MSG830 Statistisk analys och experimentplanering
|
|
- Rasmus Sundqvist
- för 6 år sedan
- Visningar:
Transkript
1 MSG830 Statistisk analys och experimentplanering Tentamen 18 augusti 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon , kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri kalkylator Antal poäng totalt: 30. För betyget godkänd krävs minst 12 poäng, för väl godkänd 22 poäng 1. Vi har två händelser A och B med P(A)=0.3 och P(B)=0.5. Sannolikheten att varken A eller B händer är 0.4 (a) Undersök om A och B är oberoende? P (A B) = = 0.6 P (A B) = P (A)+P (B) P (A B) = = = = P (A)P (B) Alltså är A och B inte oberoende (b) Bestäm P (A B) och P (B A) P (A B) = P (B A) = P (A B) P (B) P (A B) P (A) = = 0.4 = = På en passcentral har två tjänstemän, Inger och Bengt, tråkigt och spelar om längden på de sökande. Om den ligger inom en standardavvikelse från medel (med hänsyn taget till kön och ålder) ska Inger betala 10 kronor till Bengt, medan Bengt ska betala 20 kronor till Inger om den ligger utanför. Hur mycket förväntas Inger tjäna (alternativt förlora) om det kommer 150 sökanden på en dag? Vi kan anta att längden är normalfördelad. Låt Ingers förtjänst vid en kund betcknas X. Då är P (X = 20) = P ( Z > 1) = 2P (Z < 1) = = P (X = 10) = P ( Z < 1) = = och då blir hennes totala förtjänst efter 150 kunder 150( ) = 71.7 (4p) Inger förväntas alltså förlora ca 72 kronor (4p) 3. Två batterityper A och B testades med avseende på livslängd. Tolv batterier av vardera typ användes. För typ A var den genomsnittliga livslängden 527 dagar med en standardavvikelse på 123 dagar. För typ B var motsvarande värden 488 resepektive 102 dagar. (a) Gör lämpliga antaganden och bestäm ett 95%igt kondensintervall för skillnaden i livslängd. Vi antar att livslängden är normalfördelad med samma varians i båda typerna och börjar med att poola variansen s p = (12 1) (12 1)
2 tfraktilen är t 0.05/2,22 = Det 95%iga kondensintervallet blir då ± /12 + 1/12 = 39 ± 96 = ( 57, 135) (b) Är det en signikant skillnad på livslängderna? Använd α = Nej, det är ingen signikant skillnad. Vi ser det direkt genom att utnyttja korresponensen mellan intervall och test. Kondensintervallet (95%) ovan täckte 0 och därmed är motsvarande test (α = 0.05) inte signikant. 4. Knatte, Fnatte och Tjatte kastade pil en kväll och ck summorna 24, 18 och 16. Trots Kalles uppmaning att gå och lägga sig var de uppe hela natten och spelade dataspel. Dagen därpå var det tävling i Gröngölingsklubben och de ck nu resultaten 22, 16 och En genomsnittlig sänkning med 3 poäng! skrek Kalle. Ni får en veckas utegångsförbud! - Orättvist, sa Fnatte. Det kan vara en slumpmässig försämring har professor Ludwig lärt mig. Om vi gör ett tvåsidigt tvåstickprovs t-test blir p-värdet 0.5 och då är det inte ens nära signikant på 0.05-nivå. - Fuskpelle, sa Kalle. Du skulle lyssnat bättre på Ludwig. Det är ett olämpligt test och dessutom bör alternativhypotesen vara ensidig. När jag gör på mitt sätt så blir det signikant på 0.05-nivå. - Orättvist, vrålade Fnatte igen. Jag hade 16 båda gångerna. Varför ska jag straas? - Aha, sa Kalle. Att ditt resultat var oförändrat struntar jag i för det kan vara en slump, men jag utgick i min beräkning från att er inbördes ordning var densamma. Minns du vad de andra hade före och efter? - Ja, Tjatte vann båda gångerna, sa Fnatte. (a) Veriera Kalles första resultat (P<0.05). Kalle gjorde ett parat t-test där hans alternativhypotes var att resultaten försämrats. Med antagande om samma inbördes ordning var dierenserna (före minus efter) 2,2,5 med medel 3. 1 s = 3 1 ((2 3)2 + (2 3) 2 + (5 3) 2 ) = 3 och T = 3 3/ 3 = 3 Det kritiska värdet för enkelsidigt t-test med 2 frihetsgrader på nivå 0.05 är 2.92 så eftersom 3>2.92 stämmer det att Kalle fann en signikant försämring. (b) Utför Kalles test efter Fnattes information och bestäm om de ska utegångsförbud eller ej. Efter Tjattes information blev dierenserna 2,0,7 med medel 3. 1 s = 3 1 ((2 3)2 + (0 3) 2 + (7 3) 2 ) = 13 (4p) och T = 3 13/ 3 = 1.44 Nu har vi att 1.44<2.92 och det är alltså inte längre signikant, så barnen slipper utegångsförbud (4p) 2
3 5. Efter kärnkraftsolyckan i Tjernobyl 1986 ville 81% avveckla kärnkraften medan 19% ville ha den kvar (av dem som hade en åsikt) enligt SOM-institutet. År 2010 hade opinionen svängt så att motsvarande siror var 37% respektive 63%. Så kom olyckan i Fukishama på våren 2011 och de nya var sirorna var 50% resp 50%. Huruvida förändringarna är signikanta eller ej beror förstås på antalet svarande. Undersök om det skett en signikant (α = 0.05) förändring i opinion mellan 2010 och 2011 under antagandet att det var 200 svarande med åsikt varje år (I verkligheten var förstås antalet svarande i SOM-undersökningen betydligt er). (4p) 6. I en undersökning av relationen mellan CO 2 utsläpp i ton och år fann man följande samband. med korrelationen CO 2 = (År 1965) (a) Hur stor del av variansen i koldioxidutsläpp beror på att de härrör från olika år? Det som efterfrågas är förklaringsgraden R 2. I enkel linjär regression gäller R 2 = r 2 = ( 0.993) 2 = 98.6% (b) Vad är utsläppet enligt modellen år 2000? Kommentera resultatet. CO 2 = ( ) = 838 Vi har fått ett orimligt resultat. Det kan ju inte nnas negativa utsläpp, så modellen måste ha baserats på värden före år 2000 och en extrapolation till områden som inte är undersökta är alltid riskfylld. 7. Mördarsniglar är ett gissel i svenska trädgårdar. Karl och Jenny gjorde examensarbete på ett kemiföretag där de testade eektiviteten av olika bekämpningsmedel. Karl testade metod A och B, medan Jenny testade metod C och D. Tio försök utfördes med varje metod och resultatvariablen i varje försök var andelen fångade sniglar. I sina rapporter gjorde båda två ett tvåstickprovs t-test för att jämföra sina metoder. Karl fann en signikant skillnad mellan A och B, medan Jenny inte fann ngn signikant skillnad mellan C och D. Deras handledare Magdalena slog samman de två undersökningarna i en och sammanfattade att det inte fanns några signikanta skillnader mellan de 4 metoderna. (a) Vilken analys bedömer du att handledaren gjorde? Eftersom examensarbetarna gjorde tvåstickprovstest för att jämföra utfallet mellan två behandlingar bör hon ha gjort en ANOVA. (b) Vilken fördelningen hade hennes teststatistika (ange namnet på fördelningen och frihetsgrader)? Det primära testet i ANOVAn som testar hypotesen H 0 : µ 1 = µ 2 = µ 3 = µ 4 är F-fördelat med med frihetsgraderna k 1, n k där k = 4 är antalet grupper och n = 4 10 är totala antalet observationer, dvs F 3,36 (c) Förklara varför hennes slutsats skiljer sig från Karls. ANOVAN tar hänsyn till multipelinferens, dvs att med era grupper är det inte så konstigt om några skiljer sig ganska mycket, medan Karls analys bara fokuserade på just grupperna A och B. (3p) (3p) 3
4 8. En stor leverans med kakelplattor kontrolleras genom att 50 paket undersöks och leveransen godkänns om högst två paket innehåller defekta plattor. Gör lämpliga antaganden och beräkna vad sannolikheten är att förkasta leveransen om risken att ett paket innehåller defekta plattor är 10%. Vi antar att paketen är oberoende och därmed blir X, antalet paket med defekta plattor, binomialfördelat bin(50, 0.1) P (Förkasta leverans) = 1 P (Godkänna leverans) = 1 P (X = 0) P (X = 1) P (X = 2) ( ) 50 = (4p) 4
5 Formler och tabeller till kursen MSG830 Deskriptiva mått För ett datamängd x 1,, x n denieras medelvärde standardavvikelse standardfelet (SEM) Sannolikheter x = 1 n n i=1 = x x n n s = 1 n (x i x) n 1 2 i=1 SEM = s/ n För två händelser A och B är gäller Betingade sannolikheter P (A B) = P (A) + P (B) P (A B) Lagen om total sannolikhet P (A B) = P (A B) P (B) Om utfallsrummet indelas i disjunkta händelser A 1,, A k, vars union är hela utfallsrummet, så gäller för varje händelse B P (B) = k P (B A i )P (A i ) i=1 Om P (A B) = P (A) säges A och B vara oberoende. Detta medför också att A och B är oberoende om och endast om P (A B) = P (A)P (B) Stokastiska variabler En diskret stokastisk variabel X kan anta ett ändigt (eller uppräkneligt) antal värden. Sannolikeheten för varje värde bestäms av en sannolikhetsfunktion p p(x) = P (X = x) Väntevärdet av en diskret stokastisk variabel är µ = E[X] = x xp(x) 1
6 och variansen är σ 2 = V [X] = x (x µ) 2 p(x) = E[X 2 ] µ 2 Kontinuerliga stokastiska variabler beskrivs med en täthetsfunktion f(x) 0 för alla x och f(x) = 1 För en kontinuerlig stokastisk variabel X är P (X = x) = 0 för varje x, men P (a X b) = b a f(x) X och Y är oberoende (dvs P (X x Y y) = P (X x)p (Y y) för alla x, y Regler för väntevärden och varians Om a, b är konstanter och X, Y är stokastiska variabler gäller E[X + Y ] = E[X] + E[Y ] E[a + bx] = a + be[x] V [a + bx] = b 2 V [X] om dessutom X och Y är oberoende så gäller E[XY ] = E[X]E[Y ] och V [X + Y ] = V [X] + V [Y ] Binomialfördelning S bin(n, p) ( ) n P (S = k) = p k (1 p) n k för k = 1, 2,, n k Normalfördelning X N(µ, σ) E[S] = np, V [S] = np(1 p) f(x) = 1 σ 2π e (x µ) 2 2σ E[X] = µ, V [X] = σ 2 2
7 Fördelningen med µ = 0 och σ = 1 kallas standard (el standardiserad) normalfördelning Om X N(µ, σ) så är Z = X µ σ N(0, 1) och om vi har ett stickprov X 1, X 2,, X n så är Z = X µ σ/ n N(0, 1) Ett stickprov X 1, X 2,, X n där varje X i N(µ, σ) Testa H 0 : µ = µ 0 på signikansnivå α med T = x µ 0 s/ n t n 1 (t-fördelning med n 1 frihetsgrader) Förkasta H 0 om T t α/2,n 1 då H a : µ µ 0 Förkasta H 0 om T t α,n 1 då H a : µ > µ 0 Förkasta H 0 om T t α,n 1 då H a : µ < µ 0 Bilda ett tvåsidigt 100(1 α)% kondensintervall med x ± t α/2,n 1 s/ n Om σ av någon anledning råkar vara känt, ersätt s med σ och använd z α/2 i st f t α/2,n 1 Om X i inte är normalfördelad, men stickprovet stort kan vi anta att T ovan är approximativt standard normalfördelad. Parade data (X 1, Y 1 ), (X 2, Y 2 ),, (X n, Y n ) där varje D i = X i Y i N(δ, σ) Testa H 0 : δ = δ 0 (oftast δ 0 = 0) genom att betrakta alla D i som ett stickprov på dierenser och följ anvisningar för ett stickprov. T = x δ 0 s/ n Två stickprov X 1, X 2,, X m och Y 1, Y 2,, Y n Anta X i N(µ 1, σ) och Y i N(µ 2, σ) Poola de två variansskattningarna s 2 1 och s2 2 för X resp Y. 3
8 s 2 p = (m 1)s2 1 + (n 1)s 2 2 m + n 2 och testa H 0 : µ 1 µ 2 = 0 (oftast 0 = 0) på signikansnivå α med T = x ȳ 0 s p 1/m + 1/n t n+m 2 (t-fördelning med n + m 2 frihetsgrader) Förkasta H 0 om T t α/2,n+m 2 då H a : µ 1 µ 2 0 Förkasta H 0 om T t α,n+m 2 då H a : µ 1 µ 2 > 0 Förkasta H 0 om T t α,n+m 2 då H a : µ 1 µ 2 < 0 Bilda ett tvåsidigt 100(1 α)% kondensintervall med x ȳ ± t α/2,m+n 2 s p 1/m + 1/n ANOVA - Fler än två stickprov (k>2) Anta att de olika grupperna är normalfördelade N(µ i, σ), dvs eventuellt olika medelvärden, men samma varians. Man kan då testa H 0 : µ 1 = µ 2 = = µ k mot med H a : någon skillnad mellan medelvärdena F = ˆσ2 B ˆσ 2 W där ˆσ W 2 är den poolade variansen analogt med tvåstickprovsfallet och ˆσ2 B skattning av σ baserad på medelvärdena. är en Förkasta H 0 för stora värden på teststatistikan Test av samband mellan två kategoriska variabler Samla antalen av varje kategoripar i en kontingenstabell med r rader och c kolumner 4
9 1 j c 1 n 11 n 1j n 1c n 1. i n i1 n ij n ij n i. r n r1 n rj n rc n r. n.1 n.j n.c n n i. = c n ij och n.j = j=1 Anta att följande sannolikheter gäller för cellerna och marginalerna 1 j c 1 p 11 n 1j p 1c p 1. i p i1 p ij p ij p i. r p r1 p rj p rc p r. p.1 p.j p.c 1 r i=1 Testa H 0 : p ij = p i. p.j för alla par i, j (dvs oberoende) med n ij χ 2 = (n ij ê ij ) 2 som är approximativt χ 2 fördelad med (r 1)(c 1) frihetsgrader och där ê ij = ni.n.j n. För att approximationen ska vara god bör ê ij 5 för minst 80% av cellerna. ê ij Förkasta H 0 för stora värden på teststatistikan Goodness of t För att testa om en kategorisk variabel med k kategorier följer förutbestämda proportioner p 1, p 2,, p k används ett chi2-test. χ 2 = (n i np i ) 2 np i som är approximativt χ 2 fördelad med k 1 frihetsgrader. För att approximationen ska vara god bör np i 5 för varje i. H 0 förkastas för stora värden på χ 2. Regression Vid linjär regression med n observationspar (x i, y i ) skattar man en linje mha modellen y = β 0 + β 1 x + ɛ där ɛ N(0, σ) är bruset. Skattningar får man genom ˆβ 1 = (xi x)(y i ȳ) (xi x) 2 5
10 ˆβ 0 = ȳ ˆβ 1 x Test av H 0 : β 1 = 0 testas med en teststatistika av typen T = ˆβ 1 se( ˆβ 1 ) som är t fördelad med n 2 frihetsgrader Förklaringsgraden R 2 är den andel av variansen hos Y som förklaras av regressionsmodellen. I enkel linjär regression är R 2 = r 2, där r är Pearsons korrelationskoecient. Korrelation Pearsons korrelationskoecient r är ett mått mellan 1 och 1. (xi x)(y i ȳ) r = (xi x) 2 (y i ȳ) 2 som skattar en motsvarande populationsstorhet ρ. Om X och Y är oberoende så är ρ = 0. Man kan testa H 0 : ρ = 0 med T = r n 2 1 r 2 som är t fördelad med n 2 frihetsgrader och identisk med teststatistikan för H 0 : β 1 = 0 från regressionsanalysen. 6
11 A-6 Appendix Tables Table A.3 Standard Normal Curve Areas Φ(z) P(Z z) Standard normal density curve Shaded area = Φ(z) 0 z z (continued) Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the ebook and/or echapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
12 Appendix Tables A-7 Table A.3 Standard Normal Curve Areas (cont.) (z) 5 P(Z # z) z Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the ebook and/or echapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
13 Appendix Tables A-9 Table A.5 Critical Values for t Distributions t density curve Shaded area = 0 t, v Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the ebook and/or echapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
14 Appendix Tables A-11 Table A.7 Critical Values for Chi-Squared Distributions 2 density curve Shaded area = α 0 α, For v. 40, x 2 a,v, va v 1 z 2 a B9v b Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the ebook and/or echapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
15 A-12 Appendix Tables Table A.8 t Curve Tail Areas t curve Area to the right of t 0 t t (continued) Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the ebook and/or echapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
16 Appendix Tables A-13 Table A.8 t Curve Tail Areas (cont.) t curve Area to the right of t 0 t t `( 5z) Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the ebook and/or echapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
Formler och tabeller till kursen MSG830
Formler och tabeller till kursen MSG830 Deskriptiva mått För ett datamängd x 1,, x n denieras medelvärde standardavvikelse standardfelet (SEM) Sannolikheter x = 1 n n i=1 = x 1 + + x n n s = 1 n (x i x)
MSG830 Statistisk analys och experimentplanering
MSG830 Statistisk analys och experimentplanering Tentamen 8 juni 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri
MSG830 Statistisk analys och experimentplanering
MSG830 Statistisk analys och experimentplanering Tentamen 16 April 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri
MSG830 Statistisk analys och experimentplanering
MSG830 Statistisk analys och experimentplanering Tentamen 15 Januari 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Kalkylator
MSG830 Statistisk analys och experimentplanering
MSG830 Statistisk analys och experimentplanering Tentamen 15 januari 2016, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri
MSG830 Statistisk analys och experimentplanering
MSG830 Statistisk analys och experimentplanering Tentamen 20 Mars 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri
Sannolikheter och kombinatorik
Sannolikheter och kombinatorik En sannolikhet är ett tal mellan 0 och 1 som anger hur frekvent en händelse sker, där 0 betyder att det aldrig sker och 1 att det alltid sker. När vi talar om sannolikheter
MSG830 Statistisk analys och experimentplanering
MSG830 Statistisk analys och experimentplanering Tentamen 16 April 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri
MSG830 Statistisk analys och experimentplanering - Lösningar
MSG830 Statistisk analys och experimentplanering - Lösningar Tentamen 16 augusti 2016, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel:
MSG830 Statistisk analys och experimentplanering
MSG830 Statistisk analys och experimentplanering Tentamen 20 Mars 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri
MSG830 Statistisk analys och experimentplanering
MSG830 Statistisk analys och experimentplanering Tentamen 15 januari 2016, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri
Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig
Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
Övningstenta för MSG830
Övningstenta för MSG830 Max 30 p, för godkänt krävs 12 p 1. Vi har två händelser A och B. Om dessa vet vi att A sker med sannolikheten 0.2 och B med sannolikheten 0.5. Sannolikheten att varken A eller
Föreläsning 6, Repetition Sannolikhetslära
Föreläsning 6, Repetition Sannolikhetslära kap 4 Sannolikhetslära och slumpvariabler kap 5 Stickprov, medelvärden, CGS, binomialfördelning Viktiga grundbegrepp utfall, händelse, sannolikheter, betingad
Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13
Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare
FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD 208-08-26 Sannolikhetsteori Följande gäller för sannolikheter: 0 P(A P(Ω = P(A
Tentamen i Matematisk Statistik, 7.5 hp
Tentamen i Matematisk Statistik, 7.5 hp Distanskurs 15 januari, 2011 kl. 9.00 13.00 Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG. Hjälpmedel: Miniräknare samt formelsamling som medföljer tentamenstexten.
Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.
Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 Hypotesprövning Innehåll Hypotesprövning 1 Hypotesprövning Inledande exempel Hypotesprövning Exempel. Vi är intresserade av en variabel X om vilken vi kan anta att den är (approximativt) normalfördelad
F9 SAMPLINGFÖRDELNINGAR (NCT
Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion
Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 6.5 hp AT1MS1 DTEIN16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal
Tenta i Statistisk analys, 15 december 2004
STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, ML 15 december 004 Lösningar Tenta i Statistisk analys, 15 december 004 Uppgift 1 Vi har två stickprov med n = 5 st.
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:
FACIT: Tentamen L9MA30, LGMA30
Göteborgs Universitetet GU Lärarprogrammet 06 FACIT: Matematik för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik för gymnasielärare, Sannolikhetslära och statistik 07-0-04 kl..0-.0 Examinator
FÖRELÄSNING 8:
FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data
Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.
FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02. Sannolikhetsteori. Beskrivning av data
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02 Sannolikhetsteori Följande gäller för sannolikheter:
Lektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
TAMS65. Formel- och tabellsamling i matematisk statistik TAMS65. Martin Singull TAMS65 TAMS65
Formel- och tabellsamling i matematisk statistik Martin Singull Innehåll 4.1 Multipel regression.............................. 15 1 Sannolikhetslära 7 1.1 Några diskreta fördelningar.........................
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE31 Sannolikhet, statistik och risk 218-5-31 kl. 8:3-13:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.
Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle
Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle Lärare: Mikael Elenius, 2006-08-25, kl:9-14 Betygsgränser: 65 poäng Väl Godkänt, 50 poäng
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2017-08-15 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 031-7725325 Hjälpmedel: Valfri
Formel- och tabellsamling i matematisk statistik
Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P
Kurssammanfattning MVE055
Obs: Detta är enbart tänkt som en översikt och innehåller långt ifrån allt som ingår i kursen (vilket anges exakt på hemsidan). Fullständiga antaganden i satser kan saknas och fel kan förekomma så kontrollera
Lösningsförslag till Matematisk statistik LKT325 Tentamen
Lösningsförslag till Matematisk statistik LKT325 Tentamen 20190115 Kursansvarig: Reimond Emanuelsson Betygsgränser: för betyg 3 krävs minst 20 poäng, för betyg 4 krävs minst 30 poäng, för betyg 5 krävs
TMS136: Dataanalys och statistik Tentamen
TMS136: Dataanalys och statistik Tentamen 013-08-7 Examinator och jour: Mattias Sunden, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkänd räknare och formelsamling (formelsamling delas ut med tentan). Betygsgränser:
Tentamen MVE302 Sannolikhet och statistik
Tentamen MVE32 Sannolikhet och statistik 219-6-5 kl. 8:3-12:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Oskar Allerbo, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2018-05-31 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 031-7725325 Hjälpmedel: Valfri
MSG830 Statistisk analys och experimentplanering - Lösningar
MSG830 Statistisk analys och experimentplanering - Lösningar Tentamen 15 Januari 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel:
9. Konfidensintervall vid normalfördelning
TNG006 F9 09-05-016 Konfidensintervall 9. Konfidensintervall vid normalfördelning Låt x 1, x,..., x n vara ett observerat stickprov av oberoende s.v. X 1, X,..., X n var och en med fördelning F. Antag
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl
Karlstads universitet Avdelningen för nationalekonomi och statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2017-06-01 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 031-7725325 Hjälpmedel: Valfri
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology September 21, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två
Tentamen i Tillämpad Matematik och statistik för IT-forensik. Del 2: Statistik 7.5 hp
Tentamen i Tillämpad Matematik och statistik för IT-forensik. Del 2: Statistik 7.5 hp 15 januari, 2014 kl. 9.00 13.00 Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG. Hjälpmedel: Typgodkänd miniräknare
Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik
Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =
Mälardalens Högskola. Formelsamling. Statistik, grundkurs
Mälardalens Högskola Formelsamling Statistik, grundkurs Höstterminen 2015 Deskriptiv statistik Populationens medelvärde (population mean): μ = X N Urvalets medelvärde (sample mean): X = X n Där N är storleken
0 om x < 0, F X (x) = c x. 1 om x 2.
Avd. Matematisk statistik TENTAMEN I SF193 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH MÅNDAGEN DEN 16 AUGUSTI 1 KL 8. 13.. Examinator: Gunnar Englund, tel. 7974 16. Tillåtna hjälpmedel: Läroboken.
Lycka till!
Avd. Matematisk statistik TENTAMEN I 5B1503 STATISTIK MED FÖRSÖKSPLANERING FÖR K OCH B MÅNDAGEN DEN 25 AUGUSTI 2003 KL 14.00 19.00. Examinator: Gunnar Englund, 790 7416. Tillåtna hjälpmedel: Formel- och
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology April 27, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två numeriska
TMS136. Föreläsning 11
TMS136 Föreläsning 11 Andra intervallskattningar Vi har sett att vi givet ett stickprov och under vissa antaganden kan göra intervallskattningar för väntevärden Man kan även gör intervallskattningar för
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE30 Sannolikhet, statistik och risk 207-08-5 kl. 8:30-3:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 03-7725325 Hjälpmedel: Valfri miniräknare.
TMS136. Föreläsning 13
TMS136 Föreläsning 13 Jämförelser mellan två populationer Hittills har vi gjort konfidensintervall och tester kring parametrar i EN population I praktiska sammanhang är man ofta intresserad av att jämföra
Exempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor
Kontinuerliga stokastiska variabler Exempel En stokastisk variabel är kontinuerlig om den kan anta vilka värden som helst i ett intervall, men sannolikheten för varje enskilt utfall är noll: P(X = x) =.
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data
FACIT: Tentamen L9MA30, LGMA30
Göteborgs Universitetet GU Lärarprogrammet 20 FACIT: Tentamen L9MA0, LGMA0 Matematik för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik för gymnasielärare, Sannolikhetslära och statistik 20-0-2
AMatematiska institutionen avd matematisk statistik
Kungl Tekniska Högskolan AMatematiska institutionen avd matematisk statistik TENTAMEN I 5B1503 STATISTIK MED FÖRSÖKSPLANERING FÖR B OCH K FREDAGEN DEN 11 JANUARI 2002 KL 14.00 19.00. Examinator: Gunnar
TENTAMEN I STATISTIKENS GRUNDER 2
STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 2 2012-11-01 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:
FACIT: Tentamen L9MA30, LGMA30
Göteborgs Universitetet GU Lärarprogrammet 216 FACIT: Matematik 3 för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik 3 för gymnasielärare, Sannolikhetslära och statistik 216-1-21 kl. 8.3-12.3
Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet
Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Uppgift 1 (20 poäng) A) (4p) Om kommunens befolkning i den lokala arbetsmarknaden
Kap 2. Sannolikhetsteorins grunder
Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser
Föreläsning 4: Konfidensintervall (forts.)
Föreläsning 4: Konfidensintervall forts. Johan Thim johan.thim@liu.se 3 september 8 Skillnad mellan parametrar Vi kommer nu fortsätta med att konstruera konfidensintervall och vi kommer betrakta lite olika
Standardfel (Standard error, SE) SD eller SE. Intervallskattning MSG Staffan Nilsson, Chalmers 1
Standardfel (Standard error, SE) Anta vi har ett stickprov X 1,,X n där varje X i has medel = µ och std.dev = σ. Då är Det sista kalls standardfel (eng:standard error of mean (SEM) eller (SE) och skattas
Uppgift 1. f(x) = 2x om 0 x 1
Avd. Matematisk statistik TENTAMEN I Matematisk statistik SF1907, SF1908 OCH SF1913 TORSDAGEN DEN 30 MAJ 2013 KL 14.00 19.00. Examinator: Gunnar Englund, 073 321 3745 Tillåtna hjälpmedel: Formel- och tabellsamling
TENTAMEN I STATISTIKENS GRUNDER 1
STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 1 2012-10-03 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I 5B508 MATEMATISK STATISTIK FÖR S TISDAGEN DEN 20 DECEMBER 2005 KL 08.00 3.00. Examinator: Gunnar Englund, tel. 790 746. Tillåtna hjälpmedel: Formel- och tabellsamling
(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka.
Avd. Matematisk statistik TENTAMEN I SF1901, SF1905 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 11 JANUARI 2016 KL 14.00 19.00. Kursledare för CINEK2: Thomas Önskog, tel: 08 790 84 55 Kursledare för
F13 Regression och problemlösning
1/18 F13 Regression och problemlösning Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/3 2013 2/18 Regression Vi studerar hur en variabel y beror på en variabel x. Vår modell
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE30 Sannolikhet, statistik och risk 207-06-0 kl. 8:30-3:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 03-7725348 Hjälpmedel: Valfri miniräknare.
Matematisk statistik KTH. Formelsamling i matematisk statistik
Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska
Föreläsning 11: Mer om jämförelser och inferens
Föreläsning 11: Mer om jämförelser och inferens Matematisk statistik David Bolin Chalmers University of Technology Maj 12, 2014 Oberoende stickprov Vi antar att vi har två oberoende stickprov n 1 observationer
TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng
Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-08-31 Tid:
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK MÅNDAGEN DEN 15:E AUGUSTI 201 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 849. Tillåtna hjälpmedel:
0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.
Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2019-06-07 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson Jourhavande
Föreläsning 12: Regression
Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är
Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper
Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Tobias Abenius February 21, 2012 Envägs variansanalys (ANOVA) I envägs variansanalys utnyttjas att
Del I. Uppgift 1 Låt A och B vara två oberoende händelser. Det gäller att P (A) = 0.4 och att P (B) = 0.3. Bestäm P (B A ). Svar:...
Avd. Matematisk statistik EXEMPELTENTAMEN I SANNOLIKHETSTEORI OCH STATISTIK, Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk statistik (utdelas vid tentamen). Tentamen består av två delar,
Uppgift 1 a) En kontinuerlig stokastisk variabel X har fördelningsfunktion
Avd. Matematisk statistik TENTAMEN I 5B57 MATEMATISK STATISTIK FÖR T och M ONSDAGEN DEN 9 OKTOBER 25 KL 8. 3.. Examinator: Jan Enger, tel. 79 734. Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk
FACIT för Förberedelseuppgifter: SF1911 STATISTIK FÖR BI0TEKNIK inför tentan MÅDAGEN DEN 9 DECEMBER 2016 KL Examinator: Timo Koski
FACIT för Förberedelseuppgifter: SF9 STATISTIK FÖR BI0TEKNIK inför tentan MÅDAGEN DEN 9 DECEMBER 206 KL 4.00 9.00. Examinator: Timo Koski - - - - - - - - - - - - - - - - - - - - - - - - 0. FACIT Problem
Statistisk försöksplanering
Statistisk försöksplanering Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Skriftlig tentamen 3 hp 51SF01 Textilingenjörsutbildningen Tentamensdatum: 25 Oktober 2017 Tid: 09:00-13 Hjälpmedel: Miniräknare
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2018-10-12 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 031-7725325 Hjälpmedel: Valfri
Tentamen MVE302 Sannolikhet och statistik
Tentamen MVE302 Sannolikhet och statistik 2019-06-05 kl. 8:30-12:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Oskar Allerbo, telefon: 031-7725325 Hjälpmedel: Valfri miniräknare.
Statistisk försöksplanering
Statistisk försöksplanering Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Skriftlig tentamen 3 hp 51SF01 Textilingenjörsutbildningen Tentamensdatum: 2 November Tid: 09:00-13 Hjälpmedel: Miniräknare
Repetitionsföreläsning
Slumpförsök Repetitionsföreläsning Föreläsning 15 Sannolikhet och Statistik 5 hp Med händelser A B... avses delmängder av ett utfallsrum. Slumpförsök = utfallsrummet + ett sannolikhetsmått P. Fredrik Jonsson
4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler
Föreläsning 2 4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler Stokastiskavariabler Stokastisk variabel (eng: random variable) En variabel vars värde
Föreläsning 15: Försöksplanering och repetition
Föreläsning 15: Försöksplanering och repetition Matematisk statistik Chalmers University of Technology Oktober 19, 2015 Utfall och utfallsrum Slumpmässigt försök Man brukar säga att ett slumpmässigt försök
Tentamen för kursen. Linjära statistiska modeller. 22 augusti
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 22 augusti 2008 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus
MVE051/MSG Föreläsning 14
MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik David Bolin Chalmers University of Technology April 7, 2014 Projektuppgift Projektet går ut på att genomföra ett statistiskt försök och analysera resultaten.
Våra vanligaste fördelningar
Sida Våra vanligaste fördelningar Matematisk statistik för D3, VT Geometrisk fördelning X är geometriskt fördelad med parameter p, X Geo(p), om P (X = k) = ( p) k p P (X k) = ( p) k för k =,,... Beskriver
F14 HYPOTESPRÖVNING (NCT 10.2, , 11.5) Hypotesprövning för en proportion. Med hjälp av data från ett stickprov vill vi pröva
Stat. teori gk, ht 006, JW F14 HYPOTESPRÖVNING (NCT 10., 10.4-10.5, 11.5) Hypotesprövning för en proportion Med hjälp av data från ett stickprov vill vi pröva H 0 : P = P 0 mot någon av H 1 : P P 0 ; H
Tentamen L9MA30, LGMA30
Göteborgs Universitetet GU Lärarprogrammet 017 Matematik 3 för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik 3 för gymnasielärare, Sannolikhetslära och statistik 017-10-0 kl. 08:30-1:30 Examinator:
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 22 december, 2016 Examinatorer: Kerstin Wiklander och Erik Broman.
Kap 3: Diskreta fördelningar
Kap 3: Diskreta fördelningar Sannolikhetsfördelningar Slumpvariabler Fördelningsfunktion Diskreta fördelningar Likformiga fördelningen Binomialfördelningen Hypergeometriska fördelningen Poisson fördelningen
4 Diskret stokastisk variabel
4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används
Lufttorkat trä Ugnstorkat trä
Avd. Matematisk statistik TENTAMEN I SF1901 och SF1905 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 18:E OKTOBER 2012 KL 14.00 19.00. Examinator: Tatjana Pavlenko, tel 790 8466. Tillåtna hjälpmedel:
TENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER
Statistiska institutionen Frank Miller Dan Hedlin Skrivtid: 09.00-14.00 TENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2014-03-21 Hjälpmedel: Miniräknare utan lagrade formler eller text, bifogade tabeller
TMS136. Föreläsning 10
TMS136 Föreläsning 10 Intervallskattningar Vi har sett att vi givet ett stickprov kan göra punktskattningar för fördelnings-/populationsparametrar En punkskattning är som vi minns ett tal som är en (förhoppningsvis
F3 Introduktion Stickprov
Utrotningshotad tandnoting i arktiska vatten Inferens om väntevärde baserat på medelvärde och standardavvikelse Matematik och statistik för biologer, 10 hp Tandnoting är en torskliknande fisk som lever