Övningstenta för MSG830

Storlek: px
Starta visningen från sidan:

Download "Övningstenta för MSG830"

Transkript

1 Övningstenta för MSG830 Max 30 p, för godkänt krävs 12 p 1. Vi har två händelser A och B. Om dessa vet vi att A sker med sannolikheten 0.2 och B med sannolikheten 0.5. Sannolikheten att varken A eller B händer är 0.4. (a) Undersök om A och B är oberoende. Vi vet att P (A) = 0.2,P (B) = 0.5 och P (A B) = = 0.6. Av detta följer att P (A B) = P (A) + P (B) P (A B) = = 0.1 = = P (A) P (B) alltså är A och B oberoende (b) Vad är den betingade sannolikheten P (A B)? Eftersom A och B är oberoende gäller P (A B) = P (A) = 0.2 (c) Vad är den betingade sannolikheten P (A A B) P (A A B) = P (A (A B P (A B) = P (A) P (A B) = = En Chalmersstudent extraknäcker under sommaren genom att med god förtjänst sälja fotbollströjor med texten Messi, Ronaldo eller Ibrahimovic för enhetspriset 400 kronor. Tidigare statistik visar att 50% av kunderna köper Messi, 30% köper Ronaldo och 20% köper Ibrahimovic. Studenten beräknar kunna sälja 100 tröjor. Inköpspriserna för produkterna varierar dock så att Messi kostar220 kronor, Ronaldo kostar 200 kronor och Ibrahimovic kostar 150 kronor. Allt sker utan inblandning av skattemyndigheter. (a) Vad är den förväntade vinsten per såld tröja? Vinsterna för en såld tröja är 180, 200 och 250 för Messi, Ronaldo respektive Ibrahimovic. Om X betecknar vinsten för en såld tröja är E[X] = = 200 (3p) (b) Vad är vinstens standardavvikelse för en såld tröja? Vinstens varians är σ 2 = 0.5( ) ( ) ( ) 2 = 700 och standardavvikelsen alltså σ = 700 = 26.5 (c) Studenten vill gärna tjäna åtminstone kronor på hela försäljningen. Vad är sannolikheten att lyckas med det om 100 tröjor säljs? För att tjäna på 100 sålda tröjor behöver studenten uppnå X 190. Vi utnyttjar centrala gränsvärdessatsen som säger att Z = X µ σ/ n = X /10 1

2 är approximativt standard normalfördelad. Då har vi att P ( X 190) = P (Z /10 ) = P (Z 3.78) Ligger utanför bifogad tabell, men alla svar av typ >99% är OK. (3p) 3. Två olika legeringar för pansarplåt jämfördes genom att beskjutas med succesivt ökande utgångshastighet tills kulorna tränger genom plåten. Legering A består bara av metaller, medan legering B också innehåller Teon. Man utförde 15 prov med legering A och 10 med legering B Legering n medel (m/s) sd A B (a) Ange ett 95%-igt kondensintervall för skillnaden i utgångshastighet vid penetrering? Vi antar att de uppmätta hastigheterna är normalfördelade och att variansen är lika i de båda grupperna. Skillnaden (µ B µ A ) i medelvärde är = 111 m/s. Den poolade standardavvikelsen är s = (15 1)642 + (10 1) = 58.3 t-fraktilen för 95%-igt kondensintervall vid 23 frihetsgrader är 2.069, så kondensintervallet ges av ± ± 49.2 (b) Kan vi förkasta H 0 på signikansnivå 0.01? I (a) hade vi fått ett 99%igt kondensintervall om vi bytt ut mot vilket hade gett 111 ± vilket inte täcker 0 och därmed kan vi förkasta H 0 på nivå 0.01 enligt dualiteten mellan test och kondensintervall. 4. En tillverkare (A) av insektsbekämningsmedel för druvor (Pinot noir) vill demonstrera att deras produkt är överlägsen en annan produkt tillverkad av konkurrenten (B). De gör 16 försök med sin egen produkt och 9 med konkurrentens. I alla försök mäter man förändringen δ av skördeutfallet jämfört med obesprutade plantor. (δ > 0 betyder förbättring) Tillverkare n δ sδ A B Därefter hävdar de att deras produkt är överlägsen konkurrentens eftersom den visade en signikant förbättring, men det gjorde inte konkurrentens. (a) Veriera påståendet att A var signikant bättre än obesprutat och att B inte var det. Vi ska alltså göra två parade test med ensidig mothypotes. Teststatistikorna är t- fördelade med 15 frihetsgrader för A och 8 frihetsgrader för B. De kritiska värden hämtas ut tabell. 0.3 T A = 0.5/ = 2.4 > Vi kan förkasta nollhypotesen 16 2

3 T B = / = 1.2 < 1.86 Vi kan inte förkasta nollhypotesen 9 (b) Förklara varför detta trots allt var ett dumt sätt att resonera och gör en relevant jämförelse mellan de två produkterna. Den relevanta jämförelsen bör göras med ett tvåstickprovstest mellan förbättringen av A och förbättringen av B. Den poolade standardavvikelsen blir 0.5 (självklart!) och den teststatistikan är t-fördelad med =23 frihetsgrader T = 0.5 = 0.24 < /16 + 1/9 Vi kan alltså inte påstå att A är signikant bättre än B. 5. I en undersökning av sambandet mellan exponering för oljud (mätt i decibel) och blodtrycksstegring (mätt i mmhg) fann man med 8 mätningar följande regressionsformel stegring = (decibelnivå) Ett tvåsidigt signikanstest av lutningen gav ett p-värde på (a) Vid vilken (o)ljudnivå förväntas blodtrycksstegringen uppgå till 10 mmhg? Invertering av regressionsformeln ger decibelnivå = stegring = (b) En annan studie fann samma regressionsformel, hade 16 observationer och samma skattning på bruset (det statsitiska bruset, inte oljudet), men ck likväl inte någon signikans på lutningen (p=0.39). Ge en förklaring till vad det kunde bero på. Med ett dubbelt så stort stickprov borde signikansen vara betydligt bättre än 0.05 med tanke på att residualvariansen var samma. Den enda förklaringen är att den nadra studien har mätt inom ett snävare decibelområde vilket leder till att osäkerheten kring lutningen trots allt blir större. 3

4 6. Man har samlat data om felrapporter hos en satellit och vill undersöka om typen av fel kan beror på om satelliten ligger i skugga eller sol då felet uppstår. Man testar detta och resultatet framgår nedan. Figur 1 (a) Finns det något signikant samband mellan typ av fel och om satelliten ligger i skugga eller sol? Ja, Pearsons Chi-square test ger p=0.007<0.05 så alla grupper är inte lika. (b) Vi har ganska många celler här (10). Då brukar det ibland vara motiverat att använda ett trendtest. Kan det vara lämpligt att göra det här? Motivera! Trendtestet är lämpligt när man har ordinaldata. Subsystemet är inte av den typen. Mycket riktigt ser vi också att p-värdet för trendtestet (Linear-by-Linear) är större än den vanliga Pearson. (c) Har positionen någon signikant betydelse för felrisken om vi bara fokuserar på Data transmission och reception? Den förväntade värdena till 2 x 2 tabellen beräknas genom = 9.1, = 44.9, Shadow Sunlight Data transmission Reception χ 2 (11 9.1)2 ( )2 = så det är ingen signikant skillnad (6 7.9)2 7.9 = 7.9, ( )2 9.1 = 39.1 = <

5 7. Bakterier kan tydligen vara behjälpliga även vid gruvdrift! En bergsingenjör samlade data om kopparutbytet i mineralprover som behandlats med 3 olika bakteriestammar. En analys av data som gjordes av en statsitiker presenteras nedan Figur 2 (a) Fanns det skillnad mellan grupperna? Ja, F-testet i ANOVAn ger p=0.021<0.05 så alla grupper är inte lika. (b) Vilka stammar skiljer sig signikant åt? 2 och 3 enligt Tukey post hoc testet (p=0.024<0.05) (c) Bergsingenjören gjorde själv tre test där han jämförde enbart två stammar åt gången. För jämförelsen mellan stam 1 och 3 fann han följande Figur 3 Förklara varför denna jämförelse mellan stam 1 och stam 3 skiljer sig mot den som statistikern gjorde. Bergsingenjören har inte bekymrat sig om multipel inferens. Post hoc testet tar hänsyn till att man gör tre parvisa jämförelser och korrigerar sina signikanser efter detta. 5

6 8. Vid ett test av H 0 : µ = 0 mot H 1 : µ > 0 av en normalfördelad variabel med känd varians σ 2 var stickprovsstorlekn n 1 = 20 och man lyckades precis få signikans på signikansnivå α = Tyvärr ck man (obefogad) kritik för att ha använt en enkelsidig alternativhypotes och tvingades därför utöka sin studie till total stickprovsstorlek n 2. Hur stor behöver n 2 vara för att klara samma signikansnivå med en tvåsidig mothypotes om vi antar att man får samma medelvärde? De kritiska värdena för test med normalfördelad teststatistika på 5% nivå är och 1.96 för en- respektive tvåsidig mothypotes. Från det första ensidiga testet hade man alltså X σ/ n 1 = Om vi antar att vi får samma medelvärde krävs alltså X σ/ n 2 > 1.96 Tillsammans ger det och alltså Alltså behöver n 2 vara minst 29. X σ/ n2 = > 1.96 n 2 n 1 n 2 > 20( )2 =

Exempel på tentafrågor MSG830 (Det kommer er)

Exempel på tentafrågor MSG830 (Det kommer er) Exempel på tentafrågor MSG830 (Det kommer er) Genomgående gäller att om inte signikansnivå anges så ska du använda α = 0.05. 1. I en stor studie skattade man nedre och övre kvartilen till 100 resp 140.

Läs mer

Lösningar till Tentafrågor

Lösningar till Tentafrågor Lösningar till Tentafrågor 1. I en stor studie skattade man nedre och övre kvartilen till 100 resp 140. Hur många kan man därmed anse har värden över 140? Övre kvartilen år 75% percentil, vilket betyder

Läs mer

MSG830 Statistisk analys och experimentplanering - Lösningar

MSG830 Statistisk analys och experimentplanering - Lösningar MSG830 Statistisk analys och experimentplanering - Lösningar Tentamen 15 Januari 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel:

Läs mer

Formler och tabeller till kursen MSG830

Formler och tabeller till kursen MSG830 Formler och tabeller till kursen MSG830 Deskriptiva mått För ett datamängd x 1,, x n denieras medelvärde standardavvikelse standardfelet (SEM) Sannolikheter x = 1 n n i=1 = x 1 + + x n n s = 1 n (x i x)

Läs mer

Lösningsförslag till Matematisk statistik LKT325 Tentamen

Lösningsförslag till Matematisk statistik LKT325 Tentamen Lösningsförslag till Matematisk statistik LKT325 Tentamen 20190115 Kursansvarig: Reimond Emanuelsson Betygsgränser: för betyg 3 krävs minst 20 poäng, för betyg 4 krävs minst 30 poäng, för betyg 5 krävs

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Hypotesprövning Innehåll Hypotesprövning 1 Hypotesprövning Inledande exempel Hypotesprövning Exempel. Vi är intresserade av en variabel X om vilken vi kan anta att den är (approximativt) normalfördelad

Läs mer

MSG830 Statistisk analys och experimentplanering

MSG830 Statistisk analys och experimentplanering MSG830 Statistisk analys och experimentplanering Tentamen 16 April 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri

Läs mer

MSG830 Statistisk analys och experimentplanering - Lösningar

MSG830 Statistisk analys och experimentplanering - Lösningar MSG830 Statistisk analys och experimentplanering - Lösningar Tentamen 16 augusti 2016, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel:

Läs mer

MSG830 Statistisk analys och experimentplanering

MSG830 Statistisk analys och experimentplanering MSG830 Statistisk analys och experimentplanering Tentamen 16 April 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri

Läs mer

Föreläsning 11: Mer om jämförelser och inferens

Föreläsning 11: Mer om jämförelser och inferens Föreläsning 11: Mer om jämförelser och inferens Matematisk statistik David Bolin Chalmers University of Technology Maj 12, 2014 Oberoende stickprov Vi antar att vi har två oberoende stickprov n 1 observationer

Läs mer

Standardfel (Standard error, SE) SD eller SE. Intervallskattning MSG Staffan Nilsson, Chalmers 1

Standardfel (Standard error, SE) SD eller SE. Intervallskattning MSG Staffan Nilsson, Chalmers 1 Standardfel (Standard error, SE) Anta vi har ett stickprov X 1,,X n där varje X i has medel = µ och std.dev = σ. Då är Det sista kalls standardfel (eng:standard error of mean (SEM) eller (SE) och skattas

Läs mer

MSG830 Statistisk analys och experimentplanering

MSG830 Statistisk analys och experimentplanering MSG830 Statistisk analys och experimentplanering Tentamen 18 augusti 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri

Läs mer

Föreläsning 3. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 3. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 3 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Inferens om två populationer (kap 8.1 8.) o Parvisa observationer (kap 9.1 9.) o p-värde (kap 6.3) o Feltyper, styrka, stickprovsstorlek

Läs mer

FÖRELÄSNING 8:

FÖRELÄSNING 8: FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data

Läs mer

MSG830 Statistisk analys och experimentplanering

MSG830 Statistisk analys och experimentplanering MSG830 Statistisk analys och experimentplanering Tentamen 8 juni 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri

Läs mer

(a) Undersök om A och B är oberoende. (b) Vad är den betingade sannolikheten P (A B)? F (x) = 1 e λx

(a) Undersök om A och B är oberoende. (b) Vad är den betingade sannolikheten P (A B)? F (x) = 1 e λx TNTAMN: Matematisk statistik för K (TMA073 och TMA072) Torsdagen den 16 januari 2014, kl 14:00-18:00 Lärare och jour: Staan Nilsson, telefon 772 3566 Hjälpmedel: Formelsamling, tabeller (även BTA, Physics

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig

Läs mer

Sannolikheter och kombinatorik

Sannolikheter och kombinatorik Sannolikheter och kombinatorik En sannolikhet är ett tal mellan 0 och 1 som anger hur frekvent en händelse sker, där 0 betyder att det aldrig sker och 1 att det alltid sker. När vi talar om sannolikheter

Läs mer

MSG830 Statistisk analys och experimentplanering

MSG830 Statistisk analys och experimentplanering MSG830 Statistisk analys och experimentplanering Tentamen 20 Mars 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri

Läs mer

TMS136. Föreläsning 13

TMS136. Föreläsning 13 TMS136 Föreläsning 13 Jämförelser mellan två populationer Hittills har vi gjort konfidensintervall och tester kring parametrar i EN population I praktiska sammanhang är man ofta intresserad av att jämföra

Läs mer

MSG830 Statistisk analys och experimentplanering

MSG830 Statistisk analys och experimentplanering MSG830 Statistisk analys och experimentplanering Tentamen 15 januari 2016, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri

Läs mer

, s a. , s b. personer från Alingsås och n b

, s a. , s b. personer från Alingsås och n b Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 6.5 hp AT1MS1 DTEIN16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal

Läs mer

F14 HYPOTESPRÖVNING (NCT 10.2, , 11.5) Hypotesprövning för en proportion. Med hjälp av data från ett stickprov vill vi pröva

F14 HYPOTESPRÖVNING (NCT 10.2, , 11.5) Hypotesprövning för en proportion. Med hjälp av data från ett stickprov vill vi pröva Stat. teori gk, ht 006, JW F14 HYPOTESPRÖVNING (NCT 10., 10.4-10.5, 11.5) Hypotesprövning för en proportion Med hjälp av data från ett stickprov vill vi pröva H 0 : P = P 0 mot någon av H 1 : P P 0 ; H

Läs mer

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Tobias Abenius February 21, 2012 Envägs variansanalys (ANOVA) I envägs variansanalys utnyttjas att

Läs mer

Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken

Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Analys av medelvärden Jenny Selander jenny.selander@ki.se 524 800 29, plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Jenny Selander, Kvant. metoder, FHV T1 december 20111 Innehåll Normalfördelningen

Läs mer

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik Grundläggande statistik Påbyggnadskurs T1 Odontologisk profylaktik FÖRELÄSNINGSMATERIAL : KORRELATION OCH HYPOTESTESTNING t diff SE x 1 diff SE x x 1 x. Analytisk statistik Regression & Korrelation Oberoende

Läs mer

TMS136. Föreläsning 11

TMS136. Föreläsning 11 TMS136 Föreläsning 11 Andra intervallskattningar Vi har sett att vi givet ett stickprov och under vissa antaganden kan göra intervallskattningar för väntevärden Man kan även gör intervallskattningar för

Läs mer

Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13

Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13 Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

8 Inferens om väntevärdet (och variansen) av en fördelning

8 Inferens om väntevärdet (och variansen) av en fördelning 8 Inferens om väntevärdet (och variansen) av en fördelning 8. Skattning av µ och Students T-fördelning Om σ är känd, kan man använda statistikan X µ σ/ n för att hitta konfidensintervall för µ. Om σ inte

Läs mer

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för

Läs mer

MSG830 Statistisk analys och experimentplanering

MSG830 Statistisk analys och experimentplanering MSG830 Statistisk analys och experimentplanering Tentamen 15 Januari 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Kalkylator

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1

Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:

Läs mer

Föreläsning 5. Kapitel 6, sid Inferens om en population

Föreläsning 5. Kapitel 6, sid Inferens om en population Föreläsning 5 Kapitel 6, sid 153-185 Inferens om en population 2 Agenda Statistisk inferens om populationsmedelvärde Statistisk inferens om populationsandel Punktskattning Konfidensintervall Hypotesprövning

Läs mer

Statistisk försöksplanering

Statistisk försöksplanering Statistisk försöksplanering Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Skriftlig tentamen 3 hp 51SF01 Textilingenjörsutbildningen Tentamensdatum: 25 Oktober 2017 Tid: 09:00-13 Hjälpmedel: Miniräknare

Läs mer

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att

Läs mer

Del I. Uppgift 1 För händelserna A och B gäller att P (A) = 1/4, P (B A) = 1/3 och P (B A ) = 1/2. Beräkna P (A B). Svar:...

Del I. Uppgift 1 För händelserna A och B gäller att P (A) = 1/4, P (B A) = 1/3 och P (B A ) = 1/2. Beräkna P (A B). Svar:... Avd. Matematisk statistik TENTAMEN I SF9/SF94/SF95/SF96 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 4:E OKTOBER 08 KL 8.00 3.00. Examinator för SF94/SF96: Tatjana Pavlenko, 08-790 84 66 Examinator för

Läs mer

Thomas Önskog 28/

Thomas Önskog 28/ Föreläsning 0 Thomas Önskog 8/ 07 Konfidensintervall På förra föreläsningen undersökte vi hur vi från ett stickprov x,, x n från en fördelning med okända parametrar kan uppskatta parametrarnas värden Detta

Läs mer

Föreläsning 6. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 6. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 6 Statistik; teori och tillämpning i biologi 1 Analysis of Variance (ANOVA) (GB s. 202-218, BB s. 190-206) ANOVA är en metod som används när man ska undersöka skillnader mellan flera olika

Läs mer

Analytisk statistik. Mattias Nilsson Benfatto, PhD.

Analytisk statistik. Mattias Nilsson Benfatto, PhD. Analytisk statistik Mattias Nilsson Benfatto, PhD Mattias.nilsson@ki.se Beskrivande statistik kort repetition Centralmått Spridningsmått Normalfördelning Konfidensintervall Korrelation Analytisk statistik

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 6 Johan Lindström 13 september 2017 Johan Lindström - johanl@maths.lth.se FMSF70/MASB02 F6 1/22 : Rattonykterhet Johan Lindström - johanl@maths.lth.se

Läs mer

Vi har en ursprungspopulation/-fördelning med medelvärde µ.

Vi har en ursprungspopulation/-fördelning med medelvärde µ. P-värde P=probability Sannolikhetsvärde som är resultat av en statistisk test. Anger sannolikheten för att göra den observation vi har gjort eller ett sämre / mer extremt utfall om H 0 är sann. Vi har

Läs mer

LÖSNINGAR TILL. Matematisk statistik, Tentamen: kl FMS 086, Matematisk statistik för K och B, 7.5 hp

LÖSNINGAR TILL. Matematisk statistik, Tentamen: kl FMS 086, Matematisk statistik för K och B, 7.5 hp LÖSNINGAR TILL Matematisk statistik, Tentamen: 011 10 1 kl 14 00 19 00 Matematikcentrum FMS 086, Matematisk statistik för K och B, 7.5 hp Lunds tekniska högskola MASB0, Matematisk statistik kemister, 7.5

Läs mer

LKT325/LMA521: Faktorförsök

LKT325/LMA521: Faktorförsök Föreläsning 2 Innehåll Referensfördelning Referensintervall Skatta variansen 1 Flera mätningar i varje grupp. 2 Antag att vissa eekter inte existerar 3 Normalfördelningspapper Referensfördelning Hittills

Läs mer

Föreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 2 Statistik; teori och tillämpning i biologi 1 Normalfördelning Samplingfördelningar och CGS Fördelning för en stickprovsstatistika (t.ex. medelvärde) kallas samplingfördelning. I teorin är

Läs mer

Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas.

Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas. Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 8649. Tillåtna hjälpmedel:

Läs mer

F3 Introduktion Stickprov

F3 Introduktion Stickprov Utrotningshotad tandnoting i arktiska vatten Inferens om väntevärde baserat på medelvärde och standardavvikelse Matematik och statistik för biologer, 10 hp Tandnoting är en torskliknande fisk som lever

Läs mer

F13 Regression och problemlösning

F13 Regression och problemlösning 1/18 F13 Regression och problemlösning Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/3 2013 2/18 Regression Vi studerar hur en variabel y beror på en variabel x. Vår modell

Läs mer

Residualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen

Residualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen Residualanalys För modellen Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F7 regressionsanalys antog vi att ε, ε,..., ε är oberoende likafördelade N(,σ Då

Läs mer

Lycka till!

Lycka till! Avd. Matematisk statistik TENTAMEN I 5B1503 STATISTIK MED FÖRSÖKSPLANERING FÖR K OCH B MÅNDAGEN DEN 25 AUGUSTI 2003 KL 14.00 19.00. Examinator: Gunnar Englund, 790 7416. Tillåtna hjälpmedel: Formel- och

Läs mer

Parade och oparade test

Parade och oparade test Parade och oparade test Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning: möjliga jämförelser Jämförelser mot ett

Läs mer

TMS136. Föreläsning 10

TMS136. Föreläsning 10 TMS136 Föreläsning 10 Intervallskattningar Vi har sett att vi givet ett stickprov kan göra punktskattningar för fördelnings-/populationsparametrar En punkskattning är som vi minns ett tal som är en (förhoppningsvis

Läs mer

9. Konfidensintervall vid normalfördelning

9. Konfidensintervall vid normalfördelning TNG006 F9 09-05-016 Konfidensintervall 9. Konfidensintervall vid normalfördelning Låt x 1, x,..., x n vara ett observerat stickprov av oberoende s.v. X 1, X,..., X n var och en med fördelning F. Antag

Läs mer

MSG830 Statistisk analys och experimentplanering

MSG830 Statistisk analys och experimentplanering MSG830 Statistisk analys och experimentplanering Tentamen 15 januari 2016, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri

Läs mer

EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIK- TEORIN (INFERENSTEORIN):

EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIK- TEORIN (INFERENSTEORIN): Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF50: Matematisk statistik för L och V OH-bilder på föreläsning 7, 2017-11-20 EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIK- TEORIN (INFERENSTEORIN):

Läs mer

Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 4

Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 4 MÄLARDALENS HÖGSKOLA Akademin för hållbar samhälls- och teknikutveckling Statistik Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp Tillåtna hjälpmedel: Miniräknare (Formelsamling bifogas

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 5 Johan Lindström 12 september 216 Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 1/23 Repetition Gauss approximation Delta metoden

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl Karlstads universitet Avdelningen för nationalekonomi och statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Lösningsförslag till tentamen på. Statistik och kvantitativa undersökningar STA100, 15 hp. Fredagen den 13 e mars 2015

Lösningsförslag till tentamen på. Statistik och kvantitativa undersökningar STA100, 15 hp. Fredagen den 13 e mars 2015 MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Lösningsförslag till tentamen på Statistik och kvantitativa undersökningar STA100, 15 hp Fredagen den 13 e mars 015 1 a 13 och 14

Läs mer

10. Konfidensintervall vid två oberoende stickprov

10. Konfidensintervall vid två oberoende stickprov TNG006 F0-05-06 Konfidensintervall för linjärkombinationer 0. Konfidensintervall vid två oberoende stikprov Antag att X, X,..., X m är ett stikprov på N(µ, σ ) oh att Y, Y,..., Y n är ett stikprov på N(µ,

Läs mer

Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab

Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab Uppfödning av kyckling och fiskleveroljor Statistiska jämförelser: parvisa observationer och oberoende stickprov Matematik och statistik för biologer, 10 hp Fredrik Jonsson vt 2012 Fiskleverolja tillsätts

Läs mer

SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER HYPOTESPRÖVNING. χ 2 -TEST. Jan Grandell & Timo Koski

SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER HYPOTESPRÖVNING. χ 2 -TEST. Jan Grandell & Timo Koski SF1901: SANNOLIKHETSLÄRA OCH STATISTIK FÖRELÄSNING 12. MER HYPOTESPRÖVNING. χ 2 -TEST Jan Grandell & Timo Koski 25.02.2016 Jan Grandell & Timo Koski Matematisk statistik 25.02.2016 1 / 46 INNEHÅLL Hypotesprövning

Läs mer

Föreläsningsanteckningar till kapitel 9, del 2

Föreläsningsanteckningar till kapitel 9, del 2 Föreläsningsanteckningar till kapitel 9, del 2 Kasper K. S. Andersen 17 oktober 2018 1 Hur väljar man hypotes och mothypotes? Allmänt finns två möjliga resultat av en statistik test: Nollhypotesen H 0

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF194 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAG 1 AUGUSTI 019 KL 8.00 13.00. Examinator: Björn-Olof Skytt, 08-790 86 49. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

7.5 Experiment with a single factor having more than two levels

7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan och att en inblandning mellan 10% och 40% är bra. För att

Läs mer

Föreläsning 4. Kapitel 5, sid Stickprovsteori

Föreläsning 4. Kapitel 5, sid Stickprovsteori Föreläsning 4 Kapitel 5, sid 127-152 Stickprovsteori 2 Agenda Stickprovsteori Väntevärdesriktiga skattningar Samplingfördelningar Stora talens lag, Centrala gränsvärdessatsen 3 Statistisk inferens Population:

Läs mer

en observerad punktskattning av µ, ett tal. x = µ obs = 49.5.

en observerad punktskattning av µ, ett tal. x = µ obs = 49.5. February 6, 2018 1 Föreläsning VIII 1.1 Punktskattning Punktskattning av µ Vi låter {ξ 1, ξ 2,..., ξ n } vara oberoende likafördelade stokastiska variabler (med ett gemensamt µ). ξ =: µ är en punktskattning

Läs mer

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 4 oktober 2016

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 4 oktober 2016 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 12 HYPOTESPRÖVNING. Tatjana Pavlenko 4 oktober 2016 PLAN FÖR DAGENS FÖRELÄSNING Intervallskattning med normalfördelade data: två stickprov (rep.) Intervallskattning

Läs mer

Föreläsning 6. Kapitel 7, sid Jämförelse av två populationer

Föreläsning 6. Kapitel 7, sid Jämförelse av två populationer Föreläsning 6 Kapitel 7, sid 186-209 Jämförelse av två populationer 2 Agenda Jämförelse av medelvärden för två populationer Jämförelse av populationsandelar för två populationer Konfidensintervall och

Läs mer

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris

Läs mer

(a) Avgör om A och B är beroende händelser. (5 p) (b) Bestäm sannolikheten att A inträffat givet att någon av händelserna A och B inträffat.

(a) Avgör om A och B är beroende händelser. (5 p) (b) Bestäm sannolikheten att A inträffat givet att någon av händelserna A och B inträffat. Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSLÄRA OCH STATISTIK I, MÅNDAGEN DEN 15 AUGUSTI 2016 KL 08.00 13.00. Examinator: Tatjana Pavlenko, 08 790 84 66. Kursledare: Thomas Önskog, 08 790

Läs mer

Hypotestestning och repetition

Hypotestestning och repetition Hypotestestning och repetition Statistisk inferens Vid inferens använder man urvalet för att uttala sig om populationen Centralmått Medelvärde: x= Σx i / n Median Typvärde Spridningsmått Används för att

Läs mer

Lufttorkat trä Ugnstorkat trä

Lufttorkat trä Ugnstorkat trä Avd. Matematisk statistik TENTAMEN I SF1901 och SF1905 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 18:E OKTOBER 2012 KL 14.00 19.00. Examinator: Tatjana Pavlenko, tel 790 8466. Tillåtna hjälpmedel:

Läs mer

Uppgift a b c d e Vet inte Poäng

Uppgift a b c d e Vet inte Poäng TENTAMEN: Dataanalys och statistik för I2, TMS135 Fredagen den 12 mars kl. 8:45-11:45 på V. Jour: Jenny Andersson, ankn 8294 (mobil:070 3597858) Hjälpmedel: Utdelad formelsamling med tabeller, BETA, på

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker Matematisk statistik för D, I, Π och Fysiker Föreläsning 15 Johan Lindström 4 december 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F15 1/28 Repetition Linjär regression Modell Parameterskattningar

Läs mer

FÖRELÄSNING 7:

FÖRELÄSNING 7: FÖRELÄSNING 7: 2016-05-10 LÄRANDEMÅL Normalfördelningen Standardnormalfördelning Centrala gränsvärdessatsen Konfidensintervall Konfidensnivå Konfidensintervall för väntevärdet då variansen är känd Samla

Läs mer

FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02. Sannolikhetsteori. Beskrivning av data

FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02. Sannolikhetsteori. Beskrivning av data LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02 Sannolikhetsteori Följande gäller för sannolikheter:

Läs mer

7.5 Experiment with a single factor having more than two levels

7.5 Experiment with a single factor having more than two levels 7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1913 MATEMATISK STATISTIK FÖR IT OCH ME ONSDAGEN DEN 12 JANUARI 2011 KL 14.00 19.00. Examinator: Camilla Landén, tel. 7908466. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen

Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen Sannolikhetslära och inferens II Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen 1 Statistikor och samplingfördelningar I Kapitel 6 studerades metoder för att bestämma sannolikhetsfördelningen

Läs mer

TENTAMEN I SF2950 (F D 5B1550) TILLÄMPAD MATEMATISK STATISTIK, TORSDAGEN DEN 3 JUNI 2010 KL

TENTAMEN I SF2950 (F D 5B1550) TILLÄMPAD MATEMATISK STATISTIK, TORSDAGEN DEN 3 JUNI 2010 KL TENTAMEN I SF950 (F D 5B1550) TILLÄMPAD MATEMATISK STATISTIK, TORSDAGEN DEN 3 JUNI 010 KL 14.00 19.00 Examinator : Gunnar Englund, tel. 790 7416, epost: gunnare@math.kth.se Tillåtna hjälpmedel: Formel-

Läs mer

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända Avd. Matematisk statistik TENTAMEN I SF90, SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 9:E JUNI 205 KL 4.00 9.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt

Läs mer

FACIT: Tentamen L9MA30, LGMA30

FACIT: Tentamen L9MA30, LGMA30 Göteborgs Universitetet GU Lärarprogrammet 06 FACIT: Matematik för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik för gymnasielärare, Sannolikhetslära och statistik 07-0-04 kl..0-.0 Examinator

Läs mer

Uppgift 1. f(x) = 2x om 0 x 1

Uppgift 1. f(x) = 2x om 0 x 1 Avd. Matematisk statistik TENTAMEN I Matematisk statistik SF1907, SF1908 OCH SF1913 TORSDAGEN DEN 30 MAJ 2013 KL 14.00 19.00. Examinator: Gunnar Englund, 073 321 3745 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Linjär Regression Uwe Menzel, 2018 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Linjär Regression y i y 5 y 3 mätvärden x i, y i y 1 x 1 x 2 x 3 x 4 x 6 x

Läs mer

F8 Skattningar. Måns Thulin. Uppsala universitet Statistik för ingenjörer 14/ /17

F8 Skattningar. Måns Thulin. Uppsala universitet Statistik för ingenjörer 14/ /17 1/17 F8 Skattningar Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 14/2 2013 Inledande exempel: kullager Antag att diametern på kullager av en viss typ är normalfördelad N(µ,

Läs mer

Föreläsning 9, Matematisk statistik 7.5 hp för E Konfidensintervall

Föreläsning 9, Matematisk statistik 7.5 hp för E Konfidensintervall Föreläsning 9, Matematisk statistik 7.5 hp för E Konfidensintervall Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F9: Konfidensintervall 1/19 Stickprov & Skattning Ett stickprov, x 1, x 2,...,

Läs mer

LÖSNINGAR TILL P(A) = P(B) = P(C) = 1 3. (a) Satsen om total sannolikhet ger P(A M) 3. (b) Bayes formel ger

LÖSNINGAR TILL P(A) = P(B) = P(C) = 1 3. (a) Satsen om total sannolikhet ger P(A M) 3. (b) Bayes formel ger LÖSNINGAR TILL Matematisk statistik Tentamen: 2015 08 18 kl 8 00 13 00 Matematikcentrum FMS 086 Matematisk statistik för B, K, N och BME, 7.5 hp Lunds tekniska högskola MASB02 Matematisk statistik för

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema och tabellsamling (dessa skall returneras). Egen

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF90 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 26:E OKTOBER 206 KL 8.00 3.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Bestäm med hjälp av en lämplig och välmotiverad approximation P (X > 50). (10 p)

Bestäm med hjälp av en lämplig och välmotiverad approximation P (X > 50). (10 p) Avd. Matematisk statistik TENTAMEN I SF1901, SF1905, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel-

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-08-31 Tid:

Läs mer

Föreläsning 12, FMSF45 Hypotesprövning

Föreläsning 12, FMSF45 Hypotesprövning Föreläsning 12, FMSF45 Hypotesprövning Stas Volkov 2017-11-14 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F12: Hypotestest 1/1 Konfidensintervall Ett konfidensintervall för en parameter θ täcker rätt

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 8 Johan Lindström 21 september 2016 Johan Lindström - johanl@maths.lth.se FMS086/MASB02 F8 1/21 för diskret data : Poisson & Binomial för

Läs mer

Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1

Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 22 december, 2016 Examinatorer: Kerstin Wiklander och Erik Broman.

Läs mer

732G71 Statistik B. Föreläsning 1, kap Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20

732G71 Statistik B. Föreläsning 1, kap Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20 732G71 Statistik B Föreläsning 1, kap. 3.1-3.7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20 Exempel, enkel linjär regressionsanalys Ett företag vill veta

Läs mer