Materialfysik vt Fasta ämnens mekaniska egenskaper 7.2 Plasticitet. [Callister]
|
|
- Karl-Erik Åström
- för 8 år sedan
- Visningar:
Transkript
1 Materialfysik vt Fasta ämnens mekaniska egenskaper 7.2 Plasticitet [Callister]
2 7.2.1 Mätning av elasticitet Före vi övergår till egentlig plasticitet, skall vi se på hur man kan mäta elasticitet i praktiken detta hänger nära ihop med plasticitet Olika sätt att mäta elasticitet illustreras i bilden till höger a) töjning b) kompression c) skjuvning d) torsion/vridning 2
3 Dragprov Ett mycket allmänt använt sätt att mäta elasticitet är med så kallade dragprov, även kallat sträckprov (eng. tensile test ) Provena ser ut på följande sätt: där det är viktigt att förstå att detta är alltså formen före utdragning! Dessa har vissa vanliga standardmått: det kanske vanligaste är 2 tum för mätlängden ( gauge length ) och diametern ungefär 0.5 tum 3
4 Dragprov Att dra ut ett dylikt prov görs med maskiner som till sin grundprincip är mycket enkla Uttöjning koncentreras till mittdelen av provet Provet dras ut med en konstant takt Samtidigt mäts: Kraften som används Den resulterande uttöjningen med en extensometer 4
5 Dragprov Ur mätningen kan man bestämma två storheter direkt: ingenjörstryck och ingenjörsspänning (det senare begreppet även känt som linjär normaltöjning på svenska), engineering stress and strain Ingenjörstrycket σ fås med σ = F A 0 där F är den uppmätta kraften och A 0 den ursprungliga arean Ingenjörsspänningen ε fås med där extensometern används till att mäta töjningen Givetvis kan man även göra motsvarande kompressionsprov 5
6 Tryck-spännings-kurvor Resultaten av en uttöjningsmätning presenteras s.g.s. alltid i ett så kallad tryck-spännings-diagram som visar trycket som funktion av spänningen Engelska: stress-strain plot, stress-strain curves Schematiskt ser dessa alltså ut på följande sätt Stress (tryck) Strain (spänning/uttöjning) 6
7 Elasticitet i kurvorna Den första delen av tryck-spänningskurvor är ofta linjär Då kan sambandet mellan tryck och spänning uttryckas i formen σ = Yε där Y är en konstant i det linjära området. Jämförelse med kapitel 7.1 visar att konstanten är helt enkelt Youngs modul och själva lagen är Hookes lag! I makroskopisk elasticitet kallas den ofta också helt enkelt den elastiska modulen 7
8 Skjuvmodulen Skjuvtrycket definieras makroskopiskt som τ = F A 0 i en mätning som illustreras i bilden till höger. Skjuvspänningen γ definieras som tan θ, där θ är vinkeln i bilden Skjuvmodulen G definieras av τ = Gγ 8
9 Torsion Torsion är en variant av skjuvning Skjuvtrycket τ var som helst i staven vid radien r kan skrivas som τ φ = Tr J där T är vridmomentet och J är polära tröghetsmomentet, som för cylindrar är Torsionskoefficienten K definieras som vridmomentet som krävs för att vrida materialet med vridvinkeln ( twist ) Φ. Dvs. T K = φ 9
10 Samband mellan modulerna För isotropiska material är skjuv- och elastiska modulen inte oberoende (kom ihåg att dessa har enbart 2 oberoende elastiska konstanter). För dem gäller sambandet där μ är Poissons kvot Y = 2 G(1 + μ) 10
11 Skjuvmodulen för kubiska enhetskristaller För kubiska enhetskristaller kan alla elastiska konstaner ges som funktion av C 11, C 12 och C 44 (jfr. kapitel 7.1). Y och μ gavs redan tidigare som funktion av dessa för dragning i x-riktningen. För skjuvmodulen är läget lite komplicerat, för den makroskopiska definitionen kan ge olika samband beroende på kristallriktning. Men för isotropiska kubiska enhetskristaller gäller 1 G = C44 = ( C11 C12 ) 2 11
12 Exempelvärden Nedan är värden på Y, μ och G för vanliga metaller Notera att Poissons kvot är ganska exakt 0.3 för alla metaller För den isotropa metallen W var jämförelsevis C 44 = GPa som stämmer bra med värdet ovan! 12
13 Icke-linjära elastiska material Det finns många ämnen som inte följer linjär elasticitet i något område, t.ex. betong, vissa gjutjärn och polymerer För dessa kan man istället definiera tangent- eller sekantmoduler för någon bestämd punkt på tryck-spänningskurvan 13
14 Anelasticitet Hittills har vi antagit att de elastiska modulerna är tidsoberoende, dvs. värdet beror inte på takten med vilken experimentet görs I verkligheten är så inte exakt fallet, utan elasticiteten kan ha ett tidsberoende: om man drar ut materialet, fortsätter det att utvidgas en stund, och när man lättar på trycket tar det en ändlig tid för materialet att återvända till ursprungsläget Tidsberoendet kallas anelasticitet, och material där effekten är märkbar, viskoelastiska T.ex. i vanliga metaller existerar nog effekten, men är i de flesta sammanhang negligerbar, medan den i vissa polymerer kan vara mycket betydande. 14
15 Temperaturberoendet av de elastiska konstanterna Temperaturberoendet av de elastiska konstanterna är i allmänhet svagt förutom nära smältpunkten Orsaken är det att konstanterna beror på potentialgropens form, som ju inte ändrar i sig med T. Vid höga temperaturer blir dock anharmoniska (icke-paraboliska) termer i gropen betydelsefulla och sänker något på de elastiska modulerna 15
16 Plasticitet Ovanom det linjära området i spännings-tryck-diagram gäller Hookes lag inte mera och materialet anses modifieras plastiskt Notera att denna definition inte är helt definitiv, för den kan uppenbart inte gälla för icke-linjära elastiska material eller material med en betydande område av andra ordningens elasticitet För dessa måste man definiera någon godtycklig övergångsspänning, t.ex. ε =
17 Plasticitetsdefinitioner: flytgräns Punkten P i diagrammet kallas proportionalitetsgränsen Men ofta är det svårt att bestämma denna punkt noggrannt Därmed har man definierat ett annat mått på bredden av det elastiska området: materialets flytgräns/spänning, även känd som sträckgräns/spänning σ y ( yield strength/stress ) Den kan definieras på många olika sätt, men det vanligaste är den som illustreras i bilden: spänningen vid vilken en permanent deformation på 0.2 % har åstadkommits om man ritar en linje neråt med det linjära områdets vinkelkoefficient 17
18 Flytgräns En del material har ett mycket klart definierat slut på det linjära området, som illustreras i bilden till höger För material med detta beteende kan man mycket entydigt definiera flytgränsen σ y som nivån för den ungefär konstanta platån i bilden ( yield point = flytgräns el. sträckgräns) 18
19 Draghållfasthet Om man ser på ett helt tryck-spänningsdiagram ser de oftast ut på följande sätt Trycket TS vid maximet i kurvan M kallas draghållfasthet (eng. tensile strength) Vid punkten M börjar provet smalna, vilket kallas midjebildning (Eng. necking ) Därför krävs mindre kraft för att åstadkomma ytterligare uttöjning, så kurvan börjar sjunka Vid punkten F bryts provet slutgiltigt, vilket kallas bristning eller fraktur ( fracture ). Trycket vid vilka detta sker kan kallas frakturhållfasthet och motsvarande spänning frakturspänning ε f 19
20 Sanntryck, sanntöjning och sannspänning Den uppmärksamma läsaren märker senast i detta skede att tryck-spänningskurvan ovan inte egentligen motsvarar materialegenskaper ovanom punkten M för att den effektiva arean A ju minskar vid töjning Genom att mäta den verkliga tvärsnittsarean under deformationen A i och provets längd l i kan man korrigera för detta och kan de uttrycka istället sanntryck σ T ( true stress ) resp. sannspänning ε T ( true strain ): σ = T F A i l ε ln i T = l Orsaken till logaritmen: ingenjörsspänning innehåller antagandet om små förändringar (jfr. 7.1); sannspänningen korrigerar för detta 0 20
21 Sanntryck, sanntöjning och sannspänning Om man använder sanntryck och sannspänning, ändrar tryck-spänningskurvan form på följande sätt Nu ökar sanntrycket alltså hela tiden, vilket beror på att material i allmänhet blir hårdare vid uttöjning (deformationshårdnande, strain hardening ) Kurvan corrected tar ytterligare i beaktande det att efter att en midja formats, är spänningen i midjeområdet inte mera rent axiellt utan mer komplicerat. 21
22 Deformationshårdnande Deformationshårdnande kan ofta beskrivas mellan flytgränsen och midjebildningspunkten med en funktion av formen där K och n är konstanter n kallas deformationshårdningsexponenten som har värden mindre än 1. I tabellen intill finns exempelvärden på den 22
23 Elastisk återhämtning Ifall man i det plastiska området avbryter påfrestning, återvänder materialet i allmänhet till en permanent deformation med en vinkelkoefficient som är ungefär den ursprungliga Youngs modulen. Om tryck sätts på igen, återvänder man till den plastiska kurvan med en högre flytgräns σ y,i än den ursprungliga! Detta hänger ihop med deformationshårdningen 23
24 Smidighet/duktilitet Ett ytterligare viktigt begrepp är materialets smidighet, även känd som duktilitet ( ductility ). Det avser hur mycket materialet kan töjas ut före det brister Smidighet kan ges ett värde som töjningsprocent ( percent elongation ) som där l f är frakturlängden och l 0 den ursprungliga längden Denna storhet kan bero på längden av provet, för att desto mindre prov, desto större andel kommer från midjeområdet som ju kan antas vara av samma längd vid fraktur, oberoende av l 0. Därmed borde man alltid då man ger en töjningsprocent också ange provets längd! 24
25 Smidighet och skörhet Begreppet smidighet är också mycket viktigt därför att det används för att definiera sköra material! Sköra material ( brittle ) är sådana som går sönder vid mycket liten eller ingen plastisk deformation Motsatsen kallas formbara el. plastiska el. smidiga material Gränsen för vad som är ett skört material är inte helt väldefinierat, men kan ges t.ex. som att material med en frakturspänning < 5% är sköra 25
26 Smidig-till-skör-transitionen De flesta metallerna är åtminstone någorlunda smidiga vid rumstemperatur, men en del blir sköra då temperaturen sänks! Temperaturen där detta sker kallas smidig-till-skörtransitionstemperaturen, förkortning DBTT från engelska Detta är viktigt att beakta för de flesta metalltillämpningar baserar sig på antagandet att metallen inte är skör! Många FCC-metaller (t.ex. koppar- och aluminium-baserade) har ingen DBTT utan är smidiga ner till mycket låga temperaturer, medan BCC och HCP-metaller i allmänhet har en 26
27 Exempelvärden Här är några exempelvärden på storheterna som behandlats hittills 27
28 Temperaturberoende Det som är viktigt att inse är att det plastiska området är inte en allmän materialkonstant, utan kan bero starkt på hur materialet tillverkats (som påverkar kornstorlek, dislokationstäthet mm.) samt temperaturen Här är exempel på tryck-spänningskurvor för järn vid tre olika temperaturer: Notera hur materialet är de facto skört vid -200 C, och blir sedan smidigt vid rumstemperatur 28
29 Elastiskt deformationsarbete Tills vidare har alla storheter som beskrivits varit mått på spänning eller tryck/kraft Det finns också mått på hur mycket energi ett material kan absorbera Ett sådant är det elastiska deformationsarbetet U r ("modulus of resilience"), som definieras som integralen under tryck-spänningskurvan upp till flytgränsen Hög flytgräns och/eller låg elasticitetsmodul leder till hög U r. Sådana material är lämpliga som fjädrar: hög reversibel töjning med mycket sparad energi möjlig 29
30 Seghet Seghet ("toughness") är inte ett exakt definierat begrepp Med det avses i allmänhet ett materials förmåga att absorbera energi före bristning Värden för seghet beror dock starkt på hur ett material utsetts för påfrestning: takt, geometri, mm. Med hackseghet avses ett materials förmåga att motstå hackformation vid en snabb stöt Med bristningsseghet ("fracture toughness") avses förmåga att motstå bristning då det finns en spricka i det För låg påfrestningstakt kan segheten ges som integralen över hela tryck-spännings-kurvan Hög seghet kräver både hög hållfasthet och hög frakturspänning Sköra material har ofta högre flytgräns, men mycket lägre seghet än smidiga 30
31 Exempel: stål Stål uppvisar ofta ett tryckspänningsförhållande av den typen som illustreras intill Karakteristikt är att trycket sjunker något för att sedan börja igen öka De kvantitativa värdena mellan olika stål kan variera mycket: [Wikipedia] 31
32 Hårdhet Hårdhet har många definitioner De elastiska konstanterna (t.ex. bulkmodulen, elastiska modulen) kan kallas elastisk hårdhet En närmast historiskt betydelsefull definition är den så kallade Mohskalan, som uppbyggdes med att definiera vilket material kan skrapa ett annat Den illustreras intill med både definitionsmineralerna och några andra material däremellan [Wikipedia] 32
33 Indenteringstest Mohs skala är uppenbart inte speciellt kvantitativ De praktiskt mest använda sättet att mäta hårdhet är med indenteringstest Kommentar om termen: indentering är inte listat i svenska ordböcker, men förekommer i svenska google, och tekniska ordlistan ger ingen vettig översättning på indentration test, så jag använder indentering I dessa tvingas en liten indenter mot ett material med en kontrollerad kraft och takt, och man mäter storleken (djup eller area) på hacket som bildas i materialet Indentern kan vara i makro-, mikro- eller nanoskala Mätningen kan kvantifieras som en kraft vs. djupförskjutning-graf [ 33 pic/ch_elastisch-plastischen.asp]
34 Varianter av indenteringstest 34
35 Jämförelse av olika hårdhetsskalor Värden som ges av de olika hårdhetsskalorna jämförs approximativt i bilden intill Det är viktigt att förstå att ingen av skalorna är absolut så detta är bara riktgivande 35
36 Hårdhet vs. elasticitet Det är inte möjligt att ge ett entydigt samband mellan indenteringshårdhet och elastiska och plastiska egenskaper! I själva verket korrelerar de inte nödvändigtvis alls med varandra: t.ex. diamant är extremt hårt, men mycket skört och har låg seghet Men för enskilda material kan man givetvis empiriskt bestämma samband mellan plastisk och indenteringshårdhet. Ett exempel visas intill för några vanliga metaller 36
37 Sammanfattning Materials seghet/hårdhet är alltså ett komplicerat kapitel med många olika aspekter att beakta Här är en sammanfattning av några av de viktigaste begreppen, ur synvinkeln att starkare är bättre (vilket inte alltid är önskvärt i tillämpningar, tänk bara på gummiband) Bulkmodul: Förmåga att motstå volymförändring under tryck Youngs modul: Förmåga att motstå uttöjning Flytgräns: Gräns till permanent deformation Om man bara talar om materialets styrka ("strength") avses ofta, men inte alltid, detta Draghållfasthet: maximal tryck som kan beläggas på materialet Hårdhet: förmåga att motstå hack och skrapor Smidighet: förmåga att tåla stor utdragning före slutlig sönderfall Begreppen styrka ("strength") och seghet ("toughness") kan betyda flera olika saker beroende på sammanhang 37
38 Sammanfattningsgraf: Youngs modul vs. densitet CNT = kolnanorör 38
39 Sammanfattningsgraf: styrka vs. densitet 39
40 Sammanfattningsgraf: Youngs modul vs. styrka 40
Materialfysik vt Fasta ämnens mekaniska egenskaper 5.1 Elasticitet. [Kittel]
Materialfysik vt 2014 5. Fasta ämnens mekaniska egenskaper 5.1 Elasticitet [Kittel] Elasticitet vs. plasticitet Ett materials respons till en yttre påfrestning (kraft) utgör dess mekaniska egenskaper Normala
Materialfysik2010 Kai Nordlund
7.1. Grund-definitionerna 530117 Materialfysik vt 2010 7. Fasta ämnens mekaniska egenskaper 7.1 Elasticitet Elasticitet: icke-bestående, reversibel deformation av material Minnesregel: elastiskt gummiband
Materialfysik vt Fasta ämnens mekaniska egenskaper 7.1 Elasticitet. [Kittel]
Materialfysik vt 2016 7. Fasta ämnens mekaniska egenskaper 7.1 Elasticitet [Kittel] 7.1. Grund-definitionerna Elasticitet: icke-bestående, reversibel deformation av material Minnesregel: elastiskt gummiband
Belastningsanalys, 5 poäng Töjning Materialegenskaper - Hookes lag
Töjning - Strain Töjning har med en kropps deformation att göra. Genom ett materials elasticitet ändras dess dimensioner när det belastas En lång kropp förlängs mer än en kort kropp om tvärsnitt och belastning
Hållfasthetslära. HT1 7,5 hp halvfart Janne Carlsson
Hållfasthetslära HT1 7,5 hp halvfart Janne Carlsson tisdag 11 september 8:15 10:00 Föreläsning 3 PPU203 Hållfasthetslära Förmiddagens agenda Fortsättning av föreläsning 2 Paus Föreläsning 3: Kapitel 4,
Hållfasthetslära Lektion 2. Hookes lag Materialdata - Dragprov
Hållfasthetslära Lektion 2 Hookes lag Materialdata - Dragprov Dagens lektion Mål med dagens lektion Sammanfattning av förra lektionen Vad har vi lärt oss hittills? Hookes lag Hur förhåller sig normalspänning
Material. VT1 1,5 p Janne Färm
Material VT1 1,5 p Janne Färm Torsdag 29:a Januari 10:15 12:00 Föreläsning M2 KPP045 Material-delen Förmiddagens agenda Materials mekaniska egenskaper del 1: Kapitel 6 Paus Provning Materials mekaniska
Belastningsanalys, 5 poäng Tvärkontraktion Temp. inverkan Statiskt obestämd belastning
Tvärkontraktion När en kropp belastas med en axiell last i en riktning förändras längden inte bara i den lastens riktning Det sker en samtidig kontraktion (sammandragning) i riktningar tvärs dragriktningen.
Material föreläsning 4. HT2 7,5 p halvfart Janne Carlsson
Material föreläsning 4 HT2 7,5 p halvfart Janne Carlsson Tisdag 29:e November 10:15 15:00 PPU105 Material Förmiddagens agenda Allmän info Bortom elasticitet: plasticitet och seghet ch 6 Paus Hållfasthetsbegränsad
Lösningsförslag, Inlämningsuppgift 2, PPU203 VT16.
Lösningsförslag, Inlämningsuppgift 2, PPU203 VT16. Deluppgift 1: En segelbåt med vinden rakt i ryggen har hissat spinnakern. Anta att segelbåtens mast är ledad i botten, spinnakern drar masttoppen snett
Material, form och kraft, F4
Material, form och kraft, F4 Repetition Kedjekurvor, trycklinjer Material Linjärt elastiskt material Isotropi, ortotropi Mikro/makro, cellstrukturer xempel på materialegenskaper Repetition, kedjekurvan
Dragprov, en demonstration
Dragprov, en demonstration Stål Grundämnet järn är huvudbeståndsdelen i stål. I normalt konstruktionsstål, som är det vi ska arbeta med, är kolhalten högst 0,20-0,25 %. En av anledningarna är att stålet
Material föreläsning 3. HT2 7,5 p halvfart Janne Carlsson
Material föreläsning 3 HT2 7,5 p halvfart Janne Carlsson Tisdag 22:e November 10:15 15:00 PPU105 Material Förmiddagens agenda Styvhet och vikt: E-modul och densitet ch 4 Paus Styvhetsbegränsad design ch
Material föreläsning 4. HT2 7,5 p halvfart Janne Färm
Material föreläsning 4 HT2 7,5 p halvfart Janne Färm Tisdag 1:a December 10:15 15:00 PPU105 Material Förmiddagens agenda Allmän info Bortom elasticitet: plasticitet och seghet ch 6 Paus Hållfasthetsbegränsad
Spänning och töjning (kap 4) Stång
Föreläsning 3 Spänning och töjning Spänning och töjning (kap 4) Stång Fackverk Strukturmekanik FM60 Materialmekanik SMA10 Avdelningen för Bggnadskonstruktion TH Campus Helsingborg Balk Ram Spänning (kraftmått)
Mekaniska Egenskaper och Brottanalys
Mekaniska Egenskaper och Brottanalys Sida 1 (11) Linköpings Tekniska Högskola IEI Konstruktionsmaterial 2012-08-28 Mekaniska Egenskaper och Brottanalys TMKM11 Konstruktionsmaterial HT-2012 Mekaniska Egenskaper
VSMA01 - Mekanik ERIK SERRANO
VSMA01 - Mekanik ERIK SERRANO Innehåll Material Spänning, töjning, styvhet Dragning, tryck, skjuvning, böjning Stång, balk styvhet och bärförmåga Knäckning Exempel: Spänning i en stång x F A Töjning Normaltöjning
Experimentella metoder, FK3001. Datorövning: Finn ett samband
Experimentella metoder, FK3001 Datorövning: Finn ett samband 1 Inledning Den här övningen går ut på att belysa hur man kan utnyttja dimensionsanalys tillsammans med mätningar för att bestämma fysikaliska
Dimensionering av rostfria konstruktioner. Nya regler för dimensionering av rostfritt stål. Ove Lagerqvist
Nya regler för dimensionering av rostfritt stål Ove Lagerqvist ove@prodevelopment.se tel 070-6655013 Introduktion Varför särskilda dimensioneringsregler för rostfritt stål? Kolstål: Linjärt elastiskt upp
Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)
Tekniska Högskolan i Linköping, IK DEL 1 - (Teoridel utan hjälpmedel) U G I F T E R med L Ö S N I N G A R 1. Ange Hookes lag i en dimension (inklusive temperaturterm), förklara de ingående storheterna,
KOHESIVA LAGAR I SKJUVNING EN EXPERIMENTELL METOD MED PLASTICERANDE ADHERENDER
KOHESIVA LAGAR I SKJUVNING EN EXPERIMENTELL METOD MED PLASTICERANDE ADHERENDER Tomas Walander 1 1 Materialmekanik, Högskolan i Skövde, Box 408, 541 28 Skövde, e-post: tomas.walander@his.se Bild 1 END NOTCH
Hållfasthetslära. VT2 7,5 p halvfart Janne Färm
Hållfasthetslära VT2 7,5 p halvfart Janne Färm Fredag 27:e Maj 10:15 15:00 Föreläsning 19 Repetition PPU203 Hållfasthetslära Fredagens repetition Sammanfattning av kursens viktigare moment Vi går igenom
Grundläggande maskinteknik II 7,5 högskolepoäng
Grundläggande maskinteknik II 7,5 högskolepoäng Provmoment: TEN 2 Ladokkod: TH081A Tentamen ges för: KENEP 15h TentamensKod: Tentamensdatum: 2016-01-15 Tid: 09:00 13:00 Hjälpmedel: Bifogat formelsamling,
ALLOY 600 UNS N06600, , NiCr15Fe
ALLOY 600 UNS N06600, 2.4816, NiCr15Fe ALLMÄNNA EGENSKAPER //////////////////////////////////////////////// //// Alloy 600 (UNS N06600) är en nickel-kromlegering avsedd att användas i applikationer under
Hållfasthetslära. VT2 7,5 p halvfart Janne Färm
Hållfasthetslära VT2 7,5 p halvfart Janne Färm Tisdag 5:e Januari 13:15 17:00 Extraföreläsning Repetition PPU203 Hållfasthetslära Tisdagens repetition Sammanfattning av kursens viktigare moment Vi går
Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1012, 4C1035, 4C1020) den 13 december 2006
KTH - HÅFASTHETSÄRA Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1012, 4C1035, 4C1020) den 13 december 2006 Resultat anslås senast den 8 januari 2007 kl. 13 på institutionens anslagstavla,
Formelsamling i Hållfasthetslära för F
Formelsamling i Hållfasthetslära för F Avd. för Hållfasthetslära Lunds Universitet Oktober 017 1 Spänningar τ σ Normalspänning: σ = spänningskomponent vinkelrät mot snittta Skjuvspänning: τ = spänningskomponent
5. Fasta ämnens elastiska egenskaper (hårdhet o. dyl)
5. Fasta ämnens elastiska egenskaper (hårdhet o. dyl) [AM 22, Kittel s.80- ] Med elasticitet menas enkelt sagt det hur fasta ämnen ger efter när man pressar på dem. Den klassiska elasticitetsteorin är
5. Fasta ämnens elastiska egenskaper (hårdhet o. dyl)
5. Fasta ämnens elastiska egenskaper (hårdhet o. dyl) [AM 22, Kittel s.80- ] Med elasticitet menas enkelt sagt det hur fasta ämnen ger efter när man pressar på dem. Den klassiska elasticitetsteorin är
Lösning: B/a = 2,5 och r/a = 0,1 ger (enl diagram) K t = 2,8 (ca), vilket ger σ max = 2,8 (100/92) 100 = 304 MPa. a B. K t 3,2 3,0 2,8 2,6 2,5 2,25
Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Enkla bärverk TMHL0, 009-03-13 kl LÖSNINGAR DEL 1 - (Teoridel utan hjälpmedel) 1. Du har en plattstav som utsätts för en
PPU408 HT15. Beräkningar stål. Lars Bark MdH/IDT
Beräkningar stål 1 Balk skall optimeras map vikt (dvs göras så lätt som möjligt) En i aluminium, en i höghållfast stål Mått: - Längd 180 mm - Tvärsnittets yttermått Höjd: 18 mm Bredd: 12 mm Lastfall: -
Material lektion 1. HT2 7,5 p halvfart Janne Carlsson
Material lektion 1 HT2 7,5 p halvfart Janne Carlsson Torsdag 17:e November 13:15 15:00 PPU105 Material Eftermiddagens agenda CES Datorövningar och inlämningsuppgift Fortsättning på Mekaniska egenskaper
Hållfasthetslära. Böjning och vridning av provstav. Laboration 2. Utförs av:
Hållfasthetslära Böjning och vridning av provstav Laboration 2 Utförs av: Habre Henrik Bergman Martin Book Mauritz Edlund Muzammil Kamaly William Sjöström Uppsala 2015 10 08 Innehållsförteckning 0. Förord
Betongprovning Hårdnad betong Elasticitetsmodul vid tryckprovning. Concrete testing Hardened concrete Modulus of elasticity in compression
SVENSK STANDARD Fastställd 2005-02-18 Utgåva 2 Betongprovning Hårdnad betong Elasticitetsmodul vid tryckprovning Concrete testing Hardened concrete Modulus of elasticity in compression ICS 91.100.30 Språk:
Short Glossary of Solid and Fracture Mechanics Terms. English Svenska Notation
Short Glossary of Solid and Fracture Mechanics Terms English Svenska Notation alloy legering application tillämpning area moment of inertia areatröghetsmoment I axis axel beam balk bending böjning body
8. Elasticitet I. 8.1 Fasta ämnens elastiska egenskaper (hårdhet o. dyl) I. 8.2 Härledning av elasticitetstensorn II
8. Elasticitet I I 8.2.1 Ingenjörsnotation för elasticitet 8.2.2 Geometrisk tolkning av e och C 8.2.4 Ytterligare reducering av antalet elastiska moduler 8.3.1 Isotropiska material 8.3.2 Vätskor [EI 7-8,
De fysikaliska parametrar som avgör periodtiden för en fjäder
De fysikaliska parametrar som avgör periodtiden för en fjäder Teknisk Fysik, Chalmers tekniska högskola, Sverige Robin Andersson Email: robiand@student.chalmers.se Alexander Grabowski Email: alegra@student.chalmers.se
EXPERIMENTELLA METODER LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN
FYSIKUM Fysikum 21 mars 2005 Stockholms universitet EXPERIMENTELLA METODER LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN FYSIKLINJEN ÅK1 Vårterminen 2005 Mål I den här laborationen skall du börja med att ställa
Materialfysik vt Plasticitet 7.3 Dislokationer. [Callister; Kittel; egen kunskap]
530117 Materialfysik vt 2010 7. Plasticitet 7.3 Dislokationer [Callister; Kittel; egen kunskap] 7.3.1. Dislokationers struktur De plastiska egenskaperna hos metaller (sgs. alltid) och keramer (oftast)
Dislokationers struktur Materialfysik vt 2010 dislokationer 7. Plasticitet 7.3 Dislokationer [Callister; Kittel; egen kunskap]
7.3.1. Dislokationers struktur 530117 Materialfysik vt 2010 7. Plasticitet 7.3 Dislokationer De plastiska egenskaperna hos metaller (sgs. alltid) och keramer (oftast) hänger nära ihop med dislokationer
5. Fasta ämnens elastiska egenskaper (hårdhet o. dyl)
5. Fasta ämnens elastiska egenskaper (hårdhet o. dyl) [AM 22, Kittel s.80- ] Med elasticitet menas enkelt sagt det hur fasta ämnen ger efter när man pressar på dem. Den klassiska elasticitetsteorin är
TENTAMEN MTGC12, MATERIALTEKNIK II / MTGC10 MATERIALVAL
Materialteknik, Jens Bergström 2014-10-24 TENTAMEN MTGC12, MATERIALTEKNIK II / MTGC10 MATERIALVAL Tid: Tisdagen 28 oktober, 2014 Tentamen omfattar genomgånget kursmaterial. Hjälpmedel: Kalkylator Poängsättning:
Material. VT1 1,5 p Janne Färm
Material VT1 1,5 p Janne Färm Torsdag 5:e Februari 10:15 12:00 Föreläsning M3 KPP045 Material-delen Förmiddagens agenda Brottmekanik och utmattning : Kapitel 7 Laboration: Härdning och hårdhetsmätning
Härdningsmekanismer OBS: Läs igenom handledningen för laborationen.
Härdningsmekanismer OBS: Läs igenom handledningen för laborationen. Postadress Box 118 Besöksadress Ole Römers väg 1 växel 046-222 00 00 Telefax 046-222 46 20 Internet http://www.materal.lth.se ALLMÄNT
LABORATION I HÅLLFASTHETSLÄRA AK1
LABORATION I HÅLLFASTHETSLÄRA AK1 Laborationer i hållfasthetslära är obligatoriska moment. I AK1M sker laborationer vid två stationer och arbetet genomförs med fyra teknologer i varje grupp, vilka tillsammans
TENTAMEN Material. Moment: Tentamen (TEN1), 3,5 högskolepoäng, betyg 3, 4 eller 5. Skriv din kod, kurskoden och kursnamn på varje inlämnat blad!
TENTAMEN Material Kurskod: PPU105 Moment: Tentamen (TEN1), 3,5 högskolepoäng, betyg 3, 4 eller 5 Datum: 2015-01-14 14:10-18:30 Hjälpmedel: Skriv och ritmateriel, räknedosa. Läs detta innan du börjar med
5. Fasta ämnens elastiska egenskaper (hårdhet o. dyl)
5. Fasta ämnens elastiska egenskaper (hårdhet o. dyl) [AM 22, Kittel s.80- ] Med elasticitet menas enkelt sagt det hur fasta ämnen ger efter när man pressar på dem. Den klassiska elasticitetsteorin är
Dimensionering i bruksgränstillstånd
Dimensionering i bruksgränstillstånd Kapitel 10 Byggkonstruktion 13 april 2016 Dimensionering av byggnadskonstruktioner 1 Bruksgränstillstånd Formändringar Deformationer Svängningar Sprickbildning 13 april
ALLMÄNNA EGENSKAPER ///////////////////////////////////////////////////////////////
ALLOY 625 UNS N06625, NiCr22Mo9Nb, 2.4856 ALLMÄNNA EGENSKAPER /////////////////////////////////////////////////////////////// //// Alloy 625 (UNS beteckning N06625) är en nickel-krom-molybden-legering
7. Fasta ämnens mekaniska egenskaper. Materialfysik, Kai Nordlund
7. Fasta ämnens mekaniska egenskaper Materialfysik, Kai Nordlund 2007 1 7.1. Elasticitet [Ashcroft-Mermin 22, Kittel s.80- ] Fasta ämnens hårdhetsegenskaper är ett mångfasetterat ämne. Den kan anses vara
Material föreläsning 9. HT2 7,5 p halvfart Janne Carlsson
Material föreläsning 9 HT2 7,5 p halvfart Janne Carlsson Fredag 16:e December 10:15 12:00 PPU105 Material Förmiddagens agenda Material, processer och miljön ch 20 Viktiga delar från respektive kapitel
Sensorer, effektorer och fysik. Mätning av töjning, kraft, tryck, förflyttning, hastighet, vinkelhastighet, acceleration
Sensorer, effektorer och fysik Mätning av töjning, kraft, tryck, förflyttning, hastighet, vinkelhastighet, acceleration Töjning Betrakta en stav med längden L som under inverkan av en kraft F töjs ut en
18. Fasjämvikt Tvåfasjämvikt T 1 = T 2, P 1 = P 2. (1)
18. Fasjämvikt Om ett makroskopiskt system består av flere homogena skilda komponenter, som är i termisk jämvikt med varandra, så kallas dessa komponenter faser. 18.0.1. Tvåfasjämvikt Jämvikt mellan två
Allmänt om ternära fasdiagram Materialfysik vt Fasta ämnens termodynamik 4.3 Ternära fasdiagram
4.3.1. Allmänt om ternära fasdiagram 530117 Materialfysik vt 2010 4. Fasta ämnens termodynamik 4.3 Ternära fasdiagram En ytterligare klass av fasdiagram är de ternära De är liksidiga trianglar som anger
Materialfysik vt Fasta ämnens termodynamik 4.3 Ternära fasdiagram. [Mitchell 2.2; Callister 12.7, mm]
530117 Materialfysik vt 2016 4. Fasta ämnens termodynamik 4.3 Ternära fasdiagram [Mitchell 2.2; Callister 12.7, mm] 4.3.1. Allmänt om ternära fasdiagram En ytterligare klass av fasdiagram är de ternära
5. Fasta ämnens elastiska egenskaper (hårdhet o. dyl)
5. Fasta ämnens elastiska egenskaper (hårdhet o. dyl) där summorna löper över atomens och dess grannars jämviktspositioner R och R. [AM 22, Kittel s.80- ] Med elasticitet menas enkelt sagt det hur fasta
Biomekanik Belastningsanalys
Biomekanik Belastningsanalys Skillnad? Biomekanik Belastningsanalys Yttre krafter och moment Hastigheter och accelerationer Inre spänningar, töjningar och deformationer (Dynamiska påkänningar) I de delar
Sylodyn. Dynamiska prestanda för exceptionella krav. Fördelar. Leveransprogram
Sylodyn Utgåva Maj 2018 Dynamiska prestanda för exceptionella krav Sylodyn används för vibrations- och stomljudsisolering där kraven är mycket höga. Materialets prestanda beror på att det är extremt elastiskt
Strålningsfält och fotoner. Våren 2013
Strålningsfält och fotoner Våren 2013 1. Fält i rymden Vi har lärt oss att beräkna elektriska fält utgående från laddningarna som orsakar dem Kan vi härleda nånting åt andra hållet? 2 1.1 Gauss lag Låt
IN Inst. för Fysik och materialvetenskap ---------------------------------------------------------------------------------------------- INSTRUKTION TILL LABORATIONEN INDUKTION ---------------------------------------------------------------------------------------------
Angående skjuvbuckling
Sidan 1 av 6 Angående skjuvbuckling Man kan misstänka att liven i en sandwich med invändiga balkar kan haverera genom skjuvbuckling. Att skjuvbuckling kan uppstå kan man förklara med att en skjuvlast kan
Viktiga målsättningar med detta delkapitel
Viktiga målsättningar med detta delkapitel Känna till begreppen ytenergi och ytspänning Förstå den stora rollen av ytor för nanomaterials egenskap Känna till storleksberoendet av nanopartiklars smältpunkt
50 poäng. Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:
Metalliska Material Provmoment: Ladokkod: Tentamen ges för: Tentamen A129TG TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 161028 Tid: 09.00-13.00 Hjälpmedel: Miniräknare Formler, figurer, tabeller
Material föreläsning 6. HT2 7,5 p halvfart Janne Carlsson
Material föreläsning 6 HT2 7,5 p halvfart Janne Carlsson Tisdag 6:e December 10:15 16:00 PPU105 Material Förmiddagens agenda Termiska egenskaper ch 12-13 Paus Elektriska, magnetiska och optiska egenskaper
Lösningar till tentamen i Kemisk termodynamik
Lösningar till tentamen i Kemisk termodynamik 203-0-9. Sambandet mellan tryck och temperatur för jämvikt mellan fast och gasformig HCN är givet enligt: ln(p/kpa) = 9, 489 4252, 4 medan kokpunktskurvan
Kinetik. Föreläsning 2
Kinetik Föreläsning 2 Reaktioner som går mot ett jämviktsläge ALLA reaktioner går mot jämvikt, här avses att vid jämvikt finns mätbara mängder av alla i summaformeln ingående ämnen. Exempel: Reaktion i
Konstruktionsmaterial, 4H1068, 4p. Kursinformation. Repetition: Punktdefekter. Repetition: Typer av defekter. Repetition: Punktdefekter i legeringar
Konstruktionsmaterial, 4H068, 4p Kursinformation Anmälan till labkurs och val av labgrupp skall göras senast nu. Det är 9 st som inte har valt labgrupp. Sista tillfället för Lab är idag kl 5-8. Skriv upp
Laboration i Hållfasthetslära AK1
Laboration i Hållfasthetslära AK1 Introduktion Laborationen är obligatorisk och innehåller två moment: stabilitet och dragprovning. Dessa utförs vid två stationer. Arbetet genomförs med fyra teknologer
Material, form och kraft, F11
Material, form och kraft, F11 Repetition Dimensionering Hållfasthet, Deformation/Styvhet Effektivspänning (tex von Mises) Spröda/Sega (kan omfördela spänning) Stabilitet instabilitet Pelarknäckning Vippning
PPU408 HT15. Beräkningar stål. Lars Bark MdH/IDT
Beräkningar stål 1 Balk skall optimeras map vikt (dvs göras så lätt som möjligt) En i aluminium, en i höghållfast stål Mått: - Längd 180 mm - Tvärsnittets yttermått Höjd: 18 mm Bredd: 12 mm Lastfall: -
Planering för Matematik kurs D
Planering för Matematik kurs D Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs D Antal timmar: 9 (7 + ) I nedanstående planeringsförslag tänker vi oss att D-kursen studeras på 9 klocktimmar.
Strålningsfält och fotoner. Våren 2016
Strålningsfält och fotoner Våren 2016 1. Fält i rymden Vi har lärt oss att beräkna elektriska fält utgående från laddningarna som orsakar dem Kan vi härleda nånting åt andra hållet? 2 1.1 Gauss lag Låt
Materialfysik vt Fasta ämnens termodynamik 4.1 Fasdiagram
530117 Materialfysik vt 2007 4. Fasta ämnens termodynamik 4.1 Fasdiagram 4.1.4. Mer komplicerade tvåkomponentsfasdiagram: principer Vi såg alltså ovan hur det enklaste tänkbara två-komponentsystemet, den
LÖSNINGAR. TENTAMEN i Hållfasthetslära grk, TMHL07, kl DEL 1 - (Teoridel utan hjälpmedel)
ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en balk utsatt för transversell last q(x) kan beräknas med formeln σ x M y z I y Detta uttryck är relaterat (kopplat) till ett koordinatsystem
Laborationsuppgift om Hertzsprung-Russell-diagrammet
Laborationsuppgift om Hertzsprung-Russell-diagrammet I denna uppgift kommer du att tillverka ett HR-diagram för stjrärnorna i Orions stjärnbild och dra slutsatser om stjärnornas egenskaper. HR-diagrammet
Tentamen i Hållfasthetslära AK
Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK1 2017-04-18 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den
530117 Materialfysik vt 2007. 5. Kinetik 5.1 Allmänt om kinetik. [Mitchell 3.0; lite ur Porter-Easterling 5.4]
530117 Materialfysik vt 2007 5. Kinetik 5.1 Allmänt om kinetik [Mitchell 3.0; lite ur Porter-Easterling 5.4] Definition Med kinetik avses tidsberoendet av processer, hur snabbt de sker Avgörande storhet
Tentamen i Hållfasthetslära AK
Avdelningen för Hållfasthetslära unds Tekniska Högskola, TH Tentamen i Hållfasthetslära AK1 2017-03-13 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den visas
Hållfasthetslära. VT2 7,5 p halvfart Janne Carlsson
Hållfasthetslära VT2 7,5 p halvfart Janne Carlsson Torsdag 30:e Mars 13:15 17:00 Föreläsning 2 PPU203 Hållfasthetslära Eftermiddagens agenda Tips inför INL1.1 Fortsättning från föreläsning 1 Rast Föreläsning
Kursinformation. Materiallära för Maskinteknik, 4H1063, 4p. Repetion: Härdningsmekanismer. Repetion: Korngränshärdning (minskning av kornstorlek)
Materiallära för Maskinteknik, 4H1063, 4p Kursinformation Labkurs. Labgrupp 3 och 5 har bytt tid för Lab3, från kl 08-11, till kl 16-19, Tor 16/11 (schemat på hemsidan gäller). Labpek 06, dvs laborationsanvisningar
Ellipsen. 1. Apollonius och ellipsen som kägelsnitt.
Ellipsen 1. Apollonius och ellipsen som kägelsnitt. Vi skall stifta bekantskap med, och ganska noga undersöka, den plana kurva som kallas ellips. Man kan närma sig kurvan på olika sätt men vi väljer som
Material, form och kraft, F9
Material, form och kraft, F9 Repetition Skivor, membran, plattor, skal Dimensionering Hållfasthet Styvhet/Deformationer Skivor Skiva: Strukturelement som är tunt i förhållande till utsträckningen i planet
Om inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen.
Komponentfysik Övningsuppgifter Halvledare VT-15 Om inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen. Utredande
P R O B L E M
Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 2008-08-14 kl 8-12 P R O B L E M med L Ö S N I N G A R Del 1 - (Teoridel utan hjälpmedel)
FORMELSAMLING. Produktionsteknik
2008-01-10 FORMELSAMLING i Produktionsteknik Sammanställd av Peter Bjurstam för kurserna TMPT04, TMPT33 och TMMI06 Nomenklatura med enheter: (Storheter i alfabetisk ordning) W Arbete (Nm) A Area (mm 2
LMA515 Matematik, del B Sammanställning av lärmål
LMA515 Matematik, del B Sammanställning av lärmål Lärmål för godkänt Funktion, gränsvärde, kontinuitet, derivata. Förklara begreppen funktion, definitionsmängd och värdemängd, och bestämma (största möjliga)
Hållfasthet. Kommer det bära eller brista?
Hållfasthet Kommer det bära eller brista? Kommer det bära eller brista? Vad är det som avgör om ett föremål håller eller går sönder? Vilket eller vilka material är föremålet gjort av? Vilken form har föremålet?
TENTAMEN MTGC12, MATERIALTEKNIK II / MTGC10 MATERIALVAL
Materialteknik, Jens Bergström 2016-01-21 TENTAMEN MTGC12, MATERIALTEKNIK II / MTGC10 MATERIALVAL Tid: Måndagen 25 januari, 2016 Tentamen omfattar genomgånget kursmaterial. Hjälpmedel: Kalkylator Poängsättning:
Hållfasthetslära. VT2 7,5 p halvfart Janne Färm
Hållfasthetslära VT2 7,5 p halvfart Janne Färm Torsdag 31:a Mars 13:15 17:00 Föreläsning 2 PPU203 Hållfasthetslära Eftermiddagens agenda Tips inför INL1.1 Repetition Rast Föreläsning: Normaltöjning Deformation
Termisk åldring av rostfritt gjutstål
Termisk åldring av rostfritt gjutstål Interaktionen mellan mikrostruktur och mekaniska egenskaper Martin Bjurman (Studsvik/KTH) Pål Efsing (KTH) Introduktion Stora tryckbärande komponenter är av tillverkningstekniska
= 1 E {σ ν(σ +σ z x y. )} + α T. ε y. ε z. = τ yz G och γ = τ zx. = τ xy G. γ xy. γ yz
Tekniska Högskolan i Linköping, IKP /Tore Dahlberg LÖSNINGAR TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 060601 kl -12 DEL 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en punkt i ett
Material. VT1 1,5 p Janne Färm
Material VT1 1,5 p Janne Färm Torsdag 22:a Januari 10:15 12:00 kursstart KPP045 Material-delen Förmiddagens agenda Materialkurs för blivande ingenjörer Gruppindelning Kursupplägg Kort paus Föreläsning:
Den ideala kombinationen av både fjäder och dämpare. Fördelar. Lång livslängd
Sylomer Utgåva juni 2019 Den ideala kombinationen av både fjäder och dämpare Sylomer används för vibrations- och stomljudsisolering där kraven är höga och där både fjädrande och dämpande egenskaper eftersöks.
Analys av belastning på räckesinfästning på tvärspänd platta
Analys av belastning på räckesinfästning på tvärspänd platta Slutrapport Mats Ekevad, Luleå Tekniska Universitet 2014-05-28 Förord Rapporten beskriver resultatet av beräkningar på räckesinfästningar på
GJUTNING AV VÄGG PÅ PLATTA
GJUTNING AV VÄGG PÅ PLATTA Studier av sprickrisker orsakat av temperaturförloppet vid härdningen Jan-Erik Jonasson Kjell Wallin Martin Nilsson Abstrakt Försök med gjutning av konstruktionen vägg på platta
Mätning av vågutbredning i järnvägsräls
Mätning av vågutbredning i järnvägsräls Examensarbete vid Linköpings universitet utfört av Emir Alisic LiTH-IKP-ING-Ex 06/003--SE 2006 Framläggningsdatum 2006-03-24 Publiceringsdatum (elektronisk version)
Tentamen i Hållfasthetslära AK
Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK1 2017-08-17 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den
Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära grk, TMHL07, kl 8-12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR
TENTAMEN i Hållfasthetslära grk, TMHL07, 040423 kl -12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR 1. Skjuvpänningarna i en balk utsatt för transversell last q() kan beräknas med formeln τ y = TS A Ib
Marknadskontroll av byggprodukter. Slutrapport för kallformade konstruktionsrör
Marknadskontroll av byggprodukter Slutrapport för kallformade konstruktionsrör Marknadskontroll av byggprodukter Slutrapport för kallformade konstruktionsrör Titel: Marknadskontroll av byggprodukter,
Introduktion till CES
Introduktion till CES TMKM14 Konstruktionsmaterial, IEI Linköpings universitet HT 2014 Inledning Den här labben består av två uppgifter. Den första är avsedd att fungera som en introduktion till CES och