MSG830 Statistisk analys och experimentplanering
|
|
- Sandra Ek
- för 6 år sedan
- Visningar:
Transkript
1 MSG830 Statistisk analys och experimentplanering Tentamen 16 April 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon , kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri kalkylator Antal poäng totalt: 30. För betyget godkänd krävs minst 12 poäng, för väl godkänd 22 poäng 1. På sin väg hem passerar Suzanne två trakljus, A och B. Risken att hon får rött ljus vid A är 40% och samma risk gäller vid B. Chansen att passera båda utan rött ljus är 22%. Vad är risken att hon behöver stanna för rött ljus vid B om hon redan har stannat för rött ljus vid A? 2. Du är medlem i en konstklubb med 21 medlemmar där varje medlem köper en tavla värd 1000 kronor. Vid vårfesten lottas dessa tavlor ut en och en. Varje medlem har samma chans på varje tavla, utom på sin egen som man inte kan vinna alls. (a) Vilken fördelning har det antal tavlor som du vinner? Ange både namnet på fördelningen och storleken på parametrarna. (b) Vad är chansen att vinna mer än en tavla? (c) Antalet medlemmar som får en tavla är en stokastisk variabel Y som kan skrivas som Y = Y 1 + Y Y 21, där Y i = 1 om man vinner något och 0 annars. Utnyttja detta för att bestämma väntevärdet för antalet medlemmar som vinner någon tavla. 3. Vid en rättspsykiatrisk klinik i Småland genomförde man ett försök där de intagna ck en intervention som bestod i 15 lektioner a 45 minuter av specialanpassad lästräning. Nedan visas resultaten från ett test som kallas ordkedja (höga värden är bra) för 11 kvinnor med svenskt modersmål. Patientnummer Före intervention Efter intervention (4p) (4p) Testa om det skett en signikant förbättring. Använd signikansnivå (4p) 4. Regnvattenprover från olika orter på Nya Zeeland med avseende på bland annat svavelhalt. Orterna klassicerades i öst och väst. Deskriptiva data från SPSS visas i guren nedan. (a) Ange ett 95% kondensintervall för skillnaden i svavelkoncentration mellan öst och väst. (b) Bestäm om skillnaden är signikant på signikansnivå (4p) 1
2 5. Man använder ANOVA när man har en normalfördelad variabel vars medelvärde man vill jämföra mellan tre eller er grupper. Det F test som används säger dock inget om vari skillnaderna ligger, utan det får man undersöka med ett post-hoc test. Vi har tittat på två sådana test, Tukey och Dunnet, som tar hänsyn till det som kallas multipelinferens. (a) Anta att vi har 5 grupper. Hur många parvisa jämförelser görs då med Tukey respektive med Dunnet. (b) Vilken av dessa två ger lägst p-värde för jämförelser som görs av båda? (c) Beskriv en situation där det är lämpligt med Dunnet. 6. I en amerikansk studie från 70 talet undersökte man utfallet av villkorlig frigivning hos 80 dömda mördare. Mördarna var klassicerade utifrån om mordet var överlagt eller impulsivt. Undersök på signikansnivå 0.05 om det nns något samband mellan typ av mord och utfallet av villkorlig frigivning. (3p) (4p) 2
3 7. (a) I en enkel linjär regressionanalys angavs den starkt signikanta lutningen till 0.3 och förklaringsgraden till 51.84%. Vad var korrelationen (r)? (b) När man ska analysera ett samband mellan en numerisk variabel X och en annan variabel Y kan man använda sig av den linjära regressionsmodellen Y = β 0 + β 1 X eller X = β 0 + β 1 Y. Vilken/Vilka av följande påstående är sanna? i. Signikansen för lutningen blir samma oavsett modell. ii. Regressionslinjen blir samma oavsett modell iii. Förklaringsgraden blir samma oavsett modell (c) En tidigare studie av sambandet mellan ett kognitivt index, RAKI, och ålder hade funnit ett signikant samband mellan ålder och RAKI på 1.42 enheter per år. Vi försökte replikera detta och fann följande icke signikanta samband. Finns det skäl att ifrågasätta den tidigare studien? Motivera ditt svar. 8. Man vill testa om en normalfördelad variabel X har ett väntevärde som är µ = 100, mot alternativhypotesen att det är större (µ > 100). Standardavvikelsen σ är känd och med stickprovsstorlek n = 25 kan man förkasta H 0 på signikansnivå 0.05 om X > 110. (a) Bestäm σ genom att utveckla P ( X > 110) = = 0.05 under antagandet att µ = 100. (b) Vad behöver X vara för att vi ska kunna förkasta H 0 om vi har ett större stickprov n = 100 men fortfarande signikansnivå α = 0.05? (3p) (4p) 3
4 Formler och tabeller till kursen MSG830 Deskriptiva mått För ett datamängd x 1,, x n denieras medelvärde standardavvikelse standardfelet (SEM) Sannolikheter x = 1 n n i=1 = x x n n s = 1 n (x i x) n 1 2 i=1 SEM = s/ n För två händelser A och B är gäller Betingade sannolikheter P (A B) = P (A) + P (B) P (A B) Lagen om total sannolikhet P (A B) = P (A B) P (B) Om utfallsrummet indelas i disjunkta händelser A 1,, A k, vars union är hela utfallsrummet, så gäller för varje händelse B P (B) = k P (B A i )P (A i ) i=1 Om P (A B) = P (A) säges A och B vara oberoende. Detta medför också att A och B är oberoende om och endast om P (A B) = P (A)P (B) Stokastiska variabler En diskret stokastisk variabel X kan anta ett ändigt (eller uppräkneligt) antal värden. Sannolikeheten för varje värde bestäms av en sannolikhetsfunktion p p(x) = P (X = x) Väntevärdet av en diskret stokastisk variabel är µ = E[X] = x xp(x) 1
5 och variansen är σ 2 = V [X] = x (x µ) 2 p(x) = E[X 2 ] µ 2 Kontinuerliga stokastiska variabler beskrivs med en täthetsfunktion f(x) 0 för alla x och f(x) = 1 För en kontinuerlig stokastisk variabel X är P (X = x) = 0 för varje x, men P (a X b) = b a f(x) X och Y är oberoende (dvs P (X x Y y) = P (X x)p (Y y) för alla x, y Regler för väntevärden och varians Om a, b är konstanter och X, Y är stokastiska variabler gäller E[X + Y ] = E[X] + E[Y ] E[a + bx] = a + be[x] V [a + bx] = b 2 V [X] om dessutom X och Y är oberoende så gäller E[XY ] = E[X]E[Y ] och V [X + Y ] = V [X] + V [Y ] Binomialfördelning S bin(n, p) ( ) n P (S = k) = p k (1 p) n k för k = 1, 2,, n k Normalfördelning X N(µ, σ) E[S] = np, V [S] = np(1 p) f(x) = 1 σ 2π e (x µ) 2 2σ E[X] = µ, V [X] = σ 2 2
6 Fördelningen med µ = 0 och σ = 1 kallas standard (el standardiserad) normalfördelning Om X N(µ, σ) så är Z = X µ σ N(0, 1) och om vi har ett stickprov X 1, X 2,, X n så är Z = X µ σ/ n N(0, 1) Ett stickprov X 1, X 2,, X n där varje X i N(µ, σ) Testa H 0 : µ = µ 0 på signikansnivå α med T = x µ 0 s/ n t n 1 (t-fördelning med n 1 frihetsgrader) Förkasta H 0 om T t α/2,n 1 då H a : µ µ 0 Förkasta H 0 om T t α,n 1 då H a : µ > µ 0 Förkasta H 0 om T t α,n 1 då H a : µ < µ 0 Bilda ett tvåsidigt 100(1 α)% kondensintervall med x ± t α/2,n 1 s/ n Om σ av någon anledning råkar vara känt, ersätt s med σ och använd z α/2 i st f t α/2,n 1 Om X i inte är normalfördelad, men stickprovet stort kan vi anta att T ovan är approximativt standard normalfördelad. Parade data (X 1, Y 1 ), (X 2, Y 2 ),, (X n, Y n ) där varje D i = X i Y i N(δ, σ) Testa H 0 : δ = δ 0 (oftast δ 0 = 0) genom att betrakta alla D i som ett stickprov på dierenser och följ anvisningar för ett stickprov. T = x δ 0 s/ n Två stickprov X 1, X 2,, X m och Y 1, Y 2,, Y n Anta X i N(µ 1, σ) och Y i N(µ 2, σ) Poola de två variansskattningarna s 2 1 och s2 2 för X resp Y. 3
7 s 2 p = (m 1)s2 1 + (n 1)s 2 2 m + n 2 och testa H 0 : µ 1 µ 2 = 0 (oftast 0 = 0) på signikansnivå α med T = x ȳ 0 s p 1/m + 1/n t n+m 2 (t-fördelning med n + m 2 frihetsgrader) Förkasta H 0 om T t α/2,n+m 2 då H a : µ 1 µ 2 0 Förkasta H 0 om T t α,n+m 2 då H a : µ 1 µ 2 > 0 Förkasta H 0 om T t α,n+m 2 då H a : µ 1 µ 2 < 0 Bilda ett tvåsidigt 100(1 α)% kondensintervall med x ȳ ± t α/2,m+n 2 s p 1/m + 1/n ANOVA - Fler än två stickprov (k>2) Anta att de olika grupperna är normalfördelade N(µ i, σ), dvs eventuellt olika medelvärden, men samma varians. Man kan då testa H 0 : µ 1 = µ 2 = = µ k mot med H a : någon skillnad mellan medelvärdena F = ˆσ2 B ˆσ 2 W där ˆσ W 2 är den poolade variansen analogt med tvåstickprovsfallet och ˆσ2 B skattning av σ baserad på medelvärdena. är en Förkasta H 0 för stora värden på teststatistikan Test av samband mellan två kategoriska variabler Samla antalen av varje kategoripar i en kontingenstabell med r rader och c kolumner 4
8 1 j c 1 n 11 n 1j n 1c n 1. i n i1 n ij n ij n i. r n r1 n rj n rc n r. n.1 n.j n.c n n i. = c n ij och n.j = j=1 Anta att följande sannolikheter gäller för cellerna och marginalerna 1 j c 1 p 11 n 1j p 1c p 1. i p i1 p ij p ij p i. r p r1 p rj p rc p r. p.1 p.j p.c 1 r i=1 Testa H 0 : p ij = p i. p.j för alla par i, j (dvs oberoende) med n ij χ 2 = (n ij ê ij ) 2 som är approximativt χ 2 fördelad med (r 1)(c 1) frihetsgrader och där ê ij = ni.n.i n. För att approximationen ska vara god bör ê ij 5 för minst 80% av cellerna. ê ij Förkasta H 0 för stora värden på teststatistikan Goodness of t För att testa om en kategorisk variabel med k kategorier följer förutbestämda proportioner p 1, p 2,, p k används ett chi2-test. χ 2 = (n i np i ) 2 np i som är approximativt χ 2 fördelad med k 1 frihetsgrader. För att approximationen ska vara god bör np i 5 för varje i. H 0 förkastas för stora värden på χ 2. Regression Vid linjär regression med n observationspar (x i, y i ) skattar man en linje mha modellen y = β 0 + β 1 x + ɛ där ɛ N(0, σ) är bruset. Skattningar får man genom ˆβ 1 = (xi x)(y i ȳ) (xi x) 2 5
9 ˆβ 0 = ȳ ˆβ 1 x Test av H 0 : β 1 = 0 testas med en teststatistika av typen T = ˆβ 1 se( ˆβ 1 ) som är t fördelad med n 2 frihetsgrader Förklaringsgraden R 2 är den andel av variansen hos Y som förklaras av regressionsmodellen. I enkel linjär regression är R 2 = r 2, där r är Pearsons korrelationskoecient. Korrelation Pearsons korrelationskoecient r är ett mått mellan 1 och 1. (xi x)(y i ȳ) r = (xi x) 2 (y i ȳ) 2 som skattar en motsvarande populationsstorhet ρ. Om X och Y är oberoende så är ρ = 0. Man kan testa H 0 : ρ = 0 med T = r n 2 1 r 2 som är t fördelad med n 2 frihetsgrader och identisk med teststatistikan för H 0 : β 1 = 0 från regressionsanalysen. 6
10 A-6 Appendix Tables Table A.3 Standard Normal Curve Areas Φ(z) P(Z z) Standard normal density curve Shaded area = Φ(z) 0 z z (continued) Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the ebook and/or echapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
11 Appendix Tables A-7 Table A.3 Standard Normal Curve Areas (cont.) (z) 5 P(Z # z) z Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the ebook and/or echapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
12 Appendix Tables A-9 Table A.5 Critical Values for t Distributions t density curve Shaded area = 0 t, v Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the ebook and/or echapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
13 Appendix Tables A-11 Table A.7 Critical Values for Chi-Squared Distributions 2 density curve Shaded area = α 0 α, For v. 40, x 2 a,v, va v 1 z 2 a B9v b Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the ebook and/or echapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
14 A-12 Appendix Tables Table A.8 t Curve Tail Areas t curve Area to the right of t 0 t t (continued) Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the ebook and/or echapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
15 Appendix Tables A-13 Table A.8 t Curve Tail Areas (cont.) t curve Area to the right of t 0 t t `( 5z) Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the ebook and/or echapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
Formler och tabeller till kursen MSG830
Formler och tabeller till kursen MSG830 Deskriptiva mått För ett datamängd x 1,, x n denieras medelvärde standardavvikelse standardfelet (SEM) Sannolikheter x = 1 n n i=1 = x 1 + + x n n s = 1 n (x i x)
Läs merMSG830 Statistisk analys och experimentplanering
MSG830 Statistisk analys och experimentplanering Tentamen 8 juni 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri
Läs merMSG830 Statistisk analys och experimentplanering
MSG830 Statistisk analys och experimentplanering Tentamen 15 Januari 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Kalkylator
Läs merMSG830 Statistisk analys och experimentplanering
MSG830 Statistisk analys och experimentplanering Tentamen 15 januari 2016, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri
Läs merMSG830 Statistisk analys och experimentplanering
MSG830 Statistisk analys och experimentplanering Tentamen 20 Mars 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri
Läs merMSG830 Statistisk analys och experimentplanering
MSG830 Statistisk analys och experimentplanering Tentamen 18 augusti 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri
Läs merMSG830 Statistisk analys och experimentplanering
MSG830 Statistisk analys och experimentplanering Tentamen 16 April 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri
Läs merSannolikheter och kombinatorik
Sannolikheter och kombinatorik En sannolikhet är ett tal mellan 0 och 1 som anger hur frekvent en händelse sker, där 0 betyder att det aldrig sker och 1 att det alltid sker. När vi talar om sannolikheter
Läs merMSG830 Statistisk analys och experimentplanering - Lösningar
MSG830 Statistisk analys och experimentplanering - Lösningar Tentamen 16 augusti 2016, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel:
Läs merMSG830 Statistisk analys och experimentplanering
MSG830 Statistisk analys och experimentplanering Tentamen 15 januari 2016, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri
Läs merRättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig
Läs merMSG830 Statistisk analys och experimentplanering
MSG830 Statistisk analys och experimentplanering Tentamen 20 Mars 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri
Läs merFORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD 208-08-26 Sannolikhetsteori Följande gäller för sannolikheter: 0 P(A P(Ω = P(A
Läs merFöreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
Läs merTentamen i Matematisk Statistik, 7.5 hp
Tentamen i Matematisk Statistik, 7.5 hp Distanskurs 15 januari, 2011 kl. 9.00 13.00 Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG. Hjälpmedel: Miniräknare samt formelsamling som medföljer tentamenstexten.
Läs merTAMS65. Formel- och tabellsamling i matematisk statistik TAMS65. Martin Singull TAMS65 TAMS65
Formel- och tabellsamling i matematisk statistik Martin Singull Innehåll 4.1 Multipel regression.............................. 15 1 Sannolikhetslära 7 1.1 Några diskreta fördelningar.........................
Läs merProvmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13
Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare
Läs merTentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle
Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle Lärare: Mikael Elenius, 2006-08-25, kl:9-14 Betygsgränser: 65 poäng Väl Godkänt, 50 poäng
Läs merMSG830 Statistisk analys och experimentplanering - Lösningar
MSG830 Statistisk analys och experimentplanering - Lösningar Tentamen 15 Januari 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel:
Läs merFORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02. Sannolikhetsteori. Beskrivning av data
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02 Sannolikhetsteori Följande gäller för sannolikheter:
Läs merFormel- och tabellsamling i matematisk statistik
Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P
Läs merTentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2017-08-15 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 031-7725325 Hjälpmedel: Valfri
Läs merStatistik 1 för biologer, logopeder och psykologer
Innehåll 1 Hypotesprövning Innehåll Hypotesprövning 1 Hypotesprövning Inledande exempel Hypotesprövning Exempel. Vi är intresserade av en variabel X om vilken vi kan anta att den är (approximativt) normalfördelad
Läs merTentamen i Tillämpad Matematik och statistik för IT-forensik. Del 2: Statistik 7.5 hp
Tentamen i Tillämpad Matematik och statistik för IT-forensik. Del 2: Statistik 7.5 hp 15 januari, 2014 kl. 9.00 13.00 Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG. Hjälpmedel: Typgodkänd miniräknare
Läs merFöreläsning 6, Repetition Sannolikhetslära
Föreläsning 6, Repetition Sannolikhetslära kap 4 Sannolikhetslära och slumpvariabler kap 5 Stickprov, medelvärden, CGS, binomialfördelning Viktiga grundbegrepp utfall, händelse, sannolikheter, betingad
Läs merKurssammanfattning MVE055
Obs: Detta är enbart tänkt som en översikt och innehåller långt ifrån allt som ingår i kursen (vilket anges exakt på hemsidan). Fullständiga antaganden i satser kan saknas och fel kan förekomma så kontrollera
Läs merÖvningstenta för MSG830
Övningstenta för MSG830 Max 30 p, för godkänt krävs 12 p 1. Vi har två händelser A och B. Om dessa vet vi att A sker med sannolikheten 0.2 och B med sannolikheten 0.5. Sannolikheten att varken A eller
Läs merMatematisk statistik KTH. Formel- och tabellsamling i matematisk statistik
Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =
Läs merTentamen MVE302 Sannolikhet och statistik
Tentamen MVE32 Sannolikhet och statistik 219-6-5 kl. 8:3-12:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Oskar Allerbo, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.
Läs merTentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE30 Sannolikhet, statistik och risk 207-06-0 kl. 8:30-3:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 03-7725348 Hjälpmedel: Valfri miniräknare.
Läs merTentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2018-10-12 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 031-7725325 Hjälpmedel: Valfri
Läs merRättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 6.5 hp AT1MS1 DTEIN16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal
Läs merTenta i Statistisk analys, 15 december 2004
STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, ML 15 december 004 Lösningar Tenta i Statistisk analys, 15 december 004 Uppgift 1 Vi har två stickprov med n = 5 st.
Läs merFöreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology September 21, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två
Läs merTentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2017-06-01 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 031-7725325 Hjälpmedel: Valfri
Läs merTentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE31 Sannolikhet, statistik och risk 218-5-31 kl. 8:3-13:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.
Läs merLycka till!
Avd. Matematisk statistik TENTAMEN I 5B1503 STATISTIK MED FÖRSÖKSPLANERING FÖR K OCH B MÅNDAGEN DEN 25 AUGUSTI 2003 KL 14.00 19.00. Examinator: Gunnar Englund, 790 7416. Tillåtna hjälpmedel: Formel- och
Läs merTentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE30 Sannolikhet, statistik och risk 207-08-5 kl. 8:30-3:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 03-7725325 Hjälpmedel: Valfri miniräknare.
Läs merFöreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology April 27, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två numeriska
Läs merMatematisk statistik KTH. Formelsamling i matematisk statistik
Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska
Läs merF9 SAMPLINGFÖRDELNINGAR (NCT
Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion
Läs merMälardalens Högskola. Formelsamling. Statistik, grundkurs
Mälardalens Högskola Formelsamling Statistik, grundkurs Höstterminen 2015 Deskriptiv statistik Populationens medelvärde (population mean): μ = X N Urvalets medelvärde (sample mean): X = X n Där N är storleken
Läs merPreliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet
Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Uppgift 1 (20 poäng) A) (4p) Om kommunens befolkning i den lokala arbetsmarknaden
Läs merTentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.
Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för
Läs merF13 Regression och problemlösning
1/18 F13 Regression och problemlösning Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/3 2013 2/18 Regression Vi studerar hur en variabel y beror på en variabel x. Vår modell
Läs merFACIT: Tentamen L9MA30, LGMA30
Göteborgs Universitetet GU Lärarprogrammet 216 FACIT: Matematik 3 för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik 3 för gymnasielärare, Sannolikhetslära och statistik 216-1-21 kl. 8.3-12.3
Läs merTMS136. Föreläsning 11
TMS136 Föreläsning 11 Andra intervallskattningar Vi har sett att vi givet ett stickprov och under vissa antaganden kan göra intervallskattningar för väntevärden Man kan även gör intervallskattningar för
Läs merTentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:
Läs merExempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor
Kontinuerliga stokastiska variabler Exempel En stokastisk variabel är kontinuerlig om den kan anta vilka värden som helst i ett intervall, men sannolikheten för varje enskilt utfall är noll: P(X = x) =.
Läs merFACIT: Tentamen L9MA30, LGMA30
Göteborgs Universitetet GU Lärarprogrammet 06 FACIT: Matematik för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik för gymnasielärare, Sannolikhetslära och statistik 07-0-04 kl..0-.0 Examinator
Läs merKap 2. Sannolikhetsteorins grunder
Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser
Läs merLösningsförslag till Matematisk statistik LKT325 Tentamen
Lösningsförslag till Matematisk statistik LKT325 Tentamen 20190115 Kursansvarig: Reimond Emanuelsson Betygsgränser: för betyg 3 krävs minst 20 poäng, för betyg 4 krävs minst 30 poäng, för betyg 5 krävs
Läs merTentamen för kursen. Linjära statistiska modeller. 22 augusti
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 22 augusti 2008 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus
Läs merTMS136. Föreläsning 13
TMS136 Föreläsning 13 Jämförelser mellan två populationer Hittills har vi gjort konfidensintervall och tester kring parametrar i EN population I praktiska sammanhang är man ofta intresserad av att jämföra
Läs merTentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2018-05-31 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 031-7725325 Hjälpmedel: Valfri
Läs merTentamen MVE302 Sannolikhet och statistik
Tentamen MVE302 Sannolikhet och statistik 2019-06-05 kl. 8:30-12:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Oskar Allerbo, telefon: 031-7725325 Hjälpmedel: Valfri miniräknare.
Läs merSF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 5. Kovarians, korrelation, väntevärde och varians för summor av s.v.:er, normalfördelning (del 1) Jan Grandell & Timo Koski 15.09.2008 Jan Grandell &
Läs mer732G71 Statistik B. Föreläsning 1, kap Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20
732G71 Statistik B Föreläsning 1, kap. 3.1-3.7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20 Exempel, enkel linjär regressionsanalys Ett företag vill veta
Läs mer9. Konfidensintervall vid normalfördelning
TNG006 F9 09-05-016 Konfidensintervall 9. Konfidensintervall vid normalfördelning Låt x 1, x,..., x n vara ett observerat stickprov av oberoende s.v. X 1, X,..., X n var och en med fördelning F. Antag
Läs merFÖRELÄSNING 8:
FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data
Läs merRepetitionsföreläsning
Slumpförsök Repetitionsföreläsning Föreläsning 15 Sannolikhet och Statistik 5 hp Med händelser A B... avses delmängder av ett utfallsrum. Slumpförsök = utfallsrummet + ett sannolikhetsmått P. Fredrik Jonsson
Läs mer4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler
Föreläsning 2 4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler Stokastiskavariabler Stokastisk variabel (eng: random variable) En variabel vars värde
Läs merTMS136: Dataanalys och statistik Tentamen
TMS136: Dataanalys och statistik Tentamen 013-08-7 Examinator och jour: Mattias Sunden, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkänd räknare och formelsamling (formelsamling delas ut med tentan). Betygsgränser:
Läs merMatematisk statistik 9hp Föreläsning 7: Normalfördelning
Matematisk statistik 9hp Föreläsning 7: Normalfördelning Anna Lindgren 29+3 september 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F7: normalfördelning 1/18 Kovarians, C(X, Y) Repetition Normalfördelning
Läs merFöreläsning 15: Försöksplanering och repetition
Föreläsning 15: Försöksplanering och repetition Matematisk statistik Chalmers University of Technology Oktober 19, 2015 Utfall och utfallsrum Slumpmässigt försök Man brukar säga att ett slumpmässigt försök
Läs merTentamen för kursen. Linjära statistiska modeller. 17 februari
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 17 februari 2010 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312,
Läs merStokastiska vektorer och multivariat normalfördelning
Stokastiska vektorer och multivariat normalfördelning Johan Thim johanthim@liuse 3 november 08 Repetition Definition Låt X och Y vara stokastiska variabler med EX µ X, V X σx, EY µ Y samt V Y σy Kovariansen
Läs merAMatematiska institutionen avd matematisk statistik
Kungl Tekniska Högskolan AMatematiska institutionen avd matematisk statistik TENTAMEN I 5B1503 STATISTIK MED FÖRSÖKSPLANERING FÖR B OCH K FREDAGEN DEN 11 JANUARI 2002 KL 14.00 19.00. Examinator: Gunnar
Läs merLektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
Läs merFACIT: Tentamen L9MA30, LGMA30
Göteborgs Universitetet GU Lärarprogrammet 20 FACIT: Tentamen L9MA0, LGMA0 Matematik för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik för gymnasielärare, Sannolikhetslära och statistik 20-0-2
Läs merTAMS65 - Föreläsning 2 Parameterskattningar - olika metoder
TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder Martin Singull Matematisk statistik Matematiska institutionen Innehåll Fö2 Punktskattningar Egenskaper Väntevärdesriktig Effektiv Konsistent
Läs merTENTAMEN I STATISTIKENS GRUNDER 1
STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 1 2012-10-03 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:
Läs merUppgift 1 a) En kontinuerlig stokastisk variabel X har fördelningsfunktion
Avd. Matematisk statistik TENTAMEN I 5B57 MATEMATISK STATISTIK FÖR T och M ONSDAGEN DEN 9 OKTOBER 25 KL 8. 3.. Examinator: Jan Enger, tel. 79 734. Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk
Läs mer1. En kortlek består av 52 kort, med fyra färger och 13 valörer i varje färg.
Tentamenskrivning för TMS63, Matematisk Statistik. Onsdag fm den 1 juni, 16, Eklandagatan 86. Examinator: Marina Axelson-Fisk. Tel: 7-88113. Tillåtna hjälpmedel: typgodkänd miniräknare, tabell- och formelhäfte
Läs merAvd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I 5B508 MATEMATISK STATISTIK FÖR S TISDAGEN DEN 20 DECEMBER 2005 KL 08.00 3.00. Examinator: Gunnar Englund, tel. 790 746. Tillåtna hjälpmedel: Formel- och tabellsamling
Läs merTENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER
Statistiska institutionen Frank Miller Dan Hedlin Skrivtid: 09.00-14.00 TENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2014-03-21 Hjälpmedel: Miniräknare utan lagrade formler eller text, bifogade tabeller
Läs merTAMS79 / TAMS65 - vt TAMS79 / TAMS65 - vt Formel- och tabellsamling i matematisk statistik. TAMS79 / TAMS65 - vt 2013.
Formel- och tabellsamling i matematisk statistik c Martin Singull 2 Innehåll 3.3 Tukey s metod för parvisa jämförelser.................... 14 1 Sannolikhetslära 5 1.1 Några diskreta fördelningar.........................
Läs merS0005M. Stokastiska variabler. Notes. Notes. Notes. Stokastisk variabel (slumpvariabel) (eng: random variable) Mykola Shykula
Mykola Shykula LTU Mykola Shykula (LTU) 1 / 18 Föreläsning 2 4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler Mykola Shykula (LTU) 2 / 18 Stokastiska
Läs merS0005M, Föreläsning 2
S0005M, Föreläsning 2 Mykola Shykula LTU Mykola Shykula (LTU) S0005M, Föreläsning 2 1 / 18 Föreläsning 2 4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler
Läs merLösningar till tentamensskrivning för kursen Linjära statistiska modeller. 14 januari
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Lösningar till tentamensskrivning för kursen Linjära statistiska modeller 14 januari 2010 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se
Läs merAvd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1913 MATEMATISK STATISTIK FÖR IT OCH ME ONSDAGEN DEN 12 JANUARI 2011 KL 14.00 19.00. Examinator: Camilla Landén, tel. 7908466. Tillåtna hjälpmedel: Formel- och tabellsamling
Läs merTentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.
Läs merMVE051/MSG Föreläsning 14
MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska
Läs merUppgift 1. f(x) = 2x om 0 x 1
Avd. Matematisk statistik TENTAMEN I Matematisk statistik SF1907, SF1908 OCH SF1913 TORSDAGEN DEN 30 MAJ 2013 KL 14.00 19.00. Examinator: Gunnar Englund, 073 321 3745 Tillåtna hjälpmedel: Formel- och tabellsamling
Läs merFöreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik David Bolin Chalmers University of Technology April 7, 2014 Projektuppgift Projektet går ut på att genomföra ett statistiskt försök och analysera resultaten.
Läs merTentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE31 Sannolikhet, statistik och risk 218-1-12 kl. 8:3-13:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.
Läs mer732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet
732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris
Läs mer(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka.
Avd. Matematisk statistik TENTAMEN I SF1901, SF1905 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 11 JANUARI 2016 KL 14.00 19.00. Kursledare för CINEK2: Thomas Önskog, tel: 08 790 84 55 Kursledare för
Läs merSF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt
Läs merStandardfel (Standard error, SE) SD eller SE. Intervallskattning MSG Staffan Nilsson, Chalmers 1
Standardfel (Standard error, SE) Anta vi har ett stickprov X 1,,X n där varje X i has medel = µ och std.dev = σ. Då är Det sista kalls standardfel (eng:standard error of mean (SEM) eller (SE) och skattas
Läs merHöftledsdysplasi hos dansk-svensk gårdshund
Höftledsdysplasi hos dansk-svensk gårdshund Sjö A Sjö B Förekomst av parasitdrabbad öring i olika sjöar Sjö C Jämföra medelvärden hos kopplade stickprov Tio elitlöpare springer samma sträcka i en för dem
Läs merFöreläsning 4: Konfidensintervall (forts.)
Föreläsning 4: Konfidensintervall forts. Johan Thim johan.thim@liu.se 3 september 8 Skillnad mellan parametrar Vi kommer nu fortsätta med att konstruera konfidensintervall och vi kommer betrakta lite olika
Läs merTentamen för kursen. Linjära statistiska modeller. 27 oktober
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 27 oktober 2017 9 14 Examinator: Ola Hössjer, tel. 070/672 12 18, ola@math.su.se Återlämning: Meddelas via kurshemsida
Läs merRegressions- och Tidsserieanalys - F1
Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet May 4, 2015 Wänström (Linköpings universitet) F1 May 4, 2015 1 / 25 Regressions- och tidsserieanalys,
Läs mer0 om x < 0, F X (x) = c x. 1 om x 2.
Avd. Matematisk statistik TENTAMEN I SF193 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH MÅNDAGEN DEN 16 AUGUSTI 1 KL 8. 13.. Examinator: Gunnar Englund, tel. 7974 16. Tillåtna hjälpmedel: Läroboken.
Läs merFöreläsning 11: Mer om jämförelser och inferens
Föreläsning 11: Mer om jämförelser och inferens Matematisk statistik David Bolin Chalmers University of Technology Maj 12, 2014 Oberoende stickprov Vi antar att vi har två oberoende stickprov n 1 observationer
Läs merTentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl
Karlstads universitet Avdelningen för nationalekonomi och statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema
Läs merStatistik 1 för biologer, logopeder och psykologer
Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data
Läs merFACIT för Förberedelseuppgifter: SF1911 STATISTIK FÖR BI0TEKNIK inför tentan MÅDAGEN DEN 9 DECEMBER 2016 KL Examinator: Timo Koski
FACIT för Förberedelseuppgifter: SF9 STATISTIK FÖR BI0TEKNIK inför tentan MÅDAGEN DEN 9 DECEMBER 206 KL 4.00 9.00. Examinator: Timo Koski - - - - - - - - - - - - - - - - - - - - - - - - 0. FACIT Problem
Läs merFöreläsning 12: Regression
Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är
Läs mer