Satser om gränsvärden med bevis som saknas

Storlek: px
Starta visningen från sidan:

Download "Satser om gränsvärden med bevis som saknas"

Transkript

1 Satser om gränsvärden med bevis som saknas i Adams. Struktur av alla bevis här är likadan. Varje bevis består av tre steg. Först formulerar vi om villkor i satsen i termer av olikheter som måste gälla. Sedan formulerar vi om slutsatser också med hjälp av olikheter. Efter detta försöker vi transformera slutsatser som vi vill bevisa så, att efter transformationer blir det lätt att observera att de verkligen följer från givna villkor. Vi markerar meningen som vi vill bevisa med och slutet av varje bevis med : Sats om uppskattning för en funktion som har gränsvärde (Ex. 32, Section.5). Om lim = M så nns M > 0 sådant att för 0 < jx aj < M =) jj < + jmj. Man kan formulera om satsen lite informelt bara med ord. Om en funktion har ett gränsvärde M när argumentet x går mot talet a, måste funktionens absolut belopp bli mindre än absolut belopp av gränsvärdet plus ett (eller vilket som helst annat positivt tal) när agumentets värde blir tillräckligt nära a.. Vi skriver ner först de nitionen på gränsvärde och förklarar vad villkor i satsen betyder. Vi uttrycker vad detta betyder, att gränsvärdet lim = M existerar: För varje " > 0 nns ett " > 0 sådant att för 0 < jx aj < " =) j Mj < ". Eller med kortare beteckningar: 8" > 0 9 " > 0: för 0 < jx aj < " =) j Mj < ": Nu välj " =. Då nns > 0 sådant att för 0 < jx aj < =) j Mj <. Detta betyter att avståndet mellan talen och M på reella linjen är mindre än och medför att jj jmj < och slutligen jj < + jmj.

2 2 Produktregeln för gränsvärden. Om lim f(x) = L och lim = M, så nns gränsvärde lim [f(x)] och [f(x)] = LM: lim Vi förklarar först villkor i satsen: vad betyder att gränsvärden lim f(x) = L och lim = M existerar: För varje " > 0 nns ett " > 0 sådant att för 0 < jx aj < " =) jf(x) Lj < ". För varje " 2 > 0 nns ett "2 > 0 sådant att för 0 < jx aj < "2 =) j Mj < " 2. Vi vill bevisa att lim [f(x)] = LM. Det betyder att vi vill bevisa följande: För varje " > 0 nns ett " > 0 sådant att för 0 < jx aj < " =) jf(x) LMj < ". För varje " > 0 vill vi hitta ett " > 0 sådant att för 0 < jx aj < " =) jf(x) LMj < ": Vi betraktar jf(x) LMj - skillnaden mellan f(x) och LM och försöker hitta en begränsning för jx aj som garanterar att den blir godtyckligt liten. Vi adderar till f(x) LM ett uttryck lika med noll: L + L och använder egenskaper hos absolut belopp: ja + bj jaj + jbj och jabj = jaj jbj. Detta leder till följande uppskattningar: jf(x) LM j = jf(x) L + L LM j jf(x) Lj + jl LMj = jj jf(x) Lj + jlj j Mj och låter oss använda olikheter jf(x) Lj < " och j Mj < " 2 med godtykligt små " och " 2 : Vi kommer också att använda olikheten jj < + jmj från föregående sats som gäller för 0 < jx aj < M : För att ha alla tre olikheterna samtidigt måste vi ha samtidigt 0 < jx aj < M ; 0 < jx aj < ", 0 < jx aj < "2. För att garantera detta väljer vi ett min = min f M ; " ; "2 g. Om 0 < jx aj < min gäller jf(x) Lj < " och j Mj < " 2 med godtyckligt små " och " 2 och jj < + jmj samtidigt. Vi analyserar olikheten som vi ck tidigare: jf(x) LMj jj jf(x) Lj + jlj j Mj 2

3 och vill välja " och " 2 så att varje av termerna i höger blir mindre än "=2. Detta skylle medföra jf(x) LMj " och beviset blir klart. Vi visar nu hur man gör detta. Betrakta olikheten jf(x) LMj ( + jmj) " + jlj " 2 som följer från uppskattningar jj < +jmj ; jf(x) Lj < " och j Mj < " 2. Observera att om vi väljer " < ("=2) = ( + jmj) och " 2 < ("=2) = ( + jlj), blir varje term i högerledet av sista uppskattningen mindre än "=2 exakt som vi ville och beviset blir klart. 3 Exercise.5.34 An undergräns för en funktion som har ett gränsvärde skild från noll. Om lim = M, med M 6= 0; måste nns ett tal > 0 sådant att för 0 < jx aj < =) jj > jmj =2. Vi börjar med att formulera om villkor här med hjälp av olikheter. lim = M betyder att för varje " 0 > 0 nns ett "0 > 0 sådant att för 0 < jx aj < "0 =) j Mj < " 0. Välj " 0 < jmj =2 och motsvarande M=2 observera att detta medför att j Mj < jmj =2. Sista olikheten medför att jmj jj < jmj =2 och efter att ytta till höger och jmj =2 till vänster av olikheten får vi att jj > jmj =2: Detta gäller för 0 < jx aj < med = M=2 : 3

4 4 Reciprokregeln för gränsvärden. (Ex..5.35) Om lim = M, med M 6= 0; så existerar lim (=) och lim =. M Vi börjar med att formulera om villkor här med hjälp av olikheter. lim = M betyder att för varje " 0 > 0 nns ett "0 > 0 sådant att för 0 < jx aj < "0 =) j Mj < " 0. Vi vill visa att M kan göras hur liten som helst, t.ex. M < " med att välja " > 0 så att M < " gäller för alla x på avståndet mindre än " från a (exklusive själva punkten a) 0 < jx aj < " : Vi transformerar uttrycket M : M = M M = M jm j Enligt föregående resultat från Ex kan en M=2 > 0 väljas så att för 0 < jx aj < M=2 =) jj > jmj =2 och då < 2 M. Detta medför att M < 2 M 2 jm j Nu måste vi välja " > 0 så att jm j <" och beviset blir M klart. För att garantera detta väljer vi " 0 ovan i de nitionen för gränsvärde så att 2 M 2 "0 < " eller " 0 < "M 2 =2. Vi kan alltid göra detta eftersom " 0 kan göras hur litet som helst enligt de nitionen av gränsvärde för g. 5 Kvotregeln för gränsvärden. Om lim f(x) = L och lim = M, och M 6= 0 så nns gränsvärde lim [f(x)=] och lim [f(x)=] = L=M:. Vi kunde genomföra bevis med att kombinera ideer från bevis till produktregeln och till reciprokregeln men vi kan nu bara använda dessa två regler för att bevisa kvotregeln. 4

5 Gränsvärde lim [f(x)=] = lim enligt produktregeln. h i lim L M = L=M: = M h f(x) i = lim [f(x)] lim h enligt reciprokregeln:detta medför att lim [f(x)=] = i 5

MATEMATIK Datum: 2015-08-19 Tid: eftermiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel.

MATEMATIK Datum: 2015-08-19 Tid: eftermiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel. MATEMATIK Datum: 0-08-9 Tid: eftermiddag Chalmers Hjälmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel.: 0703-088304 Lösningar till tenta i TMV036 Analys och linjär algebra

Läs mer

Svar till vissa uppgifter från första veckan.

Svar till vissa uppgifter från första veckan. Svar till vissa uppgifter från första veckan. Svar till kortuppgifter F:. Ja! Förhoppningsvis så ser man direkt att g fx) är ett polynom. Vidare så gäller det att g fα) = gfα)) = gβ) = 0. Använd faktorsatsen!

Läs mer

Läsanvisningar till kapitel

Läsanvisningar till kapitel Läsanvisningar till kapitel 2.3 2.5 2.3 Analytiska funktioner Analytiska funktioner, eller holomorfa funktioner som vi kommer kalla dem, är de funktioner som vi komer studera så gott som resten av kursen.

Läs mer

MATEMATIK Datum: 2014-01-14 Tid: förmiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Christo er Standar, Tel.

MATEMATIK Datum: 2014-01-14 Tid: förmiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Christo er Standar, Tel. MATEMATIK Datum: -- Tid: förmiddag Chalmers Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Christo er Standar, Tel.: 7-88 Lösningar till tenta i TMV Analys och linjär algebra K/Bt/Kf,

Läs mer

MATEMATIK Datum: Tid: förmiddag. A.Heintz Telefonvakt: Jacob Leander, Tel.:

MATEMATIK Datum: Tid: förmiddag. A.Heintz Telefonvakt: Jacob Leander, Tel.: MATEMATIK Datum: 0-0- Tid: förmiddag Chalmers Hjälpmedel: inga A.Heintz Telefonvakt: Jacob Leander, Tel.: 070-0880 Lösningar till tenta i TMV06/TMV0 Analys och linjär algebra K/Bt/Kf, del A.. Sats. Formulera

Läs mer

Lite Kommentarer om Gränsvärden

Lite Kommentarer om Gränsvärden Lite Kommentarer om Gränsvärden På föreläsningen (Föreläsning 2 för att vara eakt) så introducerade vi denitionen Denition. Vi säger att f() går mot a då går mot oändligheten, uttryckt i symboler som f()

Läs mer

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING XII. Föreläsning XII. Mikael P. Sundqvist

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING XII. Föreläsning XII. Mikael P. Sundqvist Föreläsning XII Mikael P. Sundqvist Vad handlar gränsvärden om? Det är en kamp mellan epsilon (ε) och delta (δ) analystens främsta verktyg! Klicka här för bild på Barry Simon Gränsvärde av f (x) då x +

Läs mer

TAMS79: Föreläsning 10 Markovkedjor

TAMS79: Föreläsning 10 Markovkedjor TAMS79: Föreläsning 0 Markovkedjor Johan Thim december 08 0. Markovkedjor Vi ska nu betrakta en speciell tidsdiskret diskret stokastisk process, nämligen Markovkedjan. Vi börjar med en definition Definition.

Läs mer

Determinanter, egenvectorer, egenvärden.

Determinanter, egenvectorer, egenvärden. Determinanter, egenvectorer, egenvärden. Determinanter av kvadratiska matriser de nieras recursivt: först för matriser, sedan för matriser som är mest användbara. a b det = ad bc c d det a a a a a a a

Läs mer

Anteckningar för kursen "Analys i en Variabel"

Anteckningar för kursen Analys i en Variabel Anteckningar för kursen "Analys i en Variabel" Simone Calogero Vecka 4 Viktig information. Dessa anteckningar är inte avsedda som en ersättning för kurs litteratur men bara som en kort sammanfattning av

Läs mer

MATEMATIK Datum: Tid: förmiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Christoffer Standar, Tel.

MATEMATIK Datum: Tid: förmiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Christoffer Standar, Tel. MATEMATIK Datum: -- Tid: förmiddag Chalmers Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Christoffer Standar, Tel.: 7-88 Lösningar till tenta i TMV Analys och linjär algebra K/Bt/Kf,

Läs mer

TATA42: Föreläsning 10 Serier ( generaliserade summor )

TATA42: Föreläsning 10 Serier ( generaliserade summor ) TATA42: Föreläsning 0 Serier ( generaliserade summor ) Johan Thim 5 maj 205 En funktion s: N R brukar kallas talföljd, och vi skriver ofta s n i stället för s(n). Detta innebär alltså att för varje heltal

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Föreläsning 5 Institutionen för matematik KTH 5 september 2017 Hur mycket behöver man jobba? Vi har ett gemensamt ansvar: Jag visar vad som behöver göras Men det är ni som måste göra det Viktigt faktum:

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA24 Grundläggande kalkyl ÖVN2 Lösningsförslag 202.08.09 08.30 0.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng:

Läs mer

Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem.

Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem. Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem. Begrepp som diskuteras i det kapitlet. Vektorer, addition och multiplikation med skalärer. Geometrisk tolkning. Linjär kombination av

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016 SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

ODE av andra ordningen, och system av ODE

ODE av andra ordningen, och system av ODE ODE av andra ordningen, och system av ODE Exempel på di erentialekvation av andra ordningen (innehåller andra derivata) Pendel beskrives av Newtons andra lag: Kraft = massa Acceleration Acceleration =

Läs mer

FULLSTäNDIGHETSAXIOMET, SATSEN OM MELLANLIGGANDE VäRDE OCH SATSEN OM STöRSTA OCH MINSTA VäRDE

FULLSTäNDIGHETSAXIOMET, SATSEN OM MELLANLIGGANDE VäRDE OCH SATSEN OM STöRSTA OCH MINSTA VäRDE FULLSTäNDIGHETSAXIOMET, SATSEN OM MELLANLIGGANDE VäRDE OCH SATSEN OM STöRSTA OCH MINSTA VäRDE JAN-FREDRIK OLSEN I detta dokumentet ämnar vi bevisa följande två satser: Sats 1 (Satsen om mellanliggande

Läs mer

TATA42: Föreläsning 5 Serier ( generaliserade summor )

TATA42: Föreläsning 5 Serier ( generaliserade summor ) TATA42: Föreläsning 5 Serier ( generaliserade summor ) Johan Thim 0 januari 207 En funktion s: N R brukar kallas talföljd, och vi skriver ofta s n i stället för s(n). Detta innebär alltså att för varje

Läs mer

MA2001 Envariabelanalys

MA2001 Envariabelanalys MA2001 Envariabelanalys Något om derivator del 1 Mikael Hindgren 11 november 2018 Derivatans definition Exempel 1 s-t-graf för ett föremål i rörelse. s(0) = 0. s s = v t Hastigeten konstant: Rät linje

Läs mer

DERIVATA. = lim. x n 2 h h n. 2

DERIVATA. = lim. x n 2 h h n. 2 DERIVATA Läs avsnitten 6.-6.5. Lös övningarna 6.cd, 6.2, 6.3bdf, 6.4abc, 6.5bcd, 6.6bcd, 6.7, 6.9 oc 6.. Läsanvisningar Allmänt gäller som vanligt att bevisen inte ingår i kursen, men det är mycket nyttigt

Läs mer

Meningslöst nonsens. December 14, 2014

Meningslöst nonsens. December 14, 2014 December 4, 204 Fråga. Hur visar man att sin(x) x tan(x)? Fråga. Hur visar man att sin(x) x tan(x)? Fråga 2. Hur visar man att a > lim n a n =? Fråga 2. Hur visar man att a > lim n a n =? Röd: Det är ett

Läs mer

M0038M Differentialkalkyl, Lekt 17, H15

M0038M Differentialkalkyl, Lekt 17, H15 M0038M Differentialkalkyl, Lekt 17, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 38 Repetition Lekt 16 Uppskatta (8.2) 1/3 genom att använda differentialer. Svara på bråkform.

Läs mer

Diagonalisering och linjära system ODE med konstanta koe cienter.

Diagonalisering och linjära system ODE med konstanta koe cienter. Diagonalisering och linjära system ODE med konstanta koe cienter. Variabelbyte i linjära system di erentialekvationer. Målet med det kapitlet i kursen är att lösa linjära system di erentialekvationer på

Läs mer

Tentamen : Lösningar. 1. (a) Antingen har täljare och nämnare samma tecken, eller så är täljaren lika med noll. Detta ger två fall:

Tentamen : Lösningar. 1. (a) Antingen har täljare och nämnare samma tecken, eller så är täljaren lika med noll. Detta ger två fall: Tentamen 010-10-3 : Lösningar 1. (a) Antingen har täljare och nämnare samma tecken, eller så är täljaren lika med noll. Detta ger två fall: x 5 0 och 3 x > 0 x 5 och x < 3, en motsägelse, eller x 5 0 och

Läs mer

MATEMATIK Datum: Tid: förmiddag. A.Heintz Telefonvakt: Christo er Standar, Tel.:

MATEMATIK Datum: Tid: förmiddag. A.Heintz Telefonvakt: Christo er Standar, Tel.: MATEMATIK Datum: 0-0- Tid: förmiddag Chalmers Hjälmedel: inga A.Heintz Telefonvakt: Christo er Standar, Tel.: 070-0880 Lösningar till tenta i TMV06/TMV0 Analys och linjär algebra K/Bt/Kf, del A.. Sats.

Läs mer

Serier. egentligen är ett gränsvärde, inte en summa: s n, där s n =

Serier. egentligen är ett gränsvärde, inte en summa: s n, där s n = Serier Serier eller oändliga summor har flyktigt behandlats redan i tidigare kurser. Vi ska nu gå igenom teorin på ett lite mer systematiskt sätt. I många fall spelar det ingen roll om termerna a k är

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF625 Envariabelanalys Lösningsförslag till tentamen 206-0- DEL A. Betrakta funktionen f som ges av f(x) = x 2 arctan x. A. Bestäm definitionsmängden till f. B. Bestäm de intervall där f är växande respektive

Läs mer

Maclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning

Maclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning Maclaurins och Taylors formler Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning av gränsvärden Standardutvecklingar Vid beräkningar där man inte behöver någon

Läs mer

DOP-matematik Copyright Tord Persson. Gränsvärden. Uppgift nr 10 Förenkla bråket h (5 + h) h. Uppgift nr 11 Förenkla bråket 8h + h² h

DOP-matematik Copyright Tord Persson. Gränsvärden. Uppgift nr 10 Förenkla bråket h (5 + h) h. Uppgift nr 11 Förenkla bråket 8h + h² h DOP-matematik Copyrigt Tord Persson Gränsvärden Uppgift nr 1 f(x) x². Gör denna värdetabell komplett genom att i tur oc ordning ersätta x i funktionen med de olika talen / uttrycken i tabellen. Första

Läs mer

Envariabelanalys: Vera Koponen. Envariabelanalys, vt Uppsala Universitet. Vera Koponen Föreläsning 5-6

Envariabelanalys: Vera Koponen. Envariabelanalys, vt Uppsala Universitet. Vera Koponen Föreläsning 5-6 Envariabelanalys: Föreläsning 5-6 Vera Koponen Uppsala Universitet Envariabelanalys, vt 2011 Derivata: allmänt Antag att f (x) är en funktion. Derivata: allmänt Antag att f (x) är en funktion. Derivatan

Läs mer

Numeriska serier Definition av konvergens J amf orelsesatser Vad skall vi j amf ora med? Absolutkonvergens Leibniz kriterium Dagens amnen 1 / 19

Numeriska serier Definition av konvergens J amf orelsesatser Vad skall vi j amf ora med? Absolutkonvergens Leibniz kriterium Dagens amnen 1 / 19 Dagens ämnen 1 / 19 Dagens ämnen Numeriska serier 1 / 19 Dagens ämnen Numeriska serier Definition av konvergens 1 / 19 Dagens ämnen Numeriska serier Definition av konvergens Jämförelsesatser 1 / 19 Dagens

Läs mer

Mer om reella tal och kontinuitet

Mer om reella tal och kontinuitet Kapitel R Mer om reella tal och kontinuitet I detta kapitel formulerar vi ett av de reella talens grundläggande axiom, axiomet om övre gräns, och studerar några konsekvenser av detta. Med dess hjälp kommer

Läs mer

Lipschitz-kontinuitet

Lipschitz-kontinuitet Kapitel 2 Lipschitz-kontinuitet Vi börjar med att presentera den formella definitionen av gränsvärde och kontinuitet. Vi presenterar sedan en variant av kontinuitet som är lättare att använda och som ger

Läs mer

Om konvergens av serier

Om konvergens av serier Om konvergens av serier Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning I den här artikeln diskuteras några av de grundläggande satserna som hjälper oss att avgöra om en serie

Läs mer

gränsvärde existerar, vilket förefaller vara en naturlig definition (jämför med de generaliserade integralerna). I exemplet ovan ser vi att 3 = 3 n n

gränsvärde existerar, vilket förefaller vara en naturlig definition (jämför med de generaliserade integralerna). I exemplet ovan ser vi att 3 = 3 n n TATA42: Föreläsning 5 Serier ( generaliserade summor ) Johan Thim 5 mars 208 En funktion s: N R brukar kallas talföljd, och vi skriver ofta s n i stället för s(n). Detta innebär alltså att för varje heltal

Läs mer

12. Numeriska serier NUMERISKA SERIER

12. Numeriska serier NUMERISKA SERIER 122 12 NUMERISKA SERIER 12. Numerisa serier Vi har tidigare i avsnitt 10.9 sett ett samband mellan summor och integraler. Vi har ocså i avsnitt 11 definierat begreppet generaliserade integraler och för

Läs mer

MATEMATIK Datum: Tid: förmiddag. A.Heintz Telefonvakt: Tel.:

MATEMATIK Datum: Tid: förmiddag. A.Heintz Telefonvakt: Tel.: MATEMATIK Datum: 009-0- Ti: förmiag Chalmers Hjälpmeel: inga A.Heintz Telefonvakt: Tel.: 076-786 Lösningar till tenta TMV06/TMV0 Analys och linjär algebra K/Bt/Kf, el A.. Sats Ange "geometriska" beviset

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 215-1-27 DEL A 4 1. Betrakta funktionen f som ges av f(x) = 1 + x + (x 2). 2 A. Bestäm definitionsmängden till f. B. Bestäm alla intervall där f är

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Universitet Matematiska Institutionen Thomas Erlandsson LÄSANVISNINGAR VECKA 36 VERSION 1. ARITMETIK FÖR RATIONELLA OCH REELLA TAL, OLIKHETER, ABSOLUTBELOPP ADAMS P.1 Real Numbers and the Real

Läs mer

Kurvlängd och geometri på en sfärisk yta

Kurvlängd och geometri på en sfärisk yta 325 Kurvlängd och geometri på en sfärisk yta Peter Sjögren Göteborgs Universitet 1. Inledning. Geometrin på en sfärisk yta liknar planets geometri, med flera intressanta skillnader. Som vi skall se nedan,

Läs mer

TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar

TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar Johan Thim 24 mars 29 Entydighet Om vi har ett polynom som approimerar en snäll funktion bra, kan vi då vara säkra på att koefficienterna i

Läs mer

MAA7 Derivatan. 2. Funktionens egenskaper. 2.1 Repetition av grundbegerepp

MAA7 Derivatan. 2. Funktionens egenskaper. 2.1 Repetition av grundbegerepp MAA7 Derivatan 2. Funktionens egenskaper 2.1 Repetition av grundbegerepp - Det finns vissa begrepp som återkommer i nästan alla kurser i matematik. Några av dessa är definitionsmängd, värdemängd, största

Läs mer

Stora bilden av Linjära algebran. Vektorrum, linjära transformationer, matriser (sammanfattning av begrepp)

Stora bilden av Linjära algebran. Vektorrum, linjära transformationer, matriser (sammanfattning av begrepp) Stora bilden av Linjära algebran. Vektorrum, linjära transformationer, matriser (sammanfattning av begrepp) Linjär algebra består av tre grenar eller koncept: geometriska begreppet av vektorrum, analysbegreppet

Läs mer

e x x + lnx 5x 3 4e x (0.4) x 0 e 2x 1 a) lim (0.3) b) lim ( 1 ) k. (0.3) c) lim 2. a) Lös ekvationen e x = 0.

e x x + lnx 5x 3 4e x (0.4) x 0 e 2x 1 a) lim (0.3) b) lim ( 1 ) k. (0.3) c) lim 2. a) Lös ekvationen e x = 0. LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS B 00 0 kl 8 3 INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar. Lämna tydliga svar om så är

Läs mer

Algebraiska egenskaper hos R n i)u + v = v + U

Algebraiska egenskaper hos R n i)u + v = v + U Underrum till R n, nollrum, kolonnrum av en matris, rank, bas, koordinater, dimension. Påminnelse om R n s egenskaper: Algebraiska egenskaper hos R n i)u + v = v + U v) c(u + v) = cu + cv ii) ( u + v)

Läs mer

ANDREAS REJBRAND 2014-04-25 Matematik http://www.rejbrand.se. Numeriska serier. Andreas Rejbrand, april 2014 1/29

ANDREAS REJBRAND 2014-04-25 Matematik http://www.rejbrand.se. Numeriska serier. Andreas Rejbrand, april 2014 1/29 Numeriska serier Andreas Rejbrand, april 2014 1/29 1 Inledning Författarens erfarenhet säger att momentet med numeriska serier är ganska svårt för många studenter i inledande matematikkurser på högskolenivå.

Läs mer

Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1

Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1 Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2017-2018 Lars Filipsson Modul 1 1. MÅL FÖR MODUL 1 1. Reella tal. Känna till talsystememet och kunna använda notation för mängder och intervall

Läs mer

4. Bestäm eventuella extrempunkter, inflexionspunkter samt horisontella och vertikala asymptoter till y = 1 x 1 + x, och rita funktionens graf.

4. Bestäm eventuella extrempunkter, inflexionspunkter samt horisontella och vertikala asymptoter till y = 1 x 1 + x, och rita funktionens graf. TM-Matematik Mikael Forsberg 73 1 3 31 Pär Hemström 7 3 57 För ingenjörs och distansstudenter Envariabelanalys ma3a 1 8 Skrivtid: 9:-1:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att

Läs mer

Matematisk kommunikation för Π Problemsamling

Matematisk kommunikation för Π Problemsamling Problemsamling Charlotte Soneson & Niels Chr. Overgaard september 200 Problem. Betrakta formeln n k = k= n(n + ). 2 Troliggör den först genom att exempelvis i summan +2+3+4+5+6 para ihop termer två och

Läs mer

Modul 1 Mål och Sammanfattning

Modul 1 Mål och Sammanfattning Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2016-2017 Lars Filipsson Modul 1 Mål och Sammanfattning 1. Reella tal. 1. MÅL FÖR MODUL 1 Känna till talsystememet och kunna använda notation

Läs mer

Mer om kontinuitet. Kapitel K. K.1 Övre och undre gräns

Mer om kontinuitet. Kapitel K. K.1 Övre och undre gräns Kapitel K Mer om kontinuitet I detta kapitel bevisar vi Sats 3.1, som säger att en kontinuerlig funktion av typen R 2 R på ett kompakt område antar ett största och ett minsta värde. Vi studerar dessutom

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015

SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 Skrivtid: 08:00-13:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

Bisektionsalgoritmen. Kapitel Kvadratroten ur 2

Bisektionsalgoritmen. Kapitel Kvadratroten ur 2 Kapitel 4 Bisektionsalgoritmen Vi ska konstruera lösningar till algebraiska ekvationer av formen f(x) = 0 med hjälp av bisektionsalgoritmen (intervallhalveringsmetoden). På samma gång ska vi se hur man

Läs mer

Teori :: Diofantiska ekvationer v1.2

Teori :: Diofantiska ekvationer v1.2 Teori :: Diofantiska ekvationer v1. 1 Definitioner och inledande exempel Låt oss börja med att göra klart för vad vi menar med en diofantisk ekvation: S:def+ex Definition 1.1. Betrakta ekvationen D:diofantiskEkv

Läs mer

Modul 1: Funktioner, Gränsvärde, Kontinuitet

Modul 1: Funktioner, Gränsvärde, Kontinuitet Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 1: Funktioner, Gränsvärde, Kontinuitet Denna modul omfattar kapitel P och kapitel 1 kursboken Calculus av Adams och Essex och

Läs mer

Modul 1: Funktioner, Gränsvärde, Kontinuitet

Modul 1: Funktioner, Gränsvärde, Kontinuitet Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 1: Funktioner, Gränsvärde, Kontinuitet Denna modul omfattar kapitel P och kapitel 1 kursboken Calculus av Adams och Essex och

Läs mer

Instuderingsfrågor i Funktionsteori

Instuderingsfrågor i Funktionsteori Instuderingsfrågor i Funktionsteori Anvisningar. Avsikten med dessa instuderingsfrågor är att ge Dig möjlighet att fortlöpande kontrollera att Du någorlunda behärskar kursens teori. Om Du märker att Du

Läs mer

10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1

10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1 TM-Matematik Mikael Forsberg Pär Hemström Övningstenta Envariabelanalys ma034a ovnt--vt0 Skrivtid: 5 timmar. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift

Läs mer

Kontinuitet och gränsvärden

Kontinuitet och gränsvärden Kapitel Kontinuitet och gränsvärden.1 Introduktion till kontinuerliga funktioner Kapitlet börjar med allmänna definitioner. Därefter utvidgar vi successivt familjen av kontinuerliga funktioner, genom specifika

Läs mer

Fixpunktsiteration. Kapitel Fixpunktsekvation. 1. f(x) = x = g(x).

Fixpunktsiteration. Kapitel Fixpunktsekvation. 1. f(x) = x = g(x). Kapitel 5 Fixpunktsiteration 5.1 Fixpunktsekvation En algebraisk ekvation kan skrivas på följande två ekvivalenta sätt (vilket innebär att lösningarna är desamma). 1. f(x) = 0. En lösning x kallas en rot

Läs mer

MVE035. Sammanfattning LV 1. Blom, Max. Engström, Anne. Cvetkovic Destouni, Sofia. Kåreklint, Jakob. Hee, Lilian.

MVE035. Sammanfattning LV 1. Blom, Max. Engström, Anne. Cvetkovic Destouni, Sofia. Kåreklint, Jakob. Hee, Lilian. MVE035 Sammanfattning LV 1 Blom, Max Engström, Anne Cvetkovic Destouni, Sofia Kåreklint, Jakob Hee, Lilian Hansson, Johannes 11 mars 2017 1 Partiella derivator Nedan presenteras en definition av partiell

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har

Läs mer

2. (a) Skissa grafen till funktionen f(x) = e x 2 x. Ange eventuella extremvärden, inflektionspunkter

2. (a) Skissa grafen till funktionen f(x) = e x 2 x. Ange eventuella extremvärden, inflektionspunkter Matematik Chalmers Tentamen i TMV225 Inledande matematik M, 2009 08 21, f Telefon: Jonatan Vasilis, 0762 721861 Inga hjälpmedel. Kalkylator ej tillåten. Varje uppgift är värd 10 poäng, totalt 50 poäng.

Läs mer

TATA42: Föreläsning 8 Linjära differentialekvationer av högre ordning

TATA42: Föreläsning 8 Linjära differentialekvationer av högre ordning TATA42: Föreläsning 8 Linjära differentialekvationer av högre ordning Johan Thim 23 april 2018 1 Differentialoperatorer För att underlätta notation och visa på underliggande struktur introducerar vi begreppet

Läs mer

MER TOPOLOGI OCH KONVERGENS

MER TOPOLOGI OCH KONVERGENS MER TOPOLOGI OCH KONVERGENS SVANTE JANSON 1. Kompakta mängder Definition. En delmängd av R n kallas kompakt om den är sluten och begränsad. Sats 1. Om K är en kompakt mängd i R n och {x i } är en följd

Läs mer

6. Samband mellan derivata och monotonitet

6. Samband mellan derivata och monotonitet 34 6 SAMBAND MELLAN DERIVATA OCH MONOTONITET 6. Samband mellan derivata och monotonitet Antag att funktionen f är deriverbar på ]a,b[. Vi vet att derivatan f ( 0 ) i 0 ]a,b[ är riktningskoefficienten för

Läs mer

Lösningar till tentamen i Transformmetoder okt 2007

Lösningar till tentamen i Transformmetoder okt 2007 Lösningar till tentamen i Transformmetoder okt 7. Låt Y (s beteckna Laplacetransformen till funktionen y. Laplacetransformering av den givna ekvationen ger: varav följer att. (a För s > a är Y (s + s Y

Läs mer

Meningslöst nonsens. November 19, 2014

Meningslöst nonsens. November 19, 2014 November 19, 2014 Fråga 1. Om f (x) är begränsad kommer F(x) = x 0 f (t)dt att vara kontinuerlig? Deriverbar? Fråga 1. Om f (x) är begränsad kommer F(x) = x 0 f (t)dt att vara kontinuerlig? Deriverbar?

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson, Sebastian Pöder

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson, Sebastian Pöder Uppsala Universitet Matematiska Institutionen Thomas Erlandsson, Sebastian Pöder Tentamen ENVARIABELANALYS M 204-2-08 SVAR OCH ANVISNINGAR UPPGIFTER. e 3x2 lim = e x2 ( 3x 2 +...) = lim ( x 2 +...) = lim

Läs mer

Viktiga begrepp, satser och typiska problem i kursen MVE460, 2015.

Viktiga begrepp, satser och typiska problem i kursen MVE460, 2015. Viktiga begrepp, satser och typiska problem i kursen MVE460, 2015. Begrepp och definitioner Egenskaper och satser Typiska problem Reella tal. Rationella tal. a(b + c) = ab + ac Bråkräkning. Irrationella

Läs mer

Grafer och grannmatriser

Grafer och grannmatriser Föreläsning 2, Linjär algebra IT VT2008 Som avslutning på kursen ska vi knyta samman linjär algebra med grafteori och sannolikhetsteori från första kursen. Resultatet blir så kallade slumpvandringar på

Läs mer

LAB 1. FELANALYS. 1 Inledning. 2 Flyttal. 1.1 Innehåll. 2.1 Avrundningsenheten, µ, och maskinepsilon, ε M

LAB 1. FELANALYS. 1 Inledning. 2 Flyttal. 1.1 Innehåll. 2.1 Avrundningsenheten, µ, och maskinepsilon, ε M TANA21+22/ 5 juli 2016 LAB 1. FELANALYS 1 Inledning I laborationerna används matrishanteringsprogrammet MATLAB. som genomgående använder dubbel precision vid beräkningarna. 1.1 Innehåll Du ska 1. bestämma

Läs mer

1 Grundläggande kalkyler med vektorer och matriser

1 Grundläggande kalkyler med vektorer och matriser Krister Svanberg, mars 2015 1 Grundläggande kalkyler med vektorer och matriser Trots att läsaren säkert redan behärskar grundläggande vektor- och matriskalkyler, ges här i Kapitel 1 en repetition om just

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2015-01-12 DEL A 1. Betrakta funktionen f som ges av f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)

Läs mer

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x. Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF644) /6 29. Bestäm med derivatans definition d dx ex. Derivatans definition är f (x) = lim h h ( f(x + h)

Läs mer

Läsanvisningar till kapitel 6 i Naturlig matematik. Avsnitt 6.6 ingår inte.

Läsanvisningar till kapitel 6 i Naturlig matematik. Avsnitt 6.6 ingår inte. Läsanvisningar till kapitel 6 i Naturlig matematik Avsnitt 6.6 ingår inte. Avsnitt 6.1 Detta avsnitt illustrerar hur sekanten övergår i en tangent genom att den ena skärningspunkten rör sig mot den andra.

Läs mer

Tentamen i Matematisk analys MVE045, Lösningsförslag

Tentamen i Matematisk analys MVE045, Lösningsförslag Tentamen i Matematisk analys MVE5 26-8-23 Lösningsförslag Kl. 8.3 2.3. Tillåtna hjälpmedel: Mathematics handbook for science and engineering (BE- TA) eller CRC Standard Mathematical Tables. Indexeringar

Läs mer

Tisdag v. 2. Speglingar, translationer och skalningar

Tisdag v. 2. Speglingar, translationer och skalningar 1 Tisdag v 2 Speglingar, translationer och skalningar Ofta i matematik och i matematiska kurser är det så att man måste kunna några grundläggande exempel utantill och man måste kunna några regler som säger

Läs mer

Kap Inversfunktion, arcusfunktioner.

Kap Inversfunktion, arcusfunktioner. Kap 3. 3.5. Inversfunktion, arcusfunktioner. 30. (A) Förenkla uttrycken så långt som möjligt a. ln 8 ln + ln 8 ln + ln b. ln 3 log 0 3 log 0 e + 3 ln 3 log 3 e 30. (A) Lös ekvationerna a. e x = e x b.

Läs mer

Existens och entydighet

Existens och entydighet Föreläsning 7 Eistens och entydighet 7.1 Aktuella avsnitt i läroboken Appendi Eistence and Uniqueness of Solutions. 47 48 FÖRELÄSNING 7. EXISTENS OCH ENTYDIGHET Som vi sett i flera eempel kan man ibland

Läs mer

Linjär Algebra M/TD Läsvecka 3

Linjär Algebra M/TD Läsvecka 3 bild 1 Linjär Algebra M/TD Läsvecka 3 Omfattning och Innehåll Lay: 3.1-3.3 Determinanter. Definition, räkneregler och ett par viktiga satser. Huitfeldt: Om lösningsnoggrannhet: vektornorm, matrisnorm bild

Läs mer

Kontinuerliga funktioner. Ytterligare en ekvivalent formulering av supremumaxiomet

Kontinuerliga funktioner. Ytterligare en ekvivalent formulering av supremumaxiomet Kontinuerliga funktioner. Ytterligare en ekvivalent formulering av supremumaxiomet är följande: SATS. (Intervallinkapslingssatsen) Låt I k = [a k, b k ], k = 1, 2,... vara en avtagande följd av slutna

Läs mer

Material till kursen SF1679, Diskret matematik: Lite om kedjebråk. 0. Inledning

Material till kursen SF1679, Diskret matematik: Lite om kedjebråk. 0. Inledning Matematik, KTH Bengt Ek november 207 Material till kursen SF679, Diskret matematik: Lite om kedjebråk 0 Inledning Talet π (kvoten mellan en cirkels omkrets och dess diameter) är inte ett rationellt tal

Läs mer

Matematisk kommunikation för Π Problemsamling

Matematisk kommunikation för Π Problemsamling Problemsamling Niels Chr. Overgaard & Johan Fredriksson 3 september 205 Problem 0. Skriv följande summor mha summationstecken. ( Dvs på formen q k=p a k där k är en räknare som löper med heltalssteg mellan

Läs mer

2 Matematisk grammatik

2 Matematisk grammatik MATEMATISK GRAMMATIK Matematisk grammatik.1 Skriva matematik Matematisk grammatik, minst lika kul som det låter, och hur man skriver matematik är nästan lika viktigt som vad man skriver. En grammatisk

Läs mer

TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar

TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar Johan Thim 9 januari 27 Entydighet Om vi har ett polynom som approximerar en snäll funktion bra, kan vi då vara säkra på att koefficienterna

Läs mer

5B1147. Envariabelanalys. MATLAB Laboration. Laboration 1. Gränsvärden och Summor

5B1147. Envariabelanalys. MATLAB Laboration. Laboration 1. Gränsvärden och Summor 5B47 MATLAB Laboration Laboration Gränsvärden och Summor joycew@kth.se uvehag@kth.se Innehåll Uppgift a... Problem... Lösning... Grafisk bestämning av gränsvärden... Beräkning av gränsvärden...2 Uppgift

Läs mer

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar Christian Forssén, Institutionen för fysik, Chalmers, Göteborg, Sverige Sep 11, 2017 12. Tensorer Introduktion till tensorbegreppet Fysikaliska

Läs mer

För teknologer inskrivna H06 eller tidigare. Skriv GAMMAL på omslaget till din anomyna tentamen så att jag kan sortera ut de gamla teknologerna.

För teknologer inskrivna H06 eller tidigare. Skriv GAMMAL på omslaget till din anomyna tentamen så att jag kan sortera ut de gamla teknologerna. Matematik Chalmers Tentamen i TMV225 Inledande matematik M, 2009 01 17, f V Telefon: Christoffer Cromvik, 0762 721860 Inga hjälpmedel. Kalkylator ej tillåten. Varje uppgift är värd 10 poäng, totalt 50

Läs mer

Modul 4 Tillämpningar av derivata

Modul 4 Tillämpningar av derivata Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 4 Tillämpningar av derivata Denna modul omfattar kapitel 4 i kursboken Calculus av Adams och Essex och undervisas på tre föreläsningar,

Läs mer

TATA42: Föreläsning 6 Potensserier

TATA42: Föreläsning 6 Potensserier TATA4: Föreläsning 6 Potensserier Johan Thim januari 7 Vi ska nu betrakta serier där termerna inte längre är konstanter. Speciellt ska vi studera så kallade potensserier. Dessa definieras som a k x k a

Läs mer

LMA515 Matematik, del B Sammanställning av lärmål

LMA515 Matematik, del B Sammanställning av lärmål LMA515 Matematik, del B Sammanställning av lärmål Lärmål för godkänt Funktion, gränsvärde, kontinuitet, derivata. Förklara begreppen funktion, definitionsmängd och värdemängd, och bestämma (största möjliga)

Läs mer

R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002

R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002 RÄKNEÖVNING VECKA David Heintz, 3 oktober 22 Innehåll Uppgift 27. 2 Uppgift 27.8 4 3 Uppgift 27.9 6 4 Uppgift 27. 9 5 Uppgift 28. 5 6 Uppgift 28.2 8 7 Uppgift 28.4 2 Uppgift 27. Determine primitive functions

Läs mer

ALA-a Innehåll RÄKNEÖVNING VECKA 7. 1 Lite teori Kapitel Kapitel Kapitel Kapitel 14...

ALA-a Innehåll RÄKNEÖVNING VECKA 7. 1 Lite teori Kapitel Kapitel Kapitel Kapitel 14... ALA-a 2005 Innehåll 1 Lite teori 3 RÄKNEÖVNING VECKA 7 1.1 Kapitel 7....................................... 3 1.2 Kapitel 12....................................... 3 1.3 Kapitel 13.......................................

Läs mer

Lösningar till tentamen TEN1 i Envariabelanalys I (TNIU 22)

Lösningar till tentamen TEN1 i Envariabelanalys I (TNIU 22) Krzysztof Marciniak, ITN Linköings universitet tfn 0-36 33 0 krzma@itn.liu.se Lösningar till tentamen TEN i Envariabelanalys I (TNIU ) för BI 0--4 kl. 08.00 3.00. Enligt den geometriska betydelsen av derivatan

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 213-8-22 DEL A 1. Betrakta funktionen f(x, y) ln(x 2 + xy 2 4). a) Bestäm tangentplanet till funktionsytan z f(x, y) i den punkt på ytan där x 1

Läs mer

Tentamen i Linjär algebra , 8 13.

Tentamen i Linjär algebra , 8 13. LINKÖPINGS UNIVERSITET Matematiska Institutionen Ulf Janfalk Kurskod: ETE5 Provkod: TEN Tentamen i Linjär algebra 5 8, 8. Inga hjälpmedel. Ej räknedosa. Resultatet meddelas vi e-post. För godkänt räcker

Läs mer

Kapitel 4. Funktioner. 4.1 Definitioner

Kapitel 4. Funktioner. 4.1 Definitioner Kapitel 4 Funktioner I det här kapitlet kommer vi att undersöka funktionsbegreppet. I de första sektionerna genomgås definitionen av begreppet funktion och vissa egenskaper som funktioner har. I slutet

Läs mer

Mer om analytisk geometri

Mer om analytisk geometri 1 Onsdag v 5 Mer om analytisk geometri Determinanter: Då man har en -matris kan man till den associera ett tal determinanten av som också skrivs Determinanter kommer att repeteras och studeras närmare

Läs mer