 X 1 + a 2 X 2 V 1 = b 1 Y 1 + b 2 Y 2 Välj linjärkombinationer så att U 1 och V 1 blir så starkt korrelerade som möjligt. Wänström (Linköpings universitet) Multivariata metoder 1 oktober 3 / 18
4 Kanonisk korrelationsanalys Antag två grupper av variabler X = (X 1, X 2,..., X p ) och Y = (Y 1, Y 2,..., Y q ) med kovariansmatris ( ΣXX Σ Σ = XY Σ YX Σ YY där q p. Vi kan bilda högst q par av kanoniska variabler U i = a i X och V i = b i Y. U 1 och V 1 bestäms så att korrelationen (eller kvadrerade korrelationen) ) ρ 2 (a 1 U 1 V 1 = Σ XY b 1 ) 2 a 1 Σ XX a 1 b 1Σ YY b 1 maximeras. U 2 och V 2 bestäms så att korrelationen mellan dessa maximeras (ρ U2 V 2 ) givet att de är okorrelerade med U 1 och V 1 osv. Wänström (Linköpings universitet) Multivariata metoder 1 oktober 4 / 18
5 Kanonisk korrelationsanalys Från Σ kan vi beräkna en p p-matris och en q q-matris Σ 1 XX Σ YX Σ 1 YY Σ YX Σ 1 YY Σ XY Σ 1 XX Σ XY Dess egenvärden är de kvadrerade kanoniska korrelationerna och första matrisens egenvektorer är a 1, a 2,..., a r och andra matrisens egenvektorer är b 1, b 2,..., b r. Wänström (Linköpings universitet) Multivariata metoder 1 oktober 5 / 18
6 Signifikanstest Test för H 0 : ρ U1 = ρ V 1 U2 =... = ρ V 2 Ur Vr = 0 (H 0 : Σ XY = 0) Om data är multivariat normalfördelat kan man bilda ett likelihoodkvottest så att H 0 förkastas om {n 12 } (p + q + 3) r i=1 log e (1 λ i ) χ 2 (1 α);pq där n är stickprovsstorleken. Wänström (Linköpings universitet) Multivariata metoder 1 oktober 6 / 18
7 Tolkning av kanoniska variabler Tolka de par av kanoniska variabler vars kanoniska korrelationer är signifikanta Tolka utifrån de standardiserade koeffi cienterna (liknande PC och CDA) Tolka utifrån variablers korrelationer med de kanoniska variablerna Wänström (Linköpings universitet) Multivariata metoder 1 oktober 7 / 18
8 Steg i kanonisk korrelationsanalys 1 Ta fram par av kanoniska variabler samt kanoniska korrelationer 2 Testa om alla kanoniska korrelationer är noll. Bedöm hur många par av kanoniska variabler som ska sparas 3 Tolka de kanoniska variablerna som sparats och sambanden dem emellan 4 Undersök hur stor del av variationen i ena gruppen variabler som kan förklaras av den andra gruppen variabler Wänström (Linköpings universitet) Multivariata metoder 1 oktober 8 / 18
9 Exempel Finns det något samband mellan barns familjebakgrund (mammas IQ, mammas ålder vid första barnets födsel, hushållsinkomst, mammas utbildningsnivå, syskonstorlek, födelseordning) och IQ (ds, pm, prr, prc, ppvt)? proc cancorr data=seven all vprefix= vname=' variables' wprefix=iq wname='iq variables'; var iqmom momage_firtsbirth hh_income motheduc sibsize birthorder; with ds pm prr prc ppvt; run; Wänström (Linköpings universitet) Multivariata metoder 1 oktober 9 / 18
10 The CANCORR Procedure variables 6 IQ variables 5 Observations 377 Means and Standard Deviations Variable Mean Standard Deviation iqmom momage_firtsbirth HH_income MothEduc sibsize birthorder ds pm prr prc ppvt Wänström (Linköpings universitet) Multivariata metoder 1 oktober 10 / 18
11 Correlations Among the variables iqmom momage_firtsbirth HH_income MothEduc sibsize birthorder iqmom momage_firtsbirth HH_income MothEduc sibsize birthorder Correlations Among the IQ variables ds pm prr prc ppvt ds pm prr prc ppvt Correlations Between the variables and the IQ variables ds pm prr prc ppvt iqmom momage_firtsbirth HH_income MothEduc sibsize birthorder Wänström (Linköpings universitet) Multivariata metoder 1 oktober 11 / 18
12 Canonica l Correlati on Adjusted Canonica l Correlati on Approxim ate Standard Error Squared Canonica l Correlati on Canonical Correlation Analysis Eigenval ue Eigenvalues of Inv(E)*H = CanRsq/(1 CanRsq) Differen ce Proporti on Cumulati ve Test of H0: Thecanonicalcorrelations in the current row and all that fol low are zero Likelihood Ratio Approximate F Value Num DF Den DF Pr > F < Multivariate Statistics and F Approximations S=5 M=0 N=182 Statistic Value F Value Num DF Den DF Pr > F Wilks' Lambda <.0001 Pillai's Trace <.0001 Hotelling Lawley Trace <.0001 Roy's Greatest Root <.0001 NOTE: F Statistic for Roy's Greatest Root is an upper bound. Wänström (Linköpings universitet) Multivariata metoder 1 oktober 12 / 18
13 Canonical Correlation Analysis Raw Canonical Coefficients for the variables iqmom E momage_firtsbirth HH_income E E E E 6 MothEduc sibsize birthorder Raw Canonical Coefficients for the IQ variables IQ1 IQ2 IQ3 IQ4 IQ5 ds pm prr prc ppvt Wänström (Linköpings universitet) Multivariata metoder 1 oktober 13 / 18
14 Canonical Correlation Analysis Standardized Canonical Coefficients for the variables iqmom momage_firtsbirt h HH_income MothEduc sibsize birthorder Standardized Canonical Coefficients for the IQ variables IQ1 IQ2 IQ3 IQ4 IQ5 ds pm prr prc ppvt Wänström (Linköpings universitet) Multivariata metoder 1 oktober 14 / 18
15 Canonical Structure Correlations Between the variables and Their Canonical Variables iqmom momage_firtsbirt h HH_income MothEduc sibsize birthorder Correlations Between the IQ variables and Their Canonical Variables IQ1 IQ2 IQ3 IQ4 IQ5 ds pm prr prc ppvt Wänström (Linköpings universitet) Multivariata metoder 1 oktober 15 / 18
16 Correlations Between the variables and the Canonical Variables of the IQ variables IQ1 IQ2 IQ3 IQ4 IQ5 iqmom momage_firtsbirth HH_income MothEduc sibsize birthorder Correlations Between the IQ variables and the Canonical Variables of the variables ds pm prr prc ppvt Wänström (Linköpings universitet) Multivariata metoder 1 oktober 16 / 18
17 Canonical Redundancy Analysis Standardized Variance of the variables Explained by Canonical Variable Number Their Own Canonical Variables Proportion Cumulative Proportion Canonical R Square The Opposite Canonical Variables Proportion Cumulative Proportion Canonical Variable Number Standardized Variance of the IQ variables Explained by Their Own Canonical Variables Proportion Cumulative Proportion Canonical R Square The Opposite Canonical Variables Proportion Cumulative Proportion Wänström (Linköpings universitet) Multivariata metoder 1 oktober 17 / 18
18 Canonical Redundancy Analysis Squared Multiple Correlations Between the variables and the First M Canonical Variables of the IQ variables M iqmom momage_firtsbirth HH_income MothEduc sibsize birthorder Squared Multiple Correlations Between the IQ variables and the First M Canonical Variables of the variables M ds pm prr prc ppvt Wänström (Linköpings universitet) Multivariata metoder 1 oktober 18 / 18
Multivariata metoder
Multivariata metoder F3 Linda Wänström Linköpings universitet 17 september Wänström (Linköpings universitet) Multivariata metoder 17 september 1 / 21 Principalkomponentanalys Syfte med principalkomponentanalys
Skrivning i multivariata metoder lördagen den 30 augusti 2003
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA102:4 Skrivning i multivariata metoder lördagen den 30 augusti 2003 Förutom Körners tabell- och formelsamling och miniräknare är även läroboken:
Skrivning i multivariata metoder lördagen den 27 augusti 2005
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA102:4 Skrivning i multivariata metoder lördagen den 27 augusti 2005 Förutom Körners tabell- och formelsamling och miniräknare är även läroboken:
STATISTISK ANALYS AV KOMPLEXA DATA
STATISTISK ANALYS AV KOMPLEXA DATA LONGITUDINELLA DATA Linda Wänström Linköpings universitet 9 December Linda Wänström (Linköpings universitet) LONGITUDINELLA DATA 9 December 1 / 43 Longitudinella data
STATISTISK ANALYS AV KOMPLEXA DATA
STATISTISK ANALYS AV KOMPLEXA DATA LONGITUDINELLA DATA Linda Wänström Linköpings universitet Linda Wänström (Linköpings universitet) LONGITUDINELLA DATA 1 / 56 Longitudinella data Tvärsnittsdata Flera
STATISTISK ANALYS AV KOMPLEXA DATA
STATISTISK ANALYS AV KOMPLEXA DATA LONGITUDINELLA DATA Linda Wänström Linköpings universitet Linda Wänström (Linköpings universitet) LONGITUDINELLA DATA 1 / 66 Longitudinella data Tvärsnittsdata Flera
Regressions- och Tidsserieanalys - F4
Regressions- och Tidsserieanalys - F4 Modellbygge och residualanalys. Kap 5.1-5.4 (t.o.m. halva s 257), ej C-statistic s 23. Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F4 1
Lösningar till SPSS-övning: Analytisk statistik
UMEÅ UNIVERSITET Statistiska institutionen 2006--28 Lösningar till SPSS-övning: Analytisk statistik Test av skillnad i medelvärden mellan två grupper Uppgift Testa om det är någon skillnad i medelvikt
Samhällsvetenskaplig metod, 7,5 hp
Samhällsvetenskaplig metod, 7,5 hp Provmoment: Individuell skriftlig tentamen kvantitativ metod, 2,0 hp Ladokkod: 11OA63 Tentamen ges för: OPUS kull H13 termin 6 TentamensKod: Tentamensdatum: Fredag 24
Regressions- och Tidsserieanalys - F1
Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp
STATISTISK ANALYS AV KOMPLEXA DATA
STATISTISK ANALYS AV KOMPLEXA DATA HIERARKISKA DATA Linda Wänström Linköpings universitet 25 November Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 1 / 53 Regressionsmodell för icke-hierarkiska
Regressions- och Tidsserieanalys - F1
Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet May 4, 2015 Wänström (Linköpings universitet) F1 May 4, 2015 1 / 25 Regressions- och tidsserieanalys,
Jesper Rydén. Matematiska institutionen, Uppsala universitet Tillämpad statistik för STS vt 2014
Föreläsning 11. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper@math.uu.se Tillämpad statistik för STS vt 2014 Old Faithful Old Faithful Eruption times 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
En rät linje ett enkelt samband. En rät linje + slumpbrus. Observationspar (X i,y i ) MSG Staffan Nilsson, Chalmers 1.
En rät linje ett enkelt samband Y β 1 Lutning (slope) β 0 Skärning (intercept) 1 Y= β 0 + β 1 X X En rät linje + slumpbrus Y Y= β 0 + β 1 X + brus brus ~ N(0,σ) X Observationspar (X i,y i ) Y Ökar/minskar
Multipel Regressionsmodellen
Multipel Regressionsmodellen Koefficienterna i multipel regression skattas från ett stickprov enligt: Multipel Regressionsmodell med k förklarande variabler: Skattad (predicerad) Värde på y y ˆ = b + b
Provmoment: Forskningsmetod, Salstentamen nr 1 Ladokkod:
Forskningsmetod 6,0 högskolepoäng Provmoment: Forskningsmetod, Salstentamen nr 1 Ladokkod: 11OP90/TE01 samt 11PS30/TE01 Tentamen ges för: OPUS kull H12 termin 5 inriktning Psykologi samt fristående grundkurs
Regressions- och Tidsserieanalys - F3
Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet 7 maj Wänström (Linköpings universitet) F3 7 maj 1 / 26 Lite som vi inte hann med när
Regressions- och Tidsserieanalys - F3
Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F3 1 / 21 Interaktion Ibland ser sambandet mellan en
Skrivning i ekonometri torsdagen den 8 februari 2007
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA2:3 Skrivning i ekonometri torsdagen den 8 februari 27. Vi vill undersöka hur variationen i lön för 2 belgiska löntagare = WAGE (timlön i euro)
Regressions- och Tidsserieanalys - F3
Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet November 6, 2013 Wänström (Linköpings universitet) F3 November 6, 2013 1 / 22 Interaktion
1. Lära sig plotta en beroende variabel mot en oberoende variabel. 2. Lära sig skatta en enkel linjär regressionsmodell
Datorövning 1 Regressions- och tidsserieanalys Syfte 1. Lära sig plotta en beroende variabel mot en oberoende variabel 2. Lära sig skatta en enkel linjär regressionsmodell 3. Lära sig beräkna en skattning
732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet
732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris
STATISTISK ANALYS AV KOMPLEXA DATA
STATISTISK ANALYS AV KOMPLEXA DATA HIERARKISKA DATA Linda Wänström Linköpings universitet 14-15 November Wänström (Linköpings universitet) HIERARKISKA DATA 14-15 November 1 / 59 Hierarkiska data Hierarkiska
7.1 Hypotesprövning. Nollhypotes: H 0 : µ = 3.9, Alternativ hypotes: H 1 : µ < 3.9.
Betrakta motstånden märkta 3.9 kohm med tolerans 1%. Anta att vi innan mätningarna gjordes misstänkte att motståndens förväntade värde µ är mindre än det utlovade 3.9 kohm. Med observationernas hjälp vill
Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3
Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest
FACIT!!! (bara facit,
STOCKHOLMS UNIVERSITET Psykologiska institutionen Psykologi III, VT 2012. Fristående kurs FACIT!!! (bara facit, inga tolkningar) Skrivning i Psykologi III metod, fristående kurs: Metod och Statistik avsnitt
2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer
Datorövning 2 Regressions- och tidsserieanalys Syfte 1. Lära sig skapa en korrelationsmatris 2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna mot varandra 3. Lära sig beräkna
Multipel linjär regression. Geometrisk tolkning. Tolkning av β k MSG Staffan Nilsson, Chalmers 1
Multipel linjär regression l: Y= β 0 + β X + β 2 X 2 + + β p X p + ε Välj β 0,β,β 2,, β p så att de minimerar summan av residualkvadraterna (Y i -β 0 -β X i - -β p X pi ) 2 Geometrisk tolkning Med Y=β
Multipel regression och Partiella korrelationer
Multipel regression och Partiella korrelationer Joakim Westerlund Kom ihåg bakomliggande variabelproblemet: Temperatur Jackförsäljning Oljeförbrukning Bakomliggande variabelproblemet kan, som tidigare
STATISTISK ANALYS AV KOMPLEXA DATA
STATISTISK ANALYS AV KOMPLEXA DATA LONGITUDINELLA DATA Linda Wänström Linköpings universitet 12 December Linda Wänström (Linköpings universitet) LONGITUDINELLA DATA 12 December 1 / 12 Explorativ Faktoranalys
Betrakta kopparutbytet från malm från en viss gruva. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten i dessa.
Betrakta kopparutbytet från malm från en viss gruva. Anta att budgeten för utbytet är beräknad på att kopparhalten ligger på 70 %. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten
Mälardalens Högskola. Formelsamling. Statistik, grundkurs
Mälardalens Högskola Formelsamling Statistik, grundkurs Höstterminen 2015 Deskriptiv statistik Populationens medelvärde (population mean): μ = X N Urvalets medelvärde (sample mean): X = X n Där N är storleken
Uppgift 1. Produktmomentkorrelationskoefficienten
Uppgift 1 Produktmomentkorrelationskoefficienten Både Vikt och Längd är variabler på kvotskalan och således kvantitativa variabler. Det innebär att vi inte har så stor nytta av korstabeller om vi vill
Tentamen består av 9 frågor, totalt 34 poäng. Det krävs minst 17 poäng för att få godkänt och minst 26 poäng för att få väl godkänt.
KOD: Kurskod: PX1200 Kursnamn: Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Sara Landström Tentamensdatum: 2017-01-14 Tillåtna hjälpmedel: Miniräknare Tentamen består
a) Bedöm om villkoren för enkel linjär regression tycks vara uppfyllda! b) Pröva om regressionkoefficienten kan anses vara 1!
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA1:3 Skrivning i ekonometri tisdagen den 1 juni 4 1. Vi vill undersöka hur variationen i brottsligheten i USA:s delstater år 196 = R (i antal
Skrivning i ekonometri lördagen den 25 augusti 2007
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA10:3 Skrivning i ekonometri lördagen den 5 augusti 007 1. Vi vill undersöka hur variationen i ölförsäljningen i ett bryggeri i en stad i USA
T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen
T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen 1. One-Sample T-Test 1.1 När? Denna analys kan utföras om man vill ta reda på om en populations medelvärde på en viss variabel kan antas
Statistiska analysmetoder, en introduktion. Fördjupad forskningsmetodik, allmän del Våren 2018
Statistiska analysmetoder, en introduktion Fördjupad forskningsmetodik, allmän del Våren 2018 Vad är statistisk dataanalys? Analys och tolkning av kvantitativa data -> förutsätter numeriskt datamaterial
1/23 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet
1/23 REGRESSIONSANALYS F4 Linda Wänström Statistiska institutionen, Stockholms universitet 2/23 Multipel regressionsanalys Multipel regressionsanalys kan ses som en utvidgning av enkel linjär regressionsanalys.
1/31 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet
1/31 REGRESSIONSANALYS F1 Linda Wänström Statistiska institutionen, Stockholms universitet 2/31 Kap 4: Introduktion till regressionsanalys. Introduktion Regressionsanalys är en statistisk teknik för att
Regressions- och Tidsserieanalys - F7
Regressions- och Tidsserieanalys - F7 Tidsserieregression, kap 6.1-6.4 Linda Wänström Linköpings universitet November 25 Wänström (Linköpings universitet) F7 November 25 1 / 28 Tidsserieregressionsanalys
732G71 Statistik B. Föreläsning 1, kap Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20
732G71 Statistik B Föreläsning 1, kap. 3.1-3.7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20 Exempel, enkel linjär regressionsanalys Ett företag vill veta
Kroppstemperaturen hos människa anses i regel vara 37,0 C/ 98,6 F. För att beräkna och rita grafer har programmet Minitab använts.
Syfte: Bestämma normal kroppstemperatur med tillgång till data från försök. Avgöra eventuell skillnad mellan män och kvinnor. Utforska ett eventuellt samband mellan kroppstemperatur och hjärtfrekvens.
Datorövning 5. Statistisk teori med tillämpningar. Lära sig beräkna konfidensintervall och utföra hypotestest för:
Datorövning 5 Statistisk teori med tillämpningar Hypotestest i SAS Syfte Lära sig beräkna konfidensintervall och utföra hypotestest för: 1. Populationsmedelvärdet, µ. 2. Skillnaden mellan två populationsmedelvärden,
Metod och teori. Statistik för naturvetare Umeå universitet
Statistik för naturvetare -6-8 Metod och teori Uppgift Uppgiften är att undersöka hur hjärtfrekvensen hos en person påverkas av dennes kroppstemperatur. Detta görs genom enkel linjär regression. Låt signifikansnivån
Maximalt antal poäng för hela skrivningen är 31 poäng. För Godkänt krävs minst 19 poäng. För Väl Godkänt krävs minst 25 poäng.
Försättsblad KOD: Kurskod: PC1546 Kursnamn: Forskningsmetodik och fördjupningsarbete Provmoment: Statistik, 5 hp Ansvarig lärare: Sara Landström Tentamensdatum: 26 april, 2014 kl. 9:00 13:00 Tillåtna hjälpmedel:
Faktoranalys - Som en god cigarr
Innehåll Faktoranalys - Som en god cigarr Faktoranalys. Användningsområde. Krav/rekommen. 3. Olika typer av FA 4. Faktorladdningar 5. Eigenvalue 6. Rotation 7. Laddningar & Korr. 8. Jämförelse av metoder
Residualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen
Residualanalys För modellen Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F7 regressionsanalys antog vi att ε, ε,..., ε är oberoende likafördelade N(,σ Då
This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum
Examiner Linus Carlsson 016-01-07 3 hours In English Exam (TEN) Probability theory and statistical inference MAA137 Aids: Collection of Formulas, Concepts and Tables Pocket calculator This exam consists
Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION
KAPITEL 6: LINEAR REGRESSION: PREDICTION Prediktion att estimera "poäng" på en variabel (Y), kriteriet, på basis av kunskap om "poäng" på en annan variabel (X), prediktorn. Prediktion heter med ett annat
8.1 General factorial experiments
Exempel: Vid ett tillfälle ville man på ett laboratorium jämföra fyra olika metoder att bestämma kopparhalten i malmprover. Man är även intresserad av hur laboratoriets tre laboranter genomför sina uppgifter.
F16 MULTIPEL LINJÄR REGRESSION (NCT , 13.9) Anpassning av linjär funktion till givna data
Stat. teori gk, ht 006, JW F16 MULTIPEL LINJÄR REGRESSION (NCT 13.1-13.3, 13.9) Anpassning av linjär funktion till givna data Data med en beroende variabel (y) och K stycken (potentiellt) förklarande variabler
F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT
Stat. teori gk, ht 006, JW F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT 1.1, 13.1-13.6, 13.8-13.9) Modell för multipel linjär regression Modellantaganden: 1) x-värdena är fixa. ) Varje y i (i = 1,, n) är
7.5 Experiment with a single factor having more than two levels
7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan
Statistik B Regressions- och tidsserieanalys Föreläsning 1
Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs
Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs
Statistikens grunder och 2, GN, hp, deltid, kvällskurs TE/RC Datorövning 3 Syfte:. Lära sig göra betingade frekvenstabeller 2. Lära sig beskriva en variabel numeriskt med proc univariate 3. Lära sig rita
OBS! Vi har nya rutiner.
Försättsblad KOD: Kurskod: PC1546 Kursnamn: Forskningsmetodik och fördjupningsarbete Provmoment: Statistik, 5 hp Ansvarig lärare: Sara Landström & Pär Bjälkebring Tentamensdatum: 10/1-2015 Tillåtna hjälpmedel:
Tentamen i Linjära statistiska modeller 13 januari 2013, kl. 9-14
STOCKHOLMS UNIVERSITET MT 5001 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 13 januari 2014 Tentamen i Linjära statistiska modeller 13 januari 2013, kl. 9-14 Examinator: Martin Sköld, tel.
Tentamensresultat anslås (anslagstavla och kursportal) senast 3 veckor efter tentamen.
GÖTEBORGS UNIVERSITET PSYKOLOGISKA INSTITUTIONEN KURSKOD: PC2226 HELFART KURSNAMN: Magisterkurs Arbets- och organisationspsykologi (30 hp) PROVMOMENT: ANSVARIG LÄRARE: Forskningsmetodik (15 hp) Jan Johansson
Statistiska analyser C2 Inferensstatistik. Wieland Wermke
+ Statistiska analyser C2 Inferensstatistik Wieland Wermke + Signifikans och Normalfördelning + Problemet med generaliseringen: inferensstatistik n Om vi vill veta ngt. om en population, då kan vi ju fråga
Regressions- och Tidsserieanalys - F5
Regressions- och Tidsserieanalys - F5 Linda Wänström Linköpings universitet November 20 Wänström (Linköpings universitet) F5 November 20 1 / 24 Modellbygge - vilka oberoende variabler ska vara med i modellen?
Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs
Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs TE/RC Datorövning 6 Syfte: 1. Lära sig utföra godness of fit-test 2. Lära sig utföra test av homogenitet 3. Lära sig utföra prövning av hypoteser
Tentan består av 15 frågor, totalt 40 poäng. Det krävs minst 24 poäng för att få godkänt och minst 33 poäng för att få välgodkänt.
Kurskod: PC1203 och PC1244 Kursnamn: Kognitiv psykologi och metod OCH Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Linda Hassing Tentamensdatum: 2010-09-23 kl. 09:00 13:00
Övningshäfte till kursen Regressionsanalys och tidsserieanalys
Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström October 31, 2010 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande
ST-fredag i Biostatistik & Epidemiologi När ska jag använda vilket test?
ST-fredag i Biostatistik & Epidemiologi När ska jag använda vilket test? Mikael Eriksson Specialistläkare CIVA Karolinska Universitetssjukhuset, Solna Grund för hypotestestning 1. Definiera noll- och alternativhypotes,
KOM IHÅG ATT NOTERA DITT TENTAMENSNUMMER NEDAN OCH TA MED DIG TALONGEN INNAN DU LÄMNAR IN TENTAN!!
Kurskod: PC1203 och PC1244 Kursnamn: Kognitiv psykologi och metod OCH Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Linda Hassing Tentamensdatum: 2010-11-13 kl. 14:00 18:00
OBS! Vi har nya rutiner.
KOD: Kurskod: PM2315 Kursnamn: Psykologprogrammet, kurs 15, Metoder för psykologisk forskning (15 hp) Ansvarig lärare: Jan Johansson Hanse Tentamensdatum: 14 januari 2012 Tillåtna hjälpmedel: miniräknare
2. Lära sig beskriva en variabel numeriskt med "proc univariate" 4. Lära sig rita diagram med avseende på en annan variabel
Datorövning 1 Statistikens Grunder 2 Syfte 1. Lära sig göra betingade frekvenstabeller 2. Lära sig beskriva en variabel numeriskt med "proc univariate" 3. Lära sig rita histogram 4. Lära sig rita diagram
Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper
Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Tobias Abenius February 21, 2012 Envägs variansanalys (ANOVA) I envägs variansanalys utnyttjas att
1. Lära sig utföra hypotestest för populationsproportionen. 2. Lära sig utföra test för populationsmedelvärdet
Datorövning 3 Statistikens Grunder 2 Syfte 1. Lära sig utföra hypotestest för populationsproportionen 2. Lära sig utföra test för populationsmedelvärdet 3. Lära sig utföra test för skillnaden mellan två
Tentamen Tillämpad statistik A5 (15hp)
Uppsala universitet Statistiska institutionen A5 2014-08-26 Tentamen Tillämpad statistik A5 (15hp) 2014-08-26 UPPLYSNINGAR A. Tillåtna hjälpmedel: Miniräknare Formelsamlingar: A4/A8 Tabell- och formelsamling
Matematisk statistik KTH. Formelsamling i matematisk statistik
Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska
Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT
Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT Jointly distributed Joint probability function Marginal probability function Conditional probability function Independence
Grundläggande Statistik och Försöksplanering Provmoment: TEN1 & TEN2 Ladokkod: TT2311 Tentamen ges för: Bt2, En2, Bt4, En4.
Grundläggande Statistik och Försöksplanering Provmoment: TEN1 & TEN2 Ladokkod: TT2311 Tentamen ges för: Bt2, En2, Bt4, En4 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student)
Styr- och kontrolldiagram ( )
Styr- och kontrolldiagram (8.3-8.5) När vi nu skall konstruera kontrolldiagram eller styrdiagram är det viktigt att vi har en process som är under kontroll! Iden med styrdiagram är att med jämna tidsmellanrum
Uppgift 1. Deskripitiv statistik. Lön
Uppgift 1 Deskripitiv statistik Lön Variabeln Lön är en kvotvariabel, även om vi knappast kommer att uppleva några negativa värden. Det är sannolikt vår intressantaste variabel i undersökningen, och mot
KOM IHÅG ATT NOTERA DITT TENTAMENSNUMMER NEDAN OCH TA MED DIG TALONGEN INNAN DU LÄMNAR IN TENTAN!!
Kurskod: PC1203 och PC1244 Kursnamn: Kognitiv psykologi och metod OCH Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Linda Hassing Tentamensdatum: 2011-09-19 kl. 09:00 13:00
Tentamen i matematisk statistik
Sid 1 (9) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:
Svar till övningar med jämna nummer i Milton & Arnold, ht 2010
Svar till övningar med jämna nummer i Milton & Arnold, ht 2010 Kapitel 1 8b) Ja c)s = {h, mh, mmh, mmmh, mmmmh, mmmmm} d) A 1 = {mh}; A 2 = {h, mh}; Nej, A 1 A 2 = {mh} = 10 a)12 b) 60 c) 360 14 a) 2 4
KOM IHÅG ATT NOTERA DITT TENTAMENSNUMMER NEDAN OCH TA MED DIG TALONGEN INNAN DU LÄMNAR IN TENTAN!!
Kurskod: PC1203 och PC1244 Kursnamn: Kognitiv psykologi och metod OCH Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Linda Hassing Tentamensdatum: 2009-11-14 kl. 14:30 18:30
En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser:
1 Uppgiftsbeskrivning Syftet med denna laboration var att utifrån uppmätt data avgöra: (i) Om något samband finnes mellan kroppstemperatur och hjärtfrekvens. (ii) Om någon signifikant skillnad i sockerhalt
Finansiell statistik. Multipel regression. 4 maj 2011
Finansiell statistik Föreläsning 4 Multipel regression Jörgen Säve-Söderbergh 4 maj 2011 Samband mellan variabler Vi människor misstänker ofta att det finns många variabler som påverkar den variabel vi
OBS! Vi har nya rutiner.
Försättsblad KOD: Kurskod: PC1307/PC1546 Kursnamn: Kurs 7: Samhällsvetenskaplig forskningsmetodik/ Forskningsmetodik och fördjupningsarbete Provmoment: Statistik, 5 hp Ansvarig lärare: Sara Landström Tentamensdatum:
Innehåll. Data. Skillnad SEM & Regression. Exogena & Endogena variabler. Latenta & Manifesta variabler
Innehåll Structural Equation Modeling (SEM) Ingenting är omöjligt Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet Data Latenta och manifesta variabler Typ av modell (path, CFA, SEM) Specificera
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2018-10-12 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 031-7725325 Hjälpmedel: Valfri
Forsknings- och undersökningsmetodik Skrivtid: 4h
Forsknings- och undersökningsmetodik Skrivtid: h Tentamen 8..00 Hjälpmedel: Kalkylator Formel- & tabellsamling Provtexten får bortföras. DEL, DEL eller HELA KURSEN: Besvara frågor! Varje fråga är värd
Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version
Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 5 June 217, 14:-18: Examiner: Zhenxia Liu (Tel: 7 89528). Please answer in ENGLISH if you can. a. You are allowed to use a calculator, the formula and
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00. English Version
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 0896661). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling
Föreläsning 7: Stokastiska vektorer
Föreläsning 7: Stokastiska vektorer Johan Thim johanthim@liuse oktober 8 Repetition Definition Låt X och Y vara stokastiska variabler med EX = µ X, V X = σx, EY = µ Y samt V Y = σy Kovariansen CX, Y definieras
Skrivning i ekonometri lördagen den 29 mars 2008
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STAB, Ekonometri Skrivning i ekonometri lördagen den 9 mars 8.Vi vill undersöka hur variationen i antal arbetande timmar för gifta kvinnor i Michigan
Structural Equation Modeling (SEM) Ingenting är omöjligt
Structural Equation Modeling (SEM) Ingenting är omöjligt Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet Innehåll Data Latenta och manifesta variabler Typ av modell (path, CFA, SEM) Specificera
Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs
Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs TE/RC Datorövning 4 Syfte: 1. Lära sig beräkna konfidensintervall och täckningsgrad 2. Lära sig rita en exponentialfördelning 3. Lära sig illustrera
Stokastiska vektorer
TNG006 F2 9-05-206 Stokastiska vektorer 2 Kovarians och korrelation Definition 2 Antag att de sv X och Y har väntevärde och standardavvikelse µ X och σ X resp µ Y och σ Y Då kallas för kovariansen mellan
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology April 27, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två numeriska
Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer
Laboration 2 i 5B52, Grundkurs i matematisk statistik för ekonomer Namn: Elevnummer: Laborationen syftar till ett ge information och träning i Excels rutiner för statistisk slutledning, konfidensintervall,
OBS! Vi har nya rutiner.
KOD: Kurskod: PC1203 och PC1244 Kursnamn: Kognitiv psykologi och metod och Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Linda Hassing Tentamensdatum: 2012-11-17 Tillåtna
Vad man bör tänka på innan man börjar analysera sina data SLU
Vad man bör tänka på innan man börjar analysera sina data SLU Datakvalitet Fyra olika dataset gav följande samband: y = 3 + 0,5 x r 2 = 0,67 p = 0,002 Finns det ett samband mellan x och y? Datakvalitet
Höftledsdysplasi hos dansk-svensk gårdshund
Höftledsdysplasi hos dansk-svensk gårdshund Sjö A Sjö B Förekomst av parasitdrabbad öring i olika sjöar Sjö C Jämföra medelvärden hos kopplade stickprov Tio elitlöpare springer samma sträcka i en för dem
FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD 208-08-26 Sannolikhetsteori Följande gäller för sannolikheter: 0 P(A P(Ω = P(A
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2018-05-31 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 031-7725325 Hjälpmedel: Valfri