Regressionsanalys. Mats Wilhelmsson. Priserna inom en region
|
|
- Jan-Olof Strömberg
- för 8 år sedan
- Visningar:
Transkript
1 Regressionsanalys Mats Wilhelmsson KTH Mats Wilhelmsson Tekn. Doktor, 000 Traffic Noise and Property Values Docent i bygg- och fastighetsekonomi KTH, Inst. för Fastigheter och Byggande Enhetschef för bygg- och fastighetsekonomi Forskning Värdepåverkande attribut Högskolor/universitet och ekonomisk tillväxt Byggandet och dess bestämningsfaktorer Priserna inom en region Varför skiljer sig priserna åt inom en region? Dvs vad är det som förklarar prisvariationen vid nyttjandet av tvärsnittsdata? Värdepåverkande egenskaper Fastigheten Yta, kvalitet, ålder Området Positiva och negativa externa effekter Segmenterad marknad Relationen mellan pris och fastighetens värdepåverkande egenskaper skattas mha den sk hedoniska metodiken. 3
2 Den hedoniska prisekvationen Pr is = α + βf + βo + β3t + ε Fastighetsknutna egenskaper (F) Områdesknutna egenskaper (O) Tidsberoende egenskaper (T) 4 Stockholm stad, Unit Average Standard deviation Maximum Minimum Price (P) SEK,663,85,3,84 4,000, ,000 Living area (LA) Square meters Quality (Q) Index Age (A) Year Age > 60 year Binary 46% Lot size (LS) Square meters ,33 88 Other area (OA) Square meters Distance (D) Meters from 8,65,688 6,66 4,46 CBD Sea view (SV) Binary % Q 000 Binary 6% Q 000 Binary 0% Q3 000 Binary 9% Q4 000 Binary 0% Q 00 Binary 7% Q 00 Binary 7% Brännkyrka Binary 6% Bromma Binary 4% Enskede Binary 6% Essinge Binary 3% Farsta Binary 9% Hägersten Binary 4% Hässelby Binary % Skärholmen Binary % Skarpnäck Binary 4% Spånga Binary % Vällingby Binary 4% Vantör Binary 4% Västerled Binary 4% 5 Estimeringar (exempel) Koeff. t-värde Bostadsyta.53.3 Biyta Ålder Ålder (>60) Sjönära Tomtareal Std.poäng Avst. CBD Q Q Q Q Q Ökar bostadsytan med % så ökar priset med 0,5% Sjöutsikt ökar priset med upp till 30% Ökar tomtstorleken med % ökar priset med 0,% Ökar avståndet från city med % så sjunker priset med 0,4% Ca 65 % av prisvariationen kan förklaras av modellen 6
3 Pris och avstånd från CBD 0% -0% Avstånd (meter) -0% -30% Västerort -40% -50% -60% Söderort -70% -80% -90% Priseffekt (procent) 7 Fler attribut. Antal rum Renoveringsbehov Inre/yttre Byte av vitvaror/tvätt/el Dränering av grund Kabel-tv,bredband,Centraldammsugare Garage, bastu, bad, bubbelbad, pool, sjöutsikt Kakelugn/öppen spis 3-glasfönster, snålspolande toaletter/blandare Vatten/fuktskadat Fasad/tak Ventilationssystem Värmesystem Produktion/Distribution Närhet till Allm. Kommunikationer Service Betyg av område Störning av Väg, tåg, flyg, kraftledningar 8 Betalningsviljan Betalningsviljan för olika attribut (kronor) ytterligare ett rum ej biltrafik kakelugn ej direktverkande el sjöutsikt 9 3
4 Betalningsviljan Betalningsvilja för ytterligare en kvm (kronor) WTP WTP u.inter Antal rum 0 Underhåll av fastigheten Priseffekt (%) priseffekt priseffekt (inre renoveringsbehov) priseffekt (yttre och inre renoveringsbehov) Ålder (år) Betyg av områden Toppen Ålsten (7,83) Höglandet Smedslätten Stora Mossen Södra Ängby Bagarmossen (7,67) Botten Eneby (6,30) Långsjö Bällsta Mariehäll Solberga Fagersjö (4,00) 4
5 Statistikteori Population - parametrar Urval - skattningar Statistiska slutsatser Skatta parametrar Testa hypoteser Population Samtliga fastigheter Medelvärde, µ Urval Sålda fastigheter Medelvärde, E(X) 3 Regressionsmodell Det betingade medelvärdet Modell: y i =a+bx i +e i där y beroende variabel x oberoende variabel (variabler), förklarande variabler a intercept, konstant b riktningskoefficient e residual a, b och e är det som skall skattas. Skattningen sker genom att minimera e. 4 Härledning av a och b OLS (ordinary least square) a = y bx kov( xy) b = var( x) 5 5
6 Pris, kkr Exempel, Excel-utskrift y = 7,9x - 70,556 R = 0, Bostadsyta UTDATASAMMANFATTNING Regressionsstatistik Multipel-R 0,79 R-kvadrat 0,63 Justerad R-kvadrat 0,58 Standardfel 0 Observationer 0 Exempel, Excel-utskrift ANOVA fg KvS MKv F p-värde för F Regression ,44 0,00634 Residual Totalt Koefficienter Standardfel t-kvot p-värde Nedre 95% Övre 95% Konstant -70,56 9,33-0,4 0, BOSTADSYTA 7,,97 3,67 0, Verbal tolkning Ekonomisk tolkning a det förväntade värdet av y om x är lika med noll b om x ökar med en enhet så ökar y med b enheter 8 6
7 Exempel, Excel-utskrift UTDATASAMMANFATTNING Regressionsstatistik Multipel-R 0,79 R-kvadrat 0,63 Justerad R-kvadrat 0,58 Standardfel 0 Observationer 0 ANOVA fg KvS MKv F p-värde för F ,00634 Regression 3,44 Residual Totalt Koefficienter Standardfel t-kvot p-värde Nedre 95% Övre 95% Konstant -70,56 9,33-0,4 0, BOSTADSYTA 7,,97 3,67 0,006 3 Tolkning: om bostadsytan ökar med kvadratmeter ökar priset med 7000 kronor. En fastighet utan bostadsyta betingar ett pris på kronor. 9 Precision Standardavvikelsen Hypotestest Statistisk tolkning Är b statistiskt skilt från noll? 0 Precision Säkerheten hos modellen kan bl.a. mätas med hur stor spridningen i modellen är. Ju mindre spridning desto bättre modell. Spridningen mäts med variansen och standardavvikelsen. Variansen hos a och b beror på modellens varians, antalet observationer samt medelvärdet och spridningen i den oberoende variabeln. 7
8 e Precision Standardfel hos skattningen av y: s e n n s ( ˆ e = ei = yi yi ) n i= n i= s e = s Standardfelet hos skattningarna a och b:s a och s b sb = var( b) = se ( ) ( x x) x sa = var( a) = se ( + ) n ( x x) Exempel, Excel-utskrift UTDATASAMMANFATTNING Regressionsstatistik Multipel-R 0,79 R-kvadrat 0,63 Justerad R-kvadrat 0,58 Standardfel 0 Observationer 0 ANOVA fg KvS MKv F p-värde för F ,00634 Regression 3,44 Residual Totalt Koefficienter Standardfel t-kvot p-värde Nedre 95% Övre 95% Konstant -70,56 9,33-0,4 0, BOSTADSYTA 7,,97 3,67 0,006 3 Tolkning: om bostadsytan ökar med kvadratmeter så ökar priset med 7000 kronor plus/minus 000. Det genomsnittliga felet i skattningarna är kronor. 3 Förklaringsgrad Determinationskoefficienten, goodness of fit, R-square, R TSS: Total variation i den beroende variabeln RSS: Variation som kan förklaras av modellen ESS: Oförklarad variation TSS=RSS+ESS R =RSS/TSS=-ESS/TSS 4 8
9 Förklaringsgrad Determinationkoefficient (R ) R n ( yˆ i y) i= = n ( y y) i= i 5 UTDATASAMMANFATTNING Exempel, Excel-utskrift Regressionsstatistik Multipel-R 0,79 R-kvadrat 0,63 Justerad R-kvadrat 0,58 Standardfel 0 Observationer 0 ANOVA fg KvS MKv F p-värde för F Regression ,44 0,00634 Residual Totalt Koefficienter Standardfel t-kvot p-värde Nedre 95% Övre 95% Konstant -70,56 9,33-0,4 0, BOSTADSYTA 7,,97 3,67 0,006 3 Tolkning: Cirka 60 procent av den totala variationen i priset kan förklaras av variationen i bostadsytan. 6 Enskilda parametrar Hypotestest Är en skattning signifikant skild från noll? Om teststorheten är större än det kritiska värdet förkastas nollhypotesen att koefficientskattningen är lika med noll, dvs den oberoende variabeln (x) har en inverkan på den beroende variabeln (y) 7 9
10 Hypotestest DVS kan vi dra några slutsatser angående populationen med hjälp av urvalet? Till vår hjälp använder vi både lägesmått (medelvärdet) och spridning (standardavvikelsen). Genom att skatta en teststorhet och jämför det mot ett kritiskt värde kan vi förkasta eller acceptera en hypotes. 8 Hypotestest Nollhypotes En hypotes som vi antar är sann och som vi sedan med hjälp av data försöker få tillräckligt med bevis mot hypotesen. Alternativ hypotes Mot vilken nollhypotesen testat mot. Teststorhet En regel med vars hjälp vi testar hypotesen och där varje urval producerar ett numeriskt värde. Kritiskt värde Det värde som teststorheten jämförs med för att bestämma om nollhypotesen skall förkastas eller ej. 9 Hypotestest Modell: y = a + b *x + b *x Hypotes: H 0 : β = 0 H : β 0 Vi antar att parametrarna har en normalfördelning med det förväntade värdet β och variansen σ b, dvs b N(β,σ b) Normalisera b β N (0,) σ b 30 0
11 Hypotestest Om, σ b är okänd använder vi oss av skattningen s b istället, vilket innebär att kvoten är t-fördelad istället för normalfördelad, dvs b β b = sb s bq t c = = [ om β = 0 i enlighet med hypotesen ] t n-k (α) t c är teststorheten t n-k (α) är det kritiska värdet Förkasta H 0 if t c > t n-k (α) Teststorheten t c är t-kvoten i MSExcel. 3 Hypotestest Probability 0,45 0,4 0,35 0,3 0,5 0, 0,5 0, 0, ,8-3,5-3,3-3 -,8 -,5 -,3 - -,8 -,5 -,3 - -0,8-0,5-0,3-0 0, 0,5 0,7,,5,7,,5,7 3, 3,5 3,7 3 4 High probability: accept H0 Low probablity: reject H0 Hypotestest Om teststorheten är större än det kritiska värdet förkasta nollhypotesen. Kritiskt värde: t α/ (n-) där α är signifikansnivån och (n-) antalet frihetsgrader. Vanligtvis använder man sig av signifikansnivån 95% och 99%. 33
12 UTDATASAMMANFATTNING Exempel, Excel-utskrift Regressionsstatistik Multipel-R 0,79 R-kvadrat 0,63 Justerad R-kvadrat 0,58 Standardfel 0 Observationer 0 ANOVA fg KvS MKv F p-värde för F ,00634 Regression 3,44 Residual Totalt Koefficienter Standardfel t-kvot p-värde Nedre 95% Övre 95% Konstant -70,56 9,33-0,4 0, BOSTADSYTA 7,,97 3,67 0,006 3 Tolkning: t-värdet avseende konstanten är lika med 0,4, dvs nollhypotesen kan inte förkastas. Däremot är t-värdet avseende bostadsytan lika med 3,67 vilket är högre än det kritiska värdet, dvs nollhypotesen kan förkastas på en 95%-ig signifikansnivå. Det innebär att bostadsytan har en effekt på priset. 34 Dummyvariabel En binär variabel som indikerar om en viss enskild observation (objekt) har en viss egenskap eller ej. Om koefficientskattningen är signifikant skild från noll så innebär det att regressionsmodellen skiftar Går att kombinera dummyvariabeln med kontinuerliga variabler. 35 Exempel PRIS BOSTADSYTA POOL
13 Exempel, Excel-utskrift UTDATASAMMANFATTNING Regressionsstatistik Multipel-R 0,89 R-kvadrat 0,80 Justerad R-kvadrat 0,74 Standardfel 58 Observationer 0 ANOVA fg KvS MKv F p-värde för F ,5 0,004 Regression 3,87 Residual ,8 Totalt Koefficienter Standardfel t-kvot p-värde Nedre 95% Övre 95% Konstant 39,3 34,00 0,68 0,876-54,095 59,547 BOSTADSYTA 6,0,6 3,709 0,0076,8 9,857 POOL 30,66 3,30,44 0,0446 0,8 63,4 Tolkning: om fastigheten har pool ökar priset med kronor, allt annat lika. Förklaringsgraden ökar från 58% till 74%. 37 Transformering av variablerna Beroende Oberoende Tolkning y x y=b x y ln(x) y=(b/00)% x ln(y) x % y=(00b) x ln(y) ln(x) % y=b% x 38 Exempel, Excel-utskrift UTDATASAMMANFATTNING Regressionsstatistik Multipel-R 0,9 R-kvadrat 0,83 Justerad R-kvadrat 0,784 Standardfel 0,4 Observationer 0 Koefficienter Standardfel t-kvot p-värde Nedre 95% Övre 95% 3,08 0,80 3,8 0,0,7 4,98 Konstant lnboyta 0,75 0,6 4,58 0,00 0,36,4 pool 0,7 0,,34 0,05 0,00 0,55 Tolkning: om bostadsytan ökar med % så ökar priset med 0,75%. Om fastigheten har en pool ökar priset med 7%. Observera: () förklaringsgraden ökar från 74% till 78% pga transformeringen. () t-värdet avseende bostadsytan ökar, dvs skattningen har en högre precision. (3) den genomsnittliga felskattningen har nu sjunkit till 4%. 39 3
14 Sammanfattning av exempel Genomsnittligt fel Bara pris 3% Bostadsyta % Bostadsyta+pool 6% Transf. variabler 4% 40 Residualanalys Heteroskedasticitet - ej konstant varians Autokorrelation - variansen är korrelerad över tiden Multikollinearitet - hög inbördes korrelation mellan olika oberoende variabler 4 Heteroskedasticitet lnboyta residualdiagram 0, 0,5 0, Residualer 0, ,5 5 5,5-0,05-0, -0,5-0, lnboyta 4 4
LTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING
LTH: Fastighetsekonomi 23-24 sep 2008 Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING Hypotesprövning (statistisk inferensteori) Statistisk hypotesprövning innebär att man med hjälp av slumpmässiga
Läs merMultipel Regressionsmodellen
Multipel Regressionsmodellen Koefficienterna i multipel regression skattas från ett stickprov enligt: Multipel Regressionsmodell med k förklarande variabler: Skattad (predicerad) Värde på y y ˆ = b + b
Läs merFöreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3
Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest
Läs merResidualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen
Residualanalys För modellen Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F7 regressionsanalys antog vi att ε, ε,..., ε är oberoende likafördelade N(,σ Då
Läs merF18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT
Stat. teori gk, ht 006, JW F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT 1.1, 13.1-13.6, 13.8-13.9) Modell för multipel linjär regression Modellantaganden: 1) x-värdena är fixa. ) Varje y i (i = 1,, n) är
Läs merStatistik B Regressions- och tidsserieanalys Föreläsning 1
Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs
Läs merProvmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13
Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare
Läs merKapitel 12: TEST GÄLLANDE EN GRUPP KOEFFICIENTER - ANOVA
Kapitel 12: TEST GÄLLANDE EN GRUPP KOEFFICIENTER - ANOVA 12.1 ANOVA I EN MULTIPEL REGRESSION Exempel: Tjänar man mer som egenföretagare? Nedan visas ett utdrag ur ett dataset som innehåller information
Läs merFöreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 8 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Enkel linjär regression (kap 17.1 17.5) o Skatta regressionslinje (kap 17.2) o Signifikant lutning? (kap 17.3, 17.5a) o Förklaringsgrad
Läs merFöreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 9 Statistik; teori och tillämpning i biologi 1 (kap. 20) Introduktion I föregående föreläsning diskuterades enkel linjär regression, där en oberoende variabel X förklarar variationen hos en
Läs merRättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 6.5 hp AT1MS1 DTEIN16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal
Läs merRegressions- och Tidsserieanalys - F4
Regressions- och Tidsserieanalys - F4 Modellbygge och residualanalys. Kap 5.1-5.4 (t.o.m. halva s 257), ej C-statistic s 23. Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F4 1
Läs merBetrakta kopparutbytet från malm från en viss gruva. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten i dessa.
Betrakta kopparutbytet från malm från en viss gruva. Anta att budgeten för utbytet är beräknad på att kopparhalten ligger på 70 %. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten
Läs merLösningsförslag till tentamen på. Statistik och kvantitativa undersökningar STA100, 15 hp. Fredagen den 13 e mars 2015
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Lösningsförslag till tentamen på Statistik och kvantitativa undersökningar STA100, 15 hp Fredagen den 13 e mars 015 1 a 13 och 14
Läs merRättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:
Statistik 2 Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Tentamen SST021 ACEKO16h, ACIVE16h 7,5 högskolepoäng Tentamensdatum: 2018-05-31 Tid: 14.00-19.00 Hjälpmedel: Valfri miniräknare Linjal
Läs merRegressions- och Tidsserieanalys - F1
Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp
Läs merBild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II
Bild 1 Medicinsk statistik II Läkarprogrammet T5 HT 2014 Anna Jöud Arbets- och miljömedicin, Lunds universitet ERC Syd, Skånes Universitetssjukhus anna.joud@med.lu.se Bild 2 Sammanfattning Statistik I
Läs merHypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University
Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att
Läs merLinjär regressionsanalys. Wieland Wermke
+ Linjär regressionsanalys Wieland Wermke + Regressionsanalys n Analys av samband mellan variabler (x,y) n Ökad kunskap om x (oberoende variabel) leder till ökad kunskap om y (beroende variabel) n Utifrån
Läs merKorrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION
KAPITEL 6: LINEAR REGRESSION: PREDICTION Prediktion att estimera "poäng" på en variabel (Y), kriteriet, på basis av kunskap om "poäng" på en annan variabel (X), prediktorn. Prediktion heter med ett annat
Läs mer732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet
732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris
Läs merRegressions- och Tidsserieanalys - F1
Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet May 4, 2015 Wänström (Linköpings universitet) F1 May 4, 2015 1 / 25 Regressions- och tidsserieanalys,
Läs merTENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER
Statistiska institutionen Frank Miller Dan Hedlin Skrivtid: 09.00-14.00 TENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2014-03-21 Hjälpmedel: Miniräknare utan lagrade formler eller text, bifogade tabeller
Läs merFöreläsning G60 Statistiska metoder
Föreläsning 9 Statistiska metoder 1 Dagens föreläsning o Regression Regressionsmodell Signifikant lutning? Prognoser Konfidensintervall Prediktionsintervall Tolka Minitab-utskrifter o Sammanfattning Exempel
Läs merEnvägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper
Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Tobias Abenius February 21, 2012 Envägs variansanalys (ANOVA) I envägs variansanalys utnyttjas att
Läs merFöreläsning 9. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 9 Statistik; teori och tillämpning i biologi 1 (kap. 20) Introduktion I föregående föreläsning diskuterades enkel linjär regression, där en oberoende variabel X förklarar variationen hos en
Läs merFöreläsning 11: Mer om jämförelser och inferens
Föreläsning 11: Mer om jämförelser och inferens Matematisk statistik David Bolin Chalmers University of Technology Maj 12, 2014 Oberoende stickprov Vi antar att vi har två oberoende stickprov n 1 observationer
Läs merPreliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet
Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Uppgift 1 (20 poäng) A) (4p) Om kommunens befolkning i den lokala arbetsmarknaden
Läs merMatematisk statistik, Föreläsning 5
Matematisk statistik, Föreläsning 5 Ove Edlund LTU 2011-12-09 Ove Edlund (LTU) Matematisk statistik, Föreläsning 5 2011-12-09 1 / 25 Laboration 4 Jobba i grupper med storlek 2 Ove Edlund (LTU) Matematisk
Läs merMetod och teori. Statistik för naturvetare Umeå universitet
Statistik för naturvetare -6-8 Metod och teori Uppgift Uppgiften är att undersöka hur hjärtfrekvensen hos en person påverkas av dennes kroppstemperatur. Detta görs genom enkel linjär regression. Låt signifikansnivån
Läs mer7.5 Experiment with a single factor having more than two levels
Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan och att en inblandning mellan 10% och 40% är bra. För att
Läs mer, s a. , s b. personer från Alingsås och n b
Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen
Läs merAnalys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken
Analys av medelvärden Jenny Selander jenny.selander@ki.se 524 800 29, plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Jenny Selander, Kvant. metoder, FHV T1 december 20111 Innehåll Normalfördelningen
Läs merimport totalt, mkr index 85,23 100,00 107,36 103,76
1. a) F1 Kvotskala (riktiga siffror. Skillnaden mellan 3 och 5 månader är lika som skillnaden mellan 5 och 7 månader. 0 betyder att man inte haft kontakt med innovations Stockholm.) F2 Nominalskala (ingen
Läs merRegressionsanalys av lägenhetspriser i Spånga
Regressionsanalys av lägenhetspriser i Spånga Mahamed Saeid Ali Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2016:11 Matematisk statistik Juni 2016
Läs merTentamen för kursen. Linjära statistiska modeller. 22 augusti
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 22 augusti 2008 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus
Läs mer732G71 Statistik B. Föreläsning 1, kap Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20
732G71 Statistik B Föreläsning 1, kap. 3.1-3.7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20 Exempel, enkel linjär regressionsanalys Ett företag vill veta
Läs merF14 HYPOTESPRÖVNING (NCT 10.2, , 11.5) Hypotesprövning för en proportion. Med hjälp av data från ett stickprov vill vi pröva
Stat. teori gk, ht 006, JW F14 HYPOTESPRÖVNING (NCT 10., 10.4-10.5, 11.5) Hypotesprövning för en proportion Med hjälp av data från ett stickprov vill vi pröva H 0 : P = P 0 mot någon av H 1 : P P 0 ; H
Läs merTENTAMEN. HiG sal 51:525A B eller annan ort. Lärare: Tommy Waller ( tel: eller )
TENTMEN Kurs: Plats: Dataanalys och statistik 2 distans 7,5 hp HiG sal 5:525 B eller annan ort Datum: 2 6 9 Tid: 9: 4: Lärare: Tommy Waller ( tel: 26-64 89 65 eller 74 3 86 3 ) Hjälpmedel: Miniräknare
Läs merGrundläggande matematisk statistik
Grundläggande matematisk statistik Linjär Regression Uwe Menzel, 2018 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Linjär Regression y i y 5 y 3 mätvärden x i, y i y 1 x 1 x 2 x 3 x 4 x 6 x
Läs mer7.5 Experiment with a single factor having more than two levels
7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan
Läs merTentamen på Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 4
MÄLARDALENS HÖGSKOLA Akademin för hållbar samhälls- och teknikutveckling Statistik Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp Tillåtna hjälpmedel: Miniräknare (Formelsamling bifogas
Läs merFöreläsning 12: Regression
Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är
Läs merTillämpad statistik (A5), HT15 Föreläsning 11: Multipel linjär regression 2
Tillämpad statistik (A5), HT15 Föreläsning 11: Multipel linjär regression 2 Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2015-11-23 Faktum är att vi i praktiken nästan alltid har en blandning
Läs merF16 MULTIPEL LINJÄR REGRESSION (NCT , 13.9) Anpassning av linjär funktion till givna data
Stat. teori gk, ht 006, JW F16 MULTIPEL LINJÄR REGRESSION (NCT 13.1-13.3, 13.9) Anpassning av linjär funktion till givna data Data med en beroende variabel (y) och K stycken (potentiellt) förklarande variabler
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2016-06-03 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson Jourhavande
Läs merMatematisk statistik för D, I, Π och Fysiker
Matematisk statistik för D, I, Π och Fysiker Föreläsning 15 Johan Lindström 4 december 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F15 1/28 Repetition Linjär regression Modell Parameterskattningar
Läs merMälardalens Högskola. Formelsamling. Statistik, grundkurs
Mälardalens Högskola Formelsamling Statistik, grundkurs Höstterminen 2015 Deskriptiv statistik Populationens medelvärde (population mean): μ = X N Urvalets medelvärde (sample mean): X = X n Där N är storleken
Läs mer10.1 Enkel linjär regression
Exempel: Hur mycket dragkraft behövs för att en halvledare skall lossna från sin sockel vid olika längder på halvledarens ben. De halvledare vi betraktar är av samma storlek (bortsett benlängden). 70 Scatterplot
Läs merRegressionsanalys. - en fråga om balans. Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet
Regressionsanalys - en fråga om balans Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet Innehåll: 1. Enkel reg.analys 1.1. Data 1.2. Reg.linjen 1.3. Beta (β) 1.4. Signifikansprövning 1.5. Reg.
Läs merTMS136. Föreläsning 13
TMS136 Föreläsning 13 Jämförelser mellan två populationer Hittills har vi gjort konfidensintervall och tester kring parametrar i EN population I praktiska sammanhang är man ofta intresserad av att jämföra
Läs merF11. Kvantitativa prognostekniker
F11 Kvantitativa prognostekniker samt repetition av kursen Kvantitativa prognostekniker Vi har gjort flera prognoser under kursen Prognoser baseras på antagandet att historien upprepar sig Trenden följer
Läs merFÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik
Grundläggande statistik Påbyggnadskurs T1 Odontologisk profylaktik FÖRELÄSNINGSMATERIAL : KORRELATION OCH HYPOTESTESTNING t diff SE x 1 diff SE x x 1 x. Analytisk statistik Regression & Korrelation Oberoende
Läs merMedicinsk statistik II
Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning
Läs merEn scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser:
1 Uppgiftsbeskrivning Syftet med denna laboration var att utifrån uppmätt data avgöra: (i) Om något samband finnes mellan kroppstemperatur och hjärtfrekvens. (ii) Om någon signifikant skillnad i sockerhalt
Läs mer1/23 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet
1/23 REGRESSIONSANALYS F4 Linda Wänström Statistiska institutionen, Stockholms universitet 2/23 Multipel regressionsanalys Multipel regressionsanalys kan ses som en utvidgning av enkel linjär regressionsanalys.
Läs merF19, (Multipel linjär regression forts) och F20, Chi-två test.
Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med
Läs merRättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig
Läs merLösningar till SPSS-övning: Analytisk statistik
UMEÅ UNIVERSITET Statistiska institutionen 2006--28 Lösningar till SPSS-övning: Analytisk statistik Test av skillnad i medelvärden mellan två grupper Uppgift Testa om det är någon skillnad i medelvikt
Läs merFöreläsning 3. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 3 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Inferens om två populationer (kap 8.1 8.) o Parvisa observationer (kap 9.1 9.) o p-värde (kap 6.3) o Feltyper, styrka, stickprovsstorlek
Läs merTAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval
TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval Martin Singull Matematisk statistik Matematiska institutionen Innehåll Repetition (t-test för H 0 : β i = 0) Residualanalys Modellval Framåtvalsprincipen
Läs merParade och oparade test
Parade och oparade test Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning: möjliga jämförelser Jämförelser mot ett
Läs merMedicinsk statistik II
Medicinsk statistik II Läkarprogrammet T5 HT 2014 Susann Ullén FoU-centrum Skåne Skånes Universitetssjukhus Hypotesprövning Man sätter upp en nollhypotes (H0) och en mothypotes (H1) H0: Ingen effekt H1:
Läs merStatistisk försöksplanering
Statistisk försöksplanering Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Skriftlig tentamen 3 hp 51SF01 Textilingenjörsutbildningen Tentamensdatum: 2 November Tid: 09:00-13 Hjälpmedel: Miniräknare
Läs merStandardfel (Standard error, SE) SD eller SE. Intervallskattning MSG Staffan Nilsson, Chalmers 1
Standardfel (Standard error, SE) Anta vi har ett stickprov X 1,,X n där varje X i has medel = µ och std.dev = σ. Då är Det sista kalls standardfel (eng:standard error of mean (SEM) eller (SE) och skattas
Läs merSkrivning i ekonometri torsdagen den 8 februari 2007
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA2:3 Skrivning i ekonometri torsdagen den 8 februari 27. Vi vill undersöka hur variationen i lön för 2 belgiska löntagare = WAGE (timlön i euro)
Läs merFöreläsning 12: Linjär regression
Föreläsning 12: Linjär regression Matematisk statistik Chalmers University of Technology Oktober 4, 2017 Exempel Vi vill undersöka hur ett ämnes specifika värmeskapacitet (ämnets förmåga att magasinera
Läs merLABORATION 3 - Regressionsanalys
Institutionen för teknikvetenskap och matematik S0001M Matematisk statistik LABORATION 3 - Regressionsanalys I denna laboration ska du lösa ett antal uppgifter i regressionsanalys med hjälp av statistik-programmet
Läs mer7.1 Hypotesprövning. Nollhypotes: H 0 : µ = 3.9, Alternativ hypotes: H 1 : µ < 3.9.
Betrakta motstånden märkta 3.9 kohm med tolerans 1%. Anta att vi innan mätningarna gjordes misstänkte att motståndens förväntade värde µ är mindre än det utlovade 3.9 kohm. Med observationernas hjälp vill
Läs merLÖSNINGAR TILL. Matematisk statistik, Tentamen: kl FMS 086, Matematisk statistik för K och B, 7.5 hp
LÖSNINGAR TILL Matematisk statistik, Tentamen: 011 10 1 kl 14 00 19 00 Matematikcentrum FMS 086, Matematisk statistik för K och B, 7.5 hp Lunds tekniska högskola MASB0, Matematisk statistik kemister, 7.5
Läs merχ 2, chi-två Test av anpassning: sannolikheter specificerade Data: n observationer klassificerade i K olika kategorier:
Stat. teori gk, ht 006, JW F1 χ -TEST (NCT 16.1-16.) Ordlista till NCT Goodness-of-fit-test χ, chi-square Test av anpassning χ, chi-två Test av anpassning: sannolikheter specificerade i förväg Data: n
Läs merFormler och tabeller till kursen MSG830
Formler och tabeller till kursen MSG830 Deskriptiva mått För ett datamängd x 1,, x n denieras medelvärde standardavvikelse standardfelet (SEM) Sannolikheter x = 1 n n i=1 = x 1 + + x n n s = 1 n (x i x)
Läs merKapitel 10 Hypotesprövning
Sannolikhetslära och inferens II Kapitel 10 Hypotesprövning 1 Vad innebär hypotesprövning? Statistisk inferens kan utföras genom att ställa upp hypoteser angående en eller flera av populationens parametrar.
Läs merSTOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström. Omtentamen i Regressionsanalys
STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström Omtentamen i Regressionsanalys 2009-01-08 Skrivtid: 9.00-14.00 Godkända hjälpmedel: Miniräknare utan lagrade formler. Tentamen består
Läs merAnalytisk statistik. Mattias Nilsson Benfatto, PhD.
Analytisk statistik Mattias Nilsson Benfatto, PhD Mattias.nilsson@ki.se Beskrivande statistik kort repetition Centralmått Spridningsmått Normalfördelning Konfidensintervall Korrelation Analytisk statistik
Läs mer1. Lära sig plotta en beroende variabel mot en oberoende variabel. 2. Lära sig skatta en enkel linjär regressionsmodell
Datorövning 1 Regressions- och tidsserieanalys Syfte 1. Lära sig plotta en beroende variabel mot en oberoende variabel 2. Lära sig skatta en enkel linjär regressionsmodell 3. Lära sig beräkna en skattning
Läs merSambandsmått. Centralmått. Det mest frekventa värdet. Det mittersta värdet i en rangordnad fördelning. Aritmetiska medelvärdet.
PM315 HT016 Emma äck Formelsamling Centralmått Typvärde T Median Md ritmetiska medelvärdet Det mest frekventa värdet Det mittersta värdet i en rangordnad fördelning = n Spridningsmått Variationsvidd (Range)
Läs merFöreläsning 12: Repetition
Föreläsning 12: Repetition Marina Axelson-Fisk 25 maj, 2016 GRUNDLÄGGANDE SANNOLIKHETSTEORI Grundläggande sannolikhetsteori Utfall = resultatet av ett försök Utfallsrum S = mängden av alla utfall Händelse
Läs merExaminationsuppgifter del 2
UMEÅ UNIVERSITET Institutionen för Matematik och Matematisk statistisk Statistik för ingenjörer, poäng, Anders Lundquist 7-- Examinationsuppgifter del Redovisas muntligt den / (Ö-vik) samt / (Lycksele).
Läs merKapitel 22: KLUSTRADE SAMPEL OCH PANELDATA
Kapitel 22: KLUSTRADE SAMPEL OCH PANELDATA Statistiska tester bygger alltid på vissa antaganden. Är feltermen homoskedastisk? Är den normalfördelad? Dessa antaganden är faktiskt aldrig uppfyllda i praktiken,
Läs merHöftledsdysplasi hos dansk-svensk gårdshund
Höftledsdysplasi hos dansk-svensk gårdshund Sjö A Sjö B Förekomst av parasitdrabbad öring i olika sjöar Sjö C Jämföra medelvärden hos kopplade stickprov Tio elitlöpare springer samma sträcka i en för dem
Läs merTentamen Tillämpad statistik A5 (15hp)
Uppsala universitet Statistiska institutionen A5 2014-08-26 Tentamen Tillämpad statistik A5 (15hp) 2014-08-26 UPPLYSNINGAR A. Tillåtna hjälpmedel: Miniräknare Formelsamlingar: A4/A8 Tabell- och formelsamling
Läs mer2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer
Datorövning 2 Regressions- och tidsserieanalys Syfte 1. Lära sig skapa en korrelationsmatris 2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna mot varandra 3. Lära sig beräkna
Läs merMatematisk statistik KTH. Formelsamling i matematisk statistik
Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska
Läs merTENTAMEN I MATEMATISK STATISTIK Statistik för lärare 7,5 hp
UMEÅ UNIVERSITET Tentamen 2016-08-24 Sid 1 TENTAMEN I MATEMATISK STATISTIK Statistik för lärare 7,5 hp Skrivtid: 16-22 Tillåtna hjälpmedel: Miniräknare. Formelblad och tabeller bifogas till tentamen. Studenterna
Läs merStatistiska analysmetoder, en introduktion. Fördjupad forskningsmetodik, allmän del Våren 2018
Statistiska analysmetoder, en introduktion Fördjupad forskningsmetodik, allmän del Våren 2018 Vad är statistisk dataanalys? Analys och tolkning av kvantitativa data -> förutsätter numeriskt datamaterial
Läs merLaboration 2 multipel linjär regression
Laboration 2 multipel linjär regression I denna datorövning skall ni 1. analysera data enligt en multipel regressionsmodell, dvs. inkludera flera förklarande variabler i en regressionsmodell 2. studera
Läs merHur man tolkar statistiska resultat
Hur man tolkar statistiska resultat Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Varför använder vi oss av statistiska tester?
Läs merRegressions- och Tidsserieanalys - F7
Regressions- och Tidsserieanalys - F7 Tidsserieregression, kap 6.1-6.4 Linda Wänström Linköpings universitet November 25 Wänström (Linköpings universitet) F7 November 25 1 / 28 Tidsserieregressionsanalys
Läs mer7,5 högskolepoäng. Statistisk försöksplanering och kvalitetsstyrning. TentamensKod: Tentamensdatum: 28 oktober 2016 Tid: 9.
Statistisk försöksplanering och kvalitetsstyrning Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Tentamen 4I2B KINAF4, KINAR4, KINLO4, KMASK4 7,5 högskolepoäng Tentamensdatum: 28 oktober 206 Tid:
Läs merPerson Antal månader som utrustningen ägts. Antal timmar utrustningen användes föregående vecka.
y Uppgift 1 (18p) I syfte för att se om antalet månader som man ägt en viss träningsutrustning påverkar träningsintensiteten har tio personer som har köpt träningsutrustningen fått ange hur många månader
Läs merFÖRELÄSNING 8:
FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data
Läs merRepetitionsföreläsning
Population / Urval / Inferens Repetitionsföreläsning Ett företag som tillverkar byxor gör ett experiment för att kontrollera kvalitén. Man väljer slumpmässigt ut 100 par som man utsätter för hård nötning
Läs mer8 Inferens om väntevärdet (och variansen) av en fördelning
8 Inferens om väntevärdet (och variansen) av en fördelning 8. Skattning av µ och Students T-fördelning Om σ är känd, kan man använda statistikan X µ σ/ n för att hitta konfidensintervall för µ. Om σ inte
Läs merMatematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 9 Joakim Lübeck (Johan Lindström 25 september 217 Johan Lindström - johanl@maths.lth.se FMSF7/MASB2 F9 1/23 Repetition Inferens för diskret
Läs merGör uppgift 6.10 i arbetsmaterialet (ingår på övningen 16 maj). För 10 torskar har vi värden på variablerna Längd (cm) och Ålder (år).
Matematikcentrum Matematisk statistik MASB11: BIOSTATISTISK GRUNDKURS DATORLABORATION 4, 21 MAJ 2018 REGRESSION OCH FORTSÄTTNING PÅ MINIPROJEKT II Syfte Syftet med dagens laboration är att du ska bekanta
Läs merStatistik 1 för biologer, logopeder och psykologer
Innehåll 1 Hypotesprövning Innehåll Hypotesprövning 1 Hypotesprövning Inledande exempel Hypotesprövning Exempel. Vi är intresserade av en variabel X om vilken vi kan anta att den är (approximativt) normalfördelad
Läs merFöljande resultat erhålls (enhet: 1000psi):
Variansanalys Exempel Aluminiumstavar utsätts för uppvärmningsbehandlingar enligt fyra olika standardmetoder. Efter behandlingen uppmäts dragstyrkan hos varje stav. Fem upprepningar görs för varje behandling.
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2019-06-07 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson Jourhavande
Läs merAutokorrelation och Durbin-Watson testet. Patrik Zetterberg. 17 december 2012
Föreläsning 6 Autokorrelation och Durbin-Watson testet Patrik Zetterberg 17 december 2012 1 / 14 Korrelation och autokorrelation På tidigare föreläsningar har vi analyserat korrelationer för stickprov
Läs mer