Hidden Markov Model. Definition: V, X,{T k },π. hidden Markov model. X is an output alphabet. V is a finite set of states
|
|
- Ola Jonasson
- för 5 år sedan
- Visningar:
Transkript
1 Hidden Markov Model Definition: hidden Markov model V, X,{T k },π X is an output alphabet V is a finite set of states {T k }={T k k X} are transition matrices T k is an V V matrix, T k j [,], j,k Tk j = π is a row vector, π [,], π =, π= k πtk Shorthand: λ= π,{t k }
2 Word Probabilities
3 Notation and Definition Alphabet: States: Word: By definition, X={,,2,...,N } V={,,2,...,V } = 2 L Pr( )=πt X =N V =V =L For example, Pr() = j k π T () j T () jk T() k How do we compute Pr( ) efficiently?
4 Brute Force Algorithm Method: Add each term in the summation. def wordprob( ): s=[,,...,] prob = # L+ zeros, these are indices keepgoing = True while keepgoing: term = π[s ] for i in range(l): term = term T[ ][s,s + ] prob += term # increment the indices in lexicographic order keepgoing = incrementindices( s) return prob This algorithm is O L N L. For any reasonable L, the algorithm is too slow. The algorithm calculates the same quantities repeatedly. Pr()=π T T +π T T +π T T +π T T +π T T +π T T +π T T +π T T For example, linked, colored quantities are calculated twice.
5 Forward Probabilities Definition: α t (j)=pr(seeing t and ending up in state j) For example, let = and N=V=2. Then, α ()=Pr(seeing and ending up in state ) =π T () +π T () α ()=Pr(seeing and ending up in state ) =π T () +π T () Notice, Pr()=α ()+α ().
6 Forward Probabilities Definition: α t (j)=pr(seeing t and ending up in state j) For example, let = and N=V=2. Then, α ()=π T () +π T () α ()=π T () +π T () α ()=Pr(seeing and ending up in state ) =π T () T() +π T () T() +π T () T() +π T () T() =α ()T () +α ()T () α ()=Pr(seeing and ending up in state ) =α ()T () +α ()T ()
7 Forward Probabilities Definition: α t (j)=pr(seeing t and ending up in state j) In general, α t (j)= π T ( ) j t= α t ( )T ( t) j <t<l Pr( t )= α t (j) j Notice, t is represented as [:t+] in Python.
8 Forward Algorithm Method: Use forward probabilities. def wordprob( ): L = len( ) α = zeros((l,v),float) # an L V matrix of zeros for j in range(v): for i in range(v): α[,j] += π[i] T[ ][i, j] for t in range(,l): for j in range(v): for i in range(v): α[t,j] += α[t,i] T[ t ][i, j] prob = for j in range(v): prob += α[n,j] return prob This algorithm is O L V 2 In some cases, algorithm can be improved to be linear in V. See Fast Algorithms for Large-State-Space HMMs with Applications to Web Usage Analysis by Felzenszwalb, Huttenlocher, and Kleinberg.
9 Complete Sets of Word Probabilities Suppose we needed to word probabilities for every word of length L. Is there a good way to do this? Notice: This problem is inherently exponential in L. Using the brute-force method on each of the N L words gives an algorithm in O(N 2L L). Using the forward-algorithm on each of the N L words gives an algorithm in O(N L V 2 L). Using the forward-algorithm efficiently gives an algorithm in O(N L V 2 logl) that gives probabilities for words of every length up to L. To compute Pr(), we also compute Pr() and Pr(). So we can store these values and use them when computing Pr().
10 Complete Sets of Word Probabilities λ λ
11 Complete Sets of Word Probabilities λ λ
12 Complete Sets of Word Probabilities λ λ
13 Complete Sets of Word Probabilities λ λ
14 Complete Sets of Word Probabilities λ λ
15 Complete Sets of Word Probabilities λ λ
16 Complete Sets of Word Probabilities λ λ
17 Complete Sets of Word Probabilities λ λ
18 Complete Sets of Word Probabilities λ λ
19 Mathematica Code Even Process in Mathematica T[]={{/2, }, {, }}; T[]={{, /2}, {, }}; n = Table[{}, {i,, Dimensions[T[]][[]]}]; A = {, }; ue = Table[a[i], {i,, Length[n]}]; evec = Solve[{ue.(T[] + T[]) == ue, Sum[a[i], {i,, Length[n]}] == }, ue]; e = Table[evec[[, i, 2]], {i,, Length[n]}]; wordprob[l_] := Module[{currentWord, i, words}, currentmatrices := Fold[Dot, T[i[]], Table[T[i[j ]], {j, 2, L}]]; words := Flatten[ Fold[ Table, { MyStringJoin[ Table[MyToString[i[k]], {k,,l}] ], (e.currentmatrices.n) }, Table[{i[k],, }, {k, L,, }] ] ] /. MyToString > ToString /. MyStringJoin > StringJoin; Return[words]; ] For appropriate V V matrices, wordprob[l] computes the probabilities for every word of length L using the brute force method for each of the X L words. For L 5, Mathematica computes wordprob[l] as fast as Python does when using the forward algorithm intelligently!
20 Viterbi Path
21 Question and Example Given an HMM and an output sequence, what sequence of states most likely caused the output sequence? If we observe =, the possible internal state sequences are: Since we are in state most of the time, the most likely state sequence is.
22 Viterbi Path - Brute Force The Viterbi path, ρ V L+, is given by: ρ( )= rgm x s Pr( s) Once again, we can compute this with brute force. Given a word,. calculate Pr( s) where s is a sequence of states 2. do this for all N L possible state sequences s 3. return the s which maximizes Pr( s) This algorithm is ridiculously similar to the brute force method for computing word probabilities, and thus, is also O(L N L ). As before, dynamic programming techniques should be used.
23 Viterbi Algorithm δ t (j)=(probability,path) The first component is the probability of the Viterbi path for t that ends in state j. m x π T j t= δ X t (j)= m x δ t ( )T t j <t<l X The second component is a list of the path mentioned above. δ t (j)= rgm x π T j δ t ( ) { } t= <t<l, = rgm x δ t T t j The union operator should be understood as append to the list.
24 Viterbi Algorithm δ t (j)= m x π T j m x X δ t ( )T t j X t= <t<l δ t (j)= rgm x π T j δ t ( ) { } t= <t<l, = rgm x δ t T t j For each j V, δ (j) is a possible Viterbi path for. The L actual Viterbi path ρ is: ρ=δ L (j ) {j } where j = rgm x j {δ L (j)} That is, the correct path is the one with maximum likelihood.
25 Viterbi Example Consider = for a 2-state HMM with X={,}.
26 Viterbi Example Consider = for a 2-state HMM with X={,}. δ ()=m x π T,π T
27 Viterbi Example Consider = for a 2-state HMM with X={,}. δ ()=m x π T,π T For demonstration purposes, let s pick one of these paths to be more probable. Notice, this algorithm assumes they are not equal. Thus, we now have δ ()= π T,{}
28 Viterbi Example Consider = for a 2-state HMM with X={,}. δ ()=m x π T,π T
29 Viterbi Example Consider = for a 2-state HMM with X={,}. δ ()=m x π T,π T Once again, let s pick one to be the maximum. Thus, δ ()= π T,{}
30 Viterbi Example Consider = for a 2-state HMM with X={,}. So far, we have: δ ()= π T,{} δ ()= π T,{}
31 Viterbi Example Consider = for a 2-state HMM with X={,}. δ ()=m x δ ()T,δ ()T =m x π T T,π T T
32 Viterbi Example Consider = for a 2-state HMM with X={,}. δ ()=m x δ ()T,δ ()T Picking a maximum gives: =m x π T T,π T T δ ()= π T T,{,}
33 Viterbi Example Consider = for a 2-state HMM with X={,}. δ ()=m x δ ()T,δ ()T =m x π T T,π T T
34 Viterbi Example Consider = for a 2-state HMM with X={,}. δ ()=m x δ ()T,δ ()T Computing the maximum gives: =m x π T T,π T T δ ()= π T T,{,}
35 Viterbi Example Consider = for a 2-state HMM with X={,}. Now we have: δ ()= π T,{} δ ()= π T,{} δ ()= π T T,{,} δ ()= π T T,{,}
36 Viterbi Example Consider = for a 2-state HMM with X={,}. δ 2 ()=m x δ ()T,δ ()T =m x π T T T,π T T T
37 Viterbi Example Consider = for a 2-state HMM with X={,}. δ 2 ()=m x δ ()T,δ ()T =m x π T T T,π T T T Hypothetically, we compute the maximum and obtain: δ 2 ()= π T T T,{,,}
38 Viterbi Example Consider = for a 2-state HMM with X={,}. δ 2 ()=m x δ ()T,δ ()T =m x π T T T,π T T T
39 Viterbi Example Consider = for a 2-state HMM with X={,}. δ 2 ()=m x δ ()T,δ ()T =m x π T T T,π T T T Finally, we compute the maximum and obtain: δ 2 ()= π T T T,{,,}
40 Viterbi Example Consider = for a 2-state HMM with X={,}. In total, we have: δ ()= π T,{} δ ()= π T,{} δ ()= π T T,{,} δ ()= π T T,{,} δ 2 ()= π T T T,{,,} δ 2 ()= π T T T,{,,}
41 Viterbi Example Consider = for a 2-state HMM with X={,}. To find the Viterbi path for =, first we find the j that maximizes δ 2 (j). j = rgm x{π T T T,π T j }{{} T T } }{{} j= j= Suppose, the j= term was the larger of the two. Then the Viterbi path is: ρ=δ 2 () {}={,,} {}={,,,}
42 Viterbi Example Code def viterbi( ): L = len( ) δ = {} for j in range(v): (v_prob, v_path) = (, None) for i in range(num_states): prob = π[i] T[ ][i, j] if prob > v_prob: (v_prob, v_path) = (prob, [i ]) δ[,j] = (v_prob, v_path) for t in range(,l): for j in range(v): (v_prob, v_path) = (, None) for i in range(v): (prior_prob, prior_path) = δ[t,i] prob = prior_prob T[ t ][i, j] if prob > v_prob: (v_prob, v_path) = (prob, prior_path + [i ]) δ[t,j] = (v_prob, v_path) value_max = argmax = None for j in range(v): if δ[n,j][] > value_max: value_max = δ[n,j][] argmax = j path = δ[n,argmax][] + [argmax] return path Like the forward algorithm, this algorithm is O(L V 2 ).
43 HMM Inference
44 The Idea Given and an assumed number of states, adjust λ= π,{t k } to maximize Pr( λ). That is, λ = rgm x λ Pr( λ) One common method to use is the Baum-Welch algorithm. In practice, only local maxima can be found. The method is iterative producing a series of λ such that Pr( λ + )>Pr( λ ) Eventually, the improvements on λ decrease to zero. MLE method via expectation-modification (EM) algorithm. q q qt t q t+ t+ L 2 q L L q L
45 Backward Probabilities Recall, the forward probabilities: α t (j)=pr( t,q t+ =j λ) = π T ( ) j t= α t ( )T ( t) j <t<l Now, the backward probabilities: β t ( )=Pr( t+ t+2 L q t+ =,λ) = t=l j T t+ j β t+ (j) t<l
46 Another Definition The probability of being in state at time t+, given : γ t ( )=Pr(q t+ =,λ) Notice, Pr(,q t+ = λ)=α t ( )β t ( ) Using Pr(A B)=Pr(A B)Pr(B), γ t ( )= Pr(,q t+= λ) Pr( λ) = α t( )β t ( ) α t( )β t ( ) Thus, we compute the forward and backward probabilities. Then we calculate γ t ( ). Given, one way to estimate π is by: π =γ ( )
47 Yet Another Definition The probability of being in state at time t+ then j, given : ξ t (,j)=pr(q t+ =,q t+2 =j,λ) t L 2 = Pr(q t+=,q t+2 =j, λ) Pr( λ) = α t( )T t+ j β t+ (j) j α t( )T t+ j β t+ (j) Notice, γ t ( ) is the marginal distribution. γ t ( )= ξ t (,j) j
48 Baum-Welch Algorithm Let λ and λ be two different HMM specifications. Q(λ, λ)= Pr(,q λ)logpr(,q λ) q V L+ For state-output HMMs, it was shown 2 that: Q(λ, λ)>q(λ,λ) Pr( λ)>pr( λ) We can generate an edge-output HMM from a state-output HMM that describes the same process, so the results should hold (with slight modifications). This is also known as the forward-backward algorithm. 2 Baum,Petrie,Soules,andWeiss. Amaximizationtechniqueoccurringinthe statistical analysis of probabilistic functions of Markov chains.
49 Baum-Welch Algorithm We can build a new λ from λ and : π =prob. of being in state at time(t=) =γ ( ) T k j = prob. of transitioning from state to j and seeing k prob. of transitioning from state to j = L 2 t= t+ =k L 2 t= ξ t (,j) ξ t (,j) So, we take λ= π,{ T k }
50 Baum-Welch Procedure Procedure: # assume the number of states # choose some initial λ, perhaps a uniform λ # observe # using, generate λ while not λ λ: λ= λ # regenerate λ Example: (eventually)
51 Sources Most sources use state-output HMMs. Lawrence R. Rabiner. A tutorial on hidden markov models and selected applicationsin speech recognition. Proceedings of the IEEE, Vol. 77, No. 2, Feb 989. Wikipedia. Viterbi algorithm. Roger Boyle. Hidden Markov Models. Benjamin Taitelbaum. The Uses of Hidden Markov Models and Adaptive Time-Delay Neural Networks in Speech Recognition. Narada Dilp Warakagoda. A Hybrid ANN-HMM ASR system with NN based adaptive preprocessing. jedlik.phy.bme.hu/~gerjanos/hmm/hoved.html
12.6 Heat equation, Wave equation
12.6 Heat equation, 12.2-3 Wave equation Eugenia Malinnikova, NTNU September 26, 2017 1 Heat equation in higher dimensions The heat equation in higher dimensions (two or three) is u t ( = c 2 2 ) u x 2
Isometries of the plane
Isometries of the plane Mikael Forsberg August 23, 2011 Abstract Här följer del av ett dokument om Tesselering som jag skrivit för en annan kurs. Denna del handlar om isometrier och innehåller bevis för
Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00. English Version
Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00 Examinator/Examiner: Xiangfeng Yang (Tel: 070 2234765) a. You are permitted to bring: a calculator; formel -och tabellsamling i matematisk statistik
This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum
Examiner Linus Carlsson 016-01-07 3 hours In English Exam (TEN) Probability theory and statistical inference MAA137 Aids: Collection of Formulas, Concepts and Tables Pocket calculator This exam consists
Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version
Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 5 June 217, 14:-18: Examiner: Zhenxia Liu (Tel: 7 89528). Please answer in ENGLISH if you can. a. You are allowed to use a calculator, the formula and
F ξ (x) = f(y, x)dydx = 1. We say that a random variable ξ has a distribution F (x), if. F (x) =
Problems for the Basic Course in Probability (Fall 00) Discrete Probability. Die A has 4 red and white faces, whereas die B has red and 4 white faces. A fair coin is flipped once. If it lands on heads,
1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)
UMEÅ UNIVERSITY Department of Mathematics and Mathematical Statistics Pre-exam in mathematics Linear algebra 2012-02-07 1. Compute the following matrix: (2 p 3 1 2 3 2 2 7 ( 4 3 5 2 2. Compute the determinant
Module 6: Integrals and applications
Department of Mathematics SF65 Calculus Year 5/6 Module 6: Integrals and applications Sections 6. and 6.5 and Chapter 7 in Calculus by Adams and Essex. Three lectures, two tutorials and one seminar. Important
Solutions to exam in SF1811 Optimization, June 3, 2014
Solutions to exam in SF1811 Optimization, June 3, 14 1.(a) The considered problem may be modelled as a minimum-cost network flow problem with six nodes F1, F, K1, K, K3, K4, here called 1,,3,4,5,6, and
Preschool Kindergarten
Preschool Kindergarten Objectives CCSS Reading: Foundational Skills RF.K.1.D: Recognize and name all upper- and lowercase letters of the alphabet. RF.K.3.A: Demonstrate basic knowledge of one-toone letter-sound
Rastercell. Digital Rastrering. AM & FM Raster. Rastercell. AM & FM Raster. Sasan Gooran (VT 2007) Rastrering. Rastercell. Konventionellt, AM
Rastercell Digital Rastrering Hybridraster, Rastervinkel, Rotation av digitala bilder, AM/FM rastrering Sasan Gooran (VT 2007) Önskat mått * 2* rastertätheten = inläsningsupplösning originalets mått 2
Module 1: Functions, Limits, Continuity
Department of mathematics SF1625 Calculus 1 Year 2015/2016 Module 1: Functions, Limits, Continuity This module includes Chapter P and 1 from Calculus by Adams and Essex and is taught in three lectures,
8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers.
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MAA150 Vektoralgebra TEN1 Datum: 9januari2015 Skrivtid:
Chapter 2: Random Variables
Chapter 2: Random Variables Experiment: Procedure + Observations Observation is an outcome Assign a number to each outcome: Random variable 1 Three ways to get an rv: Random Variables The rv is the observation
Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm
Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm Guldplätering kan aldrig helt stoppa genomträngningen av vätgas, men den får processen att gå långsammare. En tjock guldplätering
Pre-Test 1: M0030M - Linear Algebra.
Pre-Test : M3M - Linear Algebra. Test your knowledge on Linear Algebra for the course M3M by solving the problems in this test. It should not take you longer than 9 minutes. M3M Problem : Betrakta fyra
Beijer Electronics AB 2000, MA00336A, 2000-12
Demonstration driver English Svenska Beijer Electronics AB 2000, MA00336A, 2000-12 Beijer Electronics AB reserves the right to change information in this manual without prior notice. All examples in this
Support Manual HoistLocatel Electronic Locks
Support Manual HoistLocatel Electronic Locks 1. S70, Create a Terminating Card for Cards Terminating Card 2. Select the card you want to block, look among Card No. Then click on the single arrow pointing
Tentamen i Matematik 2: M0030M.
Tentamen i Matematik 2: M0030M. Datum: 203-0-5 Skrivtid: 09:00 4:00 Antal uppgifter: 2 ( 30 poäng ). Examinator: Norbert Euler Tel: 0920-492878 Tillåtna hjälpmedel: Inga Betygsgränser: 4p 9p = 3; 20p 24p
Hur fattar samhället beslut när forskarna är oeniga?
Hur fattar samhället beslut när forskarna är oeniga? Martin Peterson m.peterson@tue.nl www.martinpeterson.org Oenighet om vad? 1.Hårda vetenskapliga fakta? ( X observerades vid tid t ) 1.Den vetenskapliga
Kurskod: TAMS24 / Provkod: TEN (8:00-12:00) English Version
Kurskod: TAMS24 / Provkod: TEN 25-8-7 (8: - 2:) Examinator/Examiner: Xiangfeng Yang (Tel: 7 2234765). Please answer in ENGLISH if you can. a. You are permitted to bring: a calculator; formel -och tabellsamling
Tentamen MMG610 Diskret Matematik, GU
Tentamen MMG610 Diskret Matematik, GU 2017-01-04 kl. 08.30 12.30 Examinator: Peter Hegarty, Matematiska vetenskaper, Chalmers/GU Telefonvakt: Peter Hegarty, telefon: 0766 377 873 Hjälpmedel: Inga hjälpmedel,
1. Varje bevissteg ska motiveras formellt (informella bevis ger 0 poang)
Tentamen i Programmeringsteori Institutionen for datorteknik Uppsala universitet 1996{08{14 Larare: Parosh A. A., M. Kindahl Plats: Polacksbacken Skrivtid: 9 15 Hjalpmedel: Inga Anvisningar: 1. Varje bevissteg
Grafisk teknik IMCDP IMCDP IMCDP. IMCDP(filter) Sasan Gooran (HT 2006) Assumptions:
IMCDP Grafisk teknik The impact of the placed dot is fed back to the original image by a filter Original Image Binary Image Sasan Gooran (HT 2006) The next dot is placed where the modified image has its
2.1 Installation of driver using Internet Installation of driver from disk... 3
&RQWHQW,QQHKnOO 0DQXDOÃ(QJOLVKÃ'HPRGULYHU )RUHZRUG Ã,QWURGXFWLRQ Ã,QVWDOOÃDQGÃXSGDWHÃGULYHU 2.1 Installation of driver using Internet... 3 2.2 Installation of driver from disk... 3 Ã&RQQHFWLQJÃWKHÃWHUPLQDOÃWRÃWKHÃ3/&ÃV\VWHP
Second handbook of research on mathematics teaching and learning (NCTM)
Second handbook of research on mathematics teaching and learning (NCTM) The effects of classroom mathematics teaching on students learning. (Hiebert & Grouws, 2007) Inledande observationer Undervisningens
Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås
Schenker Privpak AB Interface documentation for web service packageservices.asmx 2012-09-01 Version: 1.0.0 Doc. no.: I04304b Sida 2 av 7 Revision history Datum Version Sign. Kommentar 2012-09-01 1.0.0
denna del en poäng. 1. (Dugga 1.1) och v = (a) Beräkna u (2u 2u v) om u = . (1p) och som är parallell
Kursen bedöms med betyg, 4, 5 eller underänd, där 5 är högsta betyg. För godänt betyg rävs minst 4 poäng från uppgifterna -7. Var och en av dessa sju uppgifter an ge maximalt poäng. För var och en av uppgifterna
Quicksort. Koffman & Wolfgang kapitel 8, avsnitt 9
Quicksort Koffman & Wolfgang kapitel 8, avsnitt 9 1 Quicksort Quicksort väljer ett spcifikt värde (kallat pivot), och delar upp resten av fältet i två delar: alla element som är pivot läggs i vänstra delen
Adding active and blended learning to an introductory mechanics course
Adding active and blended learning to an introductory mechanics course Ulf Gran Chalmers, Physics Background Mechanics 1 for Engineering Physics and Engineering Mathematics (SP2/3, 7.5 hp) 200+ students
Mid-Semester Evals. CS 188: Artificial Intelligence Spring Outline. Contest. Conditional Independence. Recap: Reasoning Over Time
CS 88: Artificial Intelligence Spring 2 Lecture 2: HMMs and Particle Filtering 4/5/2 Pieter Abbeel --- UC Berkeley Many slides over this course adapted from Dan Klein, Stuart Russell, Andrew Moore Mid-Semester
SF1911: Statistik för bioteknik
SF1911: Statistik för bioteknik Föreläsning 3. TK 3.11.2017 TK Matematisk statistik 3.11.2017 1 / 53 Probability: What is it? Probability is a number between 0 and 1 that predicts the (relative) frequency
Grafisk teknik IMCDP. Sasan Gooran (HT 2006) Assumptions:
Grafisk teknik Sasan Gooran (HT 2006) Iterative Method Controlling Dot Placement (IMCDP) Assumptions: The original continuous-tone image is scaled between 0 and 1 0 and 1 represent white and black respectively
Sammanfattning hydraulik
Sammanfattning hydraulik Bernoullis ekvation Rörelsemängdsekvationen Energiekvation applikationer Rörströmning Friktionskoefficient, Moody s diagram Pumpsystem BERNOULLI S EQUATION 2 p V z H const. Quantity
A TUTORIAL ON HIDDEN MARKOV MODELS. Signal Processing and Articial Neural Networks Laboratory. Indian Institute of Technology Bombay
A TUTORIAL ON HIDDEN MARKOV MODELS Rakesh Dugad U. B. Desai Signal Processing and Articial Neural Networks Laboratory Department of Electrical Engineering Indian Institute of Technology Bombay Powai, Mumbai
Theory 1. Summer Term 2010
Theory 1 Summer Term 2010 Robert Elsässer 1 Introduction Summer Term 2010 Robert Elsässer Prerequisite of Theory I Programming language, such as C++ Basic knowledge on data structures and algorithms, mathematics
FÖRBERED UNDERLAG FÖR BEDÖMNING SÅ HÄR
FÖRBERED UNDERLAG FÖR BEDÖMNING SÅ HÄR Kontrollera vilka kurser du vill söka under utbytet. Fyll i Basis for nomination for exchange studies i samråd med din lärare. För att läraren ska kunna göra en korrekt
Grafisk teknik. Sasan Gooran (HT 2006)
Grafisk teknik Sasan Gooran (HT 2006) Iterative Method Controlling Dot Placement (IMCDP) Assumptions: The original continuous-tone image is scaled between 0 and 1 0 and 1 represent white and black respectively
Boiler with heatpump / Värmepumpsberedare
Boiler with heatpump / Värmepumpsberedare QUICK START GUIDE / SNABBSTART GUIDE More information and instruction videos on our homepage www.indol.se Mer information och instruktionsvideos på vår hemsida
NO NEWS ON MATRIX MULTIPLICATION. Manuel Kauers Institute for Algebra JKU
NO NEWS ON MATRIX MULTIPLICATION Manuel Kauers Institute for Algebra JKU ( ) ( ) ( ) a1,1 a 1,2 b1,1 b 1,2 c1,1 c = 1,2 a 2,1 a 2,2 b 2,1 b 2,2 c 2,1 c 2,2 c 1,1 = a 1,1 b 1,1 + a 1,2 b 2,1 c 1,2 = a 1,1
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 2012-03-24 kl 14.30-19.30 Hjälpmedel : Inga hjälpmedel
Styrteknik: Binära tal, talsystem och koder D3:1
Styrteknik: Binära tal, talsystem och koder D3:1 Digitala kursmoment D1 Boolesk algebra D2 Grundläggande logiska funktioner D3 Binära tal, talsystem och koder Styrteknik :Binära tal, talsystem och koder
Webbregistrering pa kurs och termin
Webbregistrering pa kurs och termin 1. Du loggar in på www.kth.se via den personliga menyn Under fliken Kurser och under fliken Program finns på höger sida en länk till Studieöversiktssidan. På den sidan
Calculate check digits according to the modulus-11 method
2016-12-01 Beräkning av kontrollsiffra 11-modulen Calculate check digits according to the modulus-11 method Postadress: 105 19 Stockholm Besöksadress: Palmfeltsvägen 5 www.bankgirot.se Bankgironr: 160-9908
Kurskod: TAMS11 Provkod: TENB 07 April 2015, 14:00-18:00. English Version
Kurskod: TAMS11 Provkod: TENB 07 April 2015, 14:00-18:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. You are allowed to use: a calculator; formel -och tabellsamling
Om oss DET PERFEKTA KOMPLEMENTET THE PERFECT COMPLETION 04 EN BINZ ÄR PRECIS SÅ BRA SOM DU FÖRVÄNTAR DIG A BINZ IS JUST AS GOOD AS YOU THINK 05
Om oss Vi på Binz är glada att du är intresserad av vårt support-system för begravningsbilar. Sedan mer än 75 år tillverkar vi specialfordon i Lorch för de flesta olika användningsändamål, och detta enligt
Senaste trenderna från testforskningen: Passar de industrin? Robert Feldt,
Senaste trenderna från testforskningen: Passar de industrin? Robert Feldt, robert.feldt@bth.se Vad är på gång i forskningen? (ICST 2015 & 2016) Security testing Mutation testing GUI testing Model-based
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik SIGNALBEHANDLING I MULTIMEDIA, EITA50, LP4, 209 Inlämningsuppgift av 2, Assignment out of 2 Inlämningstid: Lämnas in senast kl
Tentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering
KTH Matematik Tentamen del 2 SF1511, 2018-03-16, kl 8.00-11.00, Numeriska metoder och grundläggande programmering Del 2, Max 50p + bonuspoäng (max 4p). Rättas ast om del 1 är godkänd. Betygsgränser inkl
Isolda Purchase - EDI
Isolda Purchase - EDI Document v 1.0 1 Table of Contents Table of Contents... 2 1 Introduction... 3 1.1 What is EDI?... 4 1.2 Sending and receiving documents... 4 1.3 File format... 4 1.3.1 XML (language
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00. English Version
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 0896661). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling
Algoritmer och Komplexitet ht 08. Övning 6. NP-problem
Algoritmer och Komplexitet ht 08. Övning 6 NP-problem Frekvensallokering Inom mobiltelefonin behöver man lösa frekvensallokeringsproblemet som lyder på följande sätt. Det finns ett antal sändare utplacerade.
Webbreg öppen: 26/ /
Webbregistrering pa kurs, period 2 HT 2015. Webbreg öppen: 26/10 2015 5/11 2015 1. Du loggar in på www.kth.se via den personliga menyn Under fliken Kurser och under fliken Program finns på höger sida en
CHANGE WITH THE BRAIN IN MIND. Frukostseminarium 11 oktober 2018
CHANGE WITH THE BRAIN IN MIND Frukostseminarium 11 oktober 2018 EGNA FÖRÄNDRINGAR ü Fundera på ett par förändringar du drivit eller varit del av ü De som gått bra och det som gått dåligt. Vi pratar om
Rep MEK föreläsning 2
Rep MEK föreläsning 2 KRAFTER: Kontaktkrafter, Distanskrafter FRILÄGGNING NI: Jämviktsekv. Σ F = 0; Σ F = 0, Σ F = 0, Σ F = 0 x y z NII: Σ F = ma; Σ F = ma, Σ F = ma, Σ F = ma x x y y z z NIII: Kraft-Motkraft
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00. English Version
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 0896661). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling
(D1.1) 1. (3p) Bestäm ekvationer i ett xyz-koordinatsystem för planet som innehåller punkterna
Högsolan i Sövde (SK) Tentamen i matemati Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 4-8-6 l 4.-9. Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad. Ej ränedosa. Tentamen
Kurskod: TAMS11 Provkod: TENB 12 January 2015, 08:00-12:00. English Version
Kurskod: TAMS Provkod: TENB 2 January 205, 08:00-2:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. You are allowed to use: a calculator; formel -och tabellsamling
Materialplanering och styrning på grundnivå. 7,5 högskolepoäng
Materialplanering och styrning på grundnivå Provmoment: Ladokkod: Tentamen ges för: Skriftlig tentamen TI6612 Af3-Ma, Al3, Log3,IBE3 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles
Module 4 Applications of differentiation
Department of mathematics SF1625 Calculus 1 Year 2015/2016 Module 4 Applications of differentiation Chapter 4 of Calculus by Adams and Essex. Three lectures, two tutorials, one seminar. Important concepts.
English Version. 1 x 4x 3 dx = 0.8. = P (N(0, 1) < 3.47) = =
TAMS11: Probability and Statistics Provkod: TENB 11 June 2015, 14:00-18:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. You are allowed to use: a calculator; formel
Vässa kraven och förbättra samarbetet med hjälp av Behaviour Driven Development Anna Fallqvist Eriksson
Vässa kraven och förbättra samarbetet med hjälp av Behaviour Driven Development Anna Fallqvist Eriksson Kravhantering På Riktigt, 16 maj 2018 Anna Fallqvist Eriksson Agilista, Go See Talents linkedin.com/in/anfaer/
Statistical Quality Control Statistisk kvalitetsstyrning. 7,5 högskolepoäng. Ladok code: 41T05A, Name: Personal number:
Statistical Quality Control Statistisk kvalitetsstyrning 7,5 högskolepoäng Ladok code: 41T05A, The exam is given to: 41I02B IBE11, Pu2, Af2-ma Name: Personal number: Date of exam: 1 June Time: 9-13 Hjälpmedel
Kvalitetsarbete I Landstinget i Kalmar län. 24 oktober 2007 Eva Arvidsson
Kvalitetsarbete I Landstinget i Kalmar län 24 oktober 2007 Eva Arvidsson Bakgrund Sammanhållen primärvård 2005 Nytt ekonomiskt system Olika tradition och förutsättningar Olika pågående projekt Get the
Eternal Employment Financial Feasibility Study
Eternal Employment Financial Feasibility Study 2017-08-14 Assumptions Available amount: 6 MSEK Time until first payment: 7 years Current wage: 21 600 SEK/month (corresponding to labour costs of 350 500
Resultat av den utökade första planeringsövningen inför RRC september 2005
Resultat av den utökade första planeringsövningen inför RRC-06 23 september 2005 Resultat av utökad första planeringsövning - Tillägg av ytterligare administrativa deklarationer - Variant (av case 4) med
SF1911: Statistik för bioteknik
SF1911: Statistik för bioteknik Föreläsning 4. TK 7.11.2017 TK Matematisk statistik 7.11.2017 1 / 42 Lärandemål Betingad sannolikhet (definition, betydelse) Oberoende händelser Lagen om total sannolikhet
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00. English Version
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling
DVG C01 TENTAMEN I PROGRAMSPRÅK PROGRAMMING LANGUAGES EXAMINATION :15-13: 15
DVG C01 TENTAMEN I PROGRAMSPRÅK PROGRAMMING LANGUAGES EXAMINATION 120607 08:15-13: 15 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Bilaga A: BNF-definition En ordbok: studentenshemspråk engelska Betygsgräns:
SAMMANFATTNING AV SUMMARY OF
Detta dokument är en enkel sammanfattning i syfte att ge en första orientering av investeringsvillkoren. Fullständiga villkor erhålles genom att registera sin e- postadress på ansökningssidan för FastForward
Tentamen i Matematik 2: M0030M.
Tentamen i Matematik 2: M0030M. Datum: 2010-01-12 Skrivtid: 09:00 14:00 Antal uppgifter: 6 ( 30 poäng ). Jourhavande lärare: Norbert Euler Telefon: 0920-492878 Tillåtna hjälpmedel: Inga Till alla uppgifterna
Scalable Dynamic Analysis of Binary Code
Linköping Studies in Science and Technology Dissertations, No. 1993 Ulf Kargén FACULTY OF SCIENCE AND ENGINEERING Linköping Studies in Science and Technology, Dissertations, No. 1993, 2019 Department of
Graphs (chapter 14) 1
Graphs (chapter ) Terminologi En graf är en datastruktur som består av en mängd noder (vertices) och en mängd bågar (edges) en båge är ett par (a, b) av två noder en båge kan vara cyklisk peka på sig själv
NP-fullständighetsbevis
Algoritmer, datastrukturer och komplexitet, hösten 2016 Uppgifter till övning 9 NP-fullständighetsbevis På denna övning är det också inlämning av skriftliga lösningar av teoriuppgifterna till labb 4 och
Discovering!!!!! Swedish ÅÄÖ. EPISODE 6 Norrlänningar and numbers 12-24. Misi.se 2011 1
Discovering!!!!! ÅÄÖ EPISODE 6 Norrlänningar and numbers 12-24 Misi.se 2011 1 Dialogue SJs X2000* från Stockholm är försenat. Beräknad ankoms?d är nu 16:00. Försenat! Igen? Vad är klockan? Jag vet inte.
and u = och x + y z 2w = 3 (a) Finn alla lösningar till ekvationssystemet
Kursen bedöms med betyg,, 5 eller underkänd, där 5 är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna
Bänkvåg LCW-6S Manual/Förenklat handhavande User Manual LCW-6S www.liden-weighing.se Knappfunktioner: ON/OFF Sätter på och stänger av vågen. UNIT Skiftar vägningsenhet ZERO/TARE Nollställer vågen Tarerar
Schenker Privpak AB Telefon 033-178300 VAT Nr. SE556124398001 Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr 033-257475 Säte: Borås
Schenker Privpak AB Interface documentation for web service packageservices.asmx 2010-10-21 Version: 1.2.2 Doc. no.: I04304 Sida 2 av 14 Revision history Datum Version Sign. Kommentar 2010-02-18 1.0.0
P = b) Vad betyder elementet på platsen rad 1 kolumn 3 i matrisen P 319? (2 p)
Avd. Matematisk statistik TENTAMEN I SF1904 MARKOVPROCESSER ONSDAGEN DEN 1 JUNI 2016 KL 08.00 13.00. ENGLISH VERSION FOLLOWS AFTER THE SWEDISH TEXT Examinator: Jimmy Olsson tel. 790 72 01 Kursansvarig:
Grafer, traversering. Koffman & Wolfgang kapitel 10, avsnitt 4
Grafer, traversering Koffman & Wolfgang kapitel 1, avsnitt 4 1 Traversering av grafer De flesta grafalgoritmer innebär att besöka varje nod i någon systematisk ordning precis som med träd så finns det
Bernoullis ekvation Rörelsemängdsekvationen Energiekvation applikationer Rörströmning Friktionskoefficient, Moody s diagram Pumpsystem.
010-04-6 Sammanfattning Bernoullis ekvation Rörelsemängdsekvationen Energiekvation applikationer Rörströmning Friktionskoefficient, Moody s diagram Pumpsystem BERNOULLI S EQUATION p V z H const. g Quantity
Flervariabel Analys för Civilingenjörsutbildning i datateknik
Flervariabel Analys för Civilingenjörsutbildning i datateknik Henrik Shahgholian KTH Royal Inst. of Tech. 2 / 9 Utbildningens mål Gällande matematik: Visa grundliga kunskaper i matematik. Härmed förstås
Make a speech. How to make the perfect speech. söndag 6 oktober 13
Make a speech How to make the perfect speech FOPPA FOPPA Finding FOPPA Finding Organizing FOPPA Finding Organizing Phrasing FOPPA Finding Organizing Phrasing Preparing FOPPA Finding Organizing Phrasing
English Version. Number of sold cakes Number of days
Kurskod: TAMS24 (Statistisk teori / Provkod: TEN 206-0-04 (kl. 8-2 Examinator/Examiner: Xiangfeng Yang (Tel: 070 089666. Please answer in ENGLISH if you can. a. You are permitted to bring: a calculator;
EXTERNAL ASSESSMENT SAMPLE TASKS SWEDISH BREAKTHROUGH LSPSWEB/0Y09
EXTENAL ASSESSENT SAPLE TASKS SWEDISH BEAKTHOUGH LSPSWEB/0Y09 Asset Languages External Assessment Sample Tasks Breakthrough Stage Listening and eading Swedish Contents Page Introduction 2 Listening Sample
Lösningar till Tentamen i Reglerteknik AK EL1000/EL1100/EL
Lösningar till Tentamen i Reglerteknik AK EL/EL/EL 9-6- a. Ansätt: G(s) = b s+a, b >, a >. Utsignalen ges av y(t) = G(iω) sin (ωt + arg G(iω)), ω = G(iω) = b ω + a = arg G(iω) = arg b arg (iω + a) = arctan
Information technology Open Document Format for Office Applications (OpenDocument) v1.0 (ISO/IEC 26300:2006, IDT) SWEDISH STANDARDS INSTITUTE
SVENSK STANDARD SS-ISO/IEC 26300:2008 Fastställd/Approved: 2008-06-17 Publicerad/Published: 2008-08-04 Utgåva/Edition: 1 Språk/Language: engelska/english ICS: 35.240.30 Information technology Open Document
Övning 5 ETS052 Datorkommuniktion Routing och Networking
Övning 5 TS5 Datorkommuniktion - 4 Routing och Networking October 7, 4 Uppgift. Rita hur ett paket som skickas ut i nätet nedan från nod, med flooding, sprider sig genom nätet om hop count = 3. Solution.
Lösningar till tentan i SF1861/51 Optimeringslära, 3 juni, 2015
Lösningar till tentan i SF86/5 Optimeringslära, 3 juni, 25 Uppgift.(a) Första delen: The network is illustrated in the following figure, where all the links are directed from left to right. 3 5 O------O
Measuring child participation in immunization registries: two national surveys, 2001
Measuring child participation in immunization registries: two national surveys, 2001 Diana Bartlett Immunization Registry Support Branch National Immunization Program Objectives Describe the progress of
http://marvel.com/games/play/31/create_your_own_superhero http://www.heromachine.com/
Name: Year 9 w. 4-7 The leading comic book publisher, Marvel Comics, is starting a new comic, which it hopes will become as popular as its classics Spiderman, Superman and The Incredible Hulk. Your job
2 Uppgifter. Uppgifter. Svaren börjar på sidan 35. Uppgift 1. Steg 1. Problem 1 : 2. Problem 1 : 3
1 2 Uppgifter Uppgifter Svaren börjar på sidan 35. Uppgift 1. Steg 1 Problem 1 : 2 Problem 1 : 3 Uppgifter 3 Svarsalternativ. Answer alternative 1. a Svarsalternativ. Answer alternative 1. b Svarsalternativ.
Exam Molecular Bioinformatics X3 (1MB330) - 1 March, Page 1 of 6. Skriv svar på varje uppgift på separata blad. Lycka till!!
Exam Molecular Bioinformatics X (MB) - March, - Page of Skriv svar på varje uppgift på separata blad. Lycka till!! Write the answers to each of the questions on separate sheets of paper. ood luck!! ) Sequence
SVENSK STANDARD SS-EN ISO 19108:2005/AC:2015
SVENSK STANDARD SS-EN ISO 19108:2005/AC:2015 Fastställd/Approved: 2015-07-23 Publicerad/Published: 2016-05-24 Utgåva/Edition: 1 Språk/Language: engelska/english ICS: 35.240.70 Geografisk information Modell
Aborter i Sverige 2008 januari juni
HÄLSA OCH SJUKDOMAR 2008:9 Aborter i Sverige 2008 januari juni Preliminär sammanställning SVERIGES OFFICIELLA STATISTIK Statistik Hälsa och Sjukdomar Aborter i Sverige 2008 januari juni Preliminär sammanställning
Michael Q. Jones & Matt B. Pedersen University of Nevada Las Vegas
Michael Q. Jones & Matt B. Pedersen University of Nevada Las Vegas The Distributed Application Debugger is a debugging tool for parallel programs Targets the MPI platform Runs remotley even on private
The present situation on the application of ICT in precision agriculture in Sweden
The present situation on the application of ICT in precision agriculture in Sweden Anna Rydberg & Johanna Olsson JTI Swedish Institute for Agricultural and Environmental Engineering Objective To investigate
Writing with context. Att skriva med sammanhang
Writing with context Att skriva med sammanhang What makes a piece of writing easy and interesting to read? Discuss in pairs and write down one word (in English or Swedish) to express your opinion http://korta.nu/sust(answer
Stokastisk simulering och Monte Carlo-metoder. Beräkningsvetenskap 2, 2009.
Stokastisk simulering och Monte Carlo-metoder Beräkningsvetenskap 2, 2009. Vad det här blocket handlar om: En klass av dåliga numeriska metoder som fortfarande fungerar (dåligt) när alla bra metoder inte
INSTALLATION INSTRUCTIONS
INSTALLATION - REEIVER INSTALLATION INSTRUTIONS RT0 RF WIRELESS ROOM THERMOSTAT AND REEIVER MOUNTING OF WALL MOUTING PLATE - Unscrew the screws under the - Pack contains... Installation - Receiver... Mounting